Skip to content

Data

Data Loader

mindyolo.data.loader.create_loader(dataset, batch_collate_fn, column_names_getitem, column_names_collate, batch_size, epoch_size=1, rank=0, rank_size=1, num_parallel_workers=8, shuffle=True, drop_remainder=False, python_multiprocessing=False)

Creates dataloader.

Applies operations such as transform and batch to the ms.dataset.Dataset object created by the create_dataset function to get the dataloader.

PARAMETER DESCRIPTION
dataset

dataset object created by create_dataset.

TYPE: COCODataset

batch_size

The number of rows each batch is created with. An int or callable object which takes exactly 1 parameter, BatchInfo.

TYPE: int or function

drop_remainder

Determines whether to drop the last block whose data row number is less than batch size (default=False). If True, and if there are less than batch_size rows available to make the last batch, then those rows will be dropped and not propagated to the child node.

TYPE: bool DEFAULT: False

num_parallel_workers

Number of workers(threads) to process the dataset in parallel (default=None).

TYPE: int DEFAULT: 8

python_multiprocessing

Parallelize Python operations with multiple worker processes. This option could be beneficial if the Python operation is computational heavy (default=False).

TYPE: bool DEFAULT: False

RETURNS DESCRIPTION

BatchDataset, dataset batched.

Source code in mindyolo/data/loader.py
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
def create_loader(
    dataset,
    batch_collate_fn,
    column_names_getitem,
    column_names_collate,
    batch_size,
    epoch_size=1,
    rank=0,
    rank_size=1,
    num_parallel_workers=8,
    shuffle=True,
    drop_remainder=False,
    python_multiprocessing=False,
):
    r"""Creates dataloader.

    Applies operations such as transform and batch to the `ms.dataset.Dataset` object
    created by the `create_dataset` function to get the dataloader.

    Args:
        dataset (COCODataset): dataset object created by `create_dataset`.
        batch_size (int or function): The number of rows each batch is created with. An
            int or callable object which takes exactly 1 parameter, BatchInfo.
        drop_remainder (bool, optional): Determines whether to drop the last block
            whose data row number is less than batch size (default=False). If True, and if there are less
            than batch_size rows available to make the last batch, then those rows will
            be dropped and not propagated to the child node.
        num_parallel_workers (int, optional): Number of workers(threads) to process the dataset in parallel
            (default=None).
        python_multiprocessing (bool, optional): Parallelize Python operations with multiple worker processes. This
            option could be beneficial if the Python operation is computational heavy (default=False).

    Returns:
        BatchDataset, dataset batched.
    """
    cores = multiprocessing.cpu_count()
    num_parallel_workers = min(int(cores / rank_size), num_parallel_workers)
    logger.info(f"Dataloader num parallel workers: [{num_parallel_workers}]")
    de.config.set_seed(1236517205 + rank * num_parallel_workers)
    if rank_size > 1:
        ds = de.GeneratorDataset(
            dataset,
            column_names=column_names_getitem,
            num_parallel_workers=min(8, num_parallel_workers),
            shuffle=shuffle,
            python_multiprocessing=python_multiprocessing,
            num_shards=rank_size,
            shard_id=rank,
        )
    else:
        ds = de.GeneratorDataset(
            dataset,
            column_names=column_names_getitem,
            num_parallel_workers=min(32, num_parallel_workers),
            shuffle=shuffle,
            python_multiprocessing=python_multiprocessing,
        )
    ds = ds.batch(
        batch_size, per_batch_map=batch_collate_fn,
        input_columns=column_names_getitem, output_columns=column_names_collate, drop_remainder=drop_remainder
    )
    ds = ds.repeat(epoch_size)

    return ds

Dataset

mindyolo.data.dataset.COCODataset

Load the COCO dataset (yolo format coco labels)

PARAMETER DESCRIPTION
dataset_path

dataset label directory for dataset.

TYPE: str DEFAULT: ''

for

COCO_ROOT ├── train2017.txt ├── annotations │ └── instances_train2017.json ├── images │ └── train2017 │ ├── 000000000001.jpg │ └── 000000000002.jpg └── labels └── train2017 ├── 000000000001.txt └── 000000000002.txt dataset_path (str): ./coco/train2017.txt

TYPE: example

transforms

A list of images data enhancements that apply data enhancements on data set objects in order.

TYPE: list

Source code in mindyolo/data/dataset.py
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
class COCODataset:
    """
    Load the COCO dataset (yolo format coco labels)

    Args:
        dataset_path (str): dataset label directory for dataset.
        for example:
            COCO_ROOT
                ├── train2017.txt
                ├── annotations
                │     └── instances_train2017.json
                ├── images
                │     └── train2017
                │             ├── 000000000001.jpg
                │             └── 000000000002.jpg
                └── labels
                      └── train2017
                              ├── 000000000001.txt
                              └── 000000000002.txt
            dataset_path (str): ./coco/train2017.txt
        transforms (list): A list of images data enhancements
            that apply data enhancements on data set objects in order.
    """

    def __init__(
        self,
        dataset_path="",
        img_size=640,
        transforms_dict=None,
        is_training=False,
        augment=False,
        rect=False,
        single_cls=False,
        batch_size=32,
        stride=32,
        num_cls=80,
        pad=0.0,
        return_segments=False,  # for segment
        return_keypoints=False, # for keypoint
        nkpt=0,                 # for keypoint
        ndim=0                  # for keypoint
    ):
        # acceptable image suffixes
        self.img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng', 'webp', 'mpo']
        self.cache_version = 0.2

        self.return_segments = return_segments
        self.return_keypoints = return_keypoints
        assert not (return_segments and return_keypoints), 'Can not return both segments and keypoints.'

        self.path = dataset_path
        self.img_size = img_size
        self.augment = augment
        self.rect = rect
        self.stride = stride
        self.num_cls = num_cls
        self.nkpt = nkpt
        self.ndim = ndim
        self.transforms_dict = transforms_dict
        self.is_training = is_training

        # set column names
        # https://www.mindspore.cn/docs/zh-CN/master/api_python/dataset/mindspore.dataset.config.set_enable_shared_mem.html
        # MS version limitations, shared memory does not support dict data type 
        self.column_names_getitem = ['im_file', 'cls', 'bboxes', 'segments', 'keypoints', 'bbox_format', 'segment_format', 
                                     'img', 'ori_shape', 'hw_scale', 'hw_pad'] if self.is_training else ['samples']
        if self.is_training:
            self.column_names_collate = ['images', 'labels']
            if self.return_segments:
                self.column_names_collate = ['images', 'labels', 'masks']
            elif self.return_keypoints:
                self.column_names_collate = ['images', 'labels', 'keypoints']
        else:
            self.column_names_collate = ["images", "img_files", "hw_ori", "hw_scale", "pad"]

        try:
            f = []  # image files
            for p in self.path if isinstance(self.path, list) else [self.path]:
                p = Path(p)  # os-agnostic
                if p.is_dir():  # dir
                    f += glob.glob(str(p / "**" / "*.*"), recursive=True)
                elif p.is_file():  # file
                    with open(p, "r") as t:
                        t = t.read().strip().splitlines()
                        parent = str(p.parent) + os.sep
                        f += [x.replace("./", parent) if x.startswith("./") else x for x in t]  # local to global path
                else:
                    raise Exception(f"{p} does not exist")
            self.img_files = sorted([x.replace("/", os.sep) for x in f if x.split(".")[-1].lower() in self.img_formats])
            assert self.img_files, f"No images found"
        except Exception as e:
            raise Exception(f"Error loading data from {self.path}: {e}\n")

        # Check cache
        self.label_files = self._img2label_paths(self.img_files)  # labels
        cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix(".cache.npy")  # cached labels
        if cache_path.is_file():
            cache, exists = np.load(cache_path, allow_pickle=True).item(), True  # load dict
            if cache["version"] == self.cache_version \
                    and cache["hash"] == self._get_hash(self.label_files + self.img_files):
                logger.info(f"Dataset Cache file hash/version check success.")
                logger.info(f"Load dataset cache from [{cache_path}] success.")
            else:
                logger.info(f"Dataset cache file hash/version check fail.")
                logger.info(f"Datset caching now...")
                cache, exists = self.cache_labels(cache_path), False  # cache
                logger.info(f"Dataset caching success.")
        else:
            logger.info(f"No dataset cache available, caching now...")
            cache, exists = self.cache_labels(cache_path), False  # cache
            logger.info(f"Dataset caching success.")

        # Display cache
        nf, nm, ne, nc, n = cache.pop("results")  # found, missing, empty, corrupted, total
        if exists:
            d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted"
            tqdm(None, desc=d, total=n, initial=n)  # display cache results
        assert nf > 0 or not augment, f"No labels in {cache_path}. Can not train without labels."

        # Read cache
        cache.pop("hash")  # remove hash
        cache.pop("version")  # remove version
        self.labels = cache['labels']
        self.img_files = [lb['im_file'] for lb in self.labels]  # update im_files

        # Check if the dataset is all boxes or all segments
        lengths = ((len(lb['cls']), len(lb['bboxes']), len(lb['segments'])) for lb in self.labels)
        len_cls, len_boxes, len_segments = (sum(x) for x in zip(*lengths))
        if len_segments and len_boxes != len_segments:
            print(
                f'WARNING ⚠️ Box and segment counts should be equal, but got len(segments) = {len_segments}, '
                f'len(boxes) = {len_boxes}. To resolve this only boxes will be used and all segments will be removed. '
                'To avoid this please supply either a detect or segment dataset, not a detect-segment mixed dataset.')
            for lb in self.labels:
                lb['segments'] = []
        if len_cls == 0:
            raise ValueError(f'All labels empty in {cache_path}, can not start training without labels.')

        if single_cls:
            for x in self.labels:
                x['cls'][:, 0] = 0

        n = len(self.labels)  # number of images
        bi = np.floor(np.arange(n) / batch_size).astype(np.int_)  # batch index
        nb = bi[-1] + 1  # number of batches
        self.batch = bi  # batch index of image

        # Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
        self.imgs, self.img_hw_ori, self.indices = [None] * n, [None] * n, range(n)
        # Buffer thread for mosaic images
        self.buffer = []
        self.max_buffer_length = min((n, batch_size * 8, 1000)) if self.augment else 0

        # Rectangular Train/Test
        if self.rect:
            # Sort by aspect ratio
            s = self.img_shapes  # wh
            ar = s[:, 1] / s[:, 0]  # aspect ratio
            irect = ar.argsort()
            self.img_files = [self.img_files[i] for i in irect]
            self.label_files = [self.label_files[i] for i in irect]
            self.labels = [self.labels[i] for i in irect]
            self.img_shapes = s[irect]  # wh
            ar = ar[irect]

            # Set training image shapes
            shapes = [[1, 1]] * nb
            for i in range(nb):
                ari = ar[bi == i]
                mini, maxi = ari.min(), ari.max()
                if maxi < 1:
                    shapes[i] = [maxi, 1]
                elif mini > 1:
                    shapes[i] = [1, 1 / mini]

            self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int_) * stride

        self.imgIds = [int(Path(im_file).stem) for im_file in self.img_files]

    def cache_labels(self, path=Path("./labels.cache.npy")):
        # Cache dataset labels, check images and read shapes
        x = {'labels': []}  # dict
        nm, nf, ne, nc, segments, keypoints = 0, 0, 0, 0, [], None  # number missing, found, empty, duplicate
        pbar = tqdm(zip(self.img_files, self.label_files), desc="Scanning images", total=len(self.img_files))
        if self.return_keypoints and (self.nkpt <= 0 or self.ndim not in (2, 3)):
            raise ValueError("'kpt_shape' in data.yaml missing or incorrect. Should be a list with [number of "
                             "keypoints, number of dims (2 for x,y or 3 for x,y,visible)], i.e. 'kpt_shape: [17, 3]'")
        for i, (im_file, lb_file) in enumerate(pbar):
            try:
                # verify images
                im = Image.open(im_file)
                im.verify()  # PIL verify
                shape = self._exif_size(im)  # image size
                segments = []  # instance segments
                assert (shape[0] > 9) & (shape[1] > 9), f"image size {shape} <10 pixels"
                assert im.format.lower() in self.img_formats, f"invalid image format {im.format}"

                # verify labels
                if os.path.isfile(lb_file):
                    nf += 1  # label found
                    with open(lb_file, "r") as f:
                        lb = [x.split() for x in f.read().strip().splitlines()]
                        if any([len(x) > 6 for x in lb]) and (not self.return_keypoints):  # is segment
                            classes = np.array([x[0] for x in lb], dtype=np.float32)
                            segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in lb]  # (cls, xy1...)
                            lb = np.concatenate(
                                (classes.reshape(-1, 1), segments2boxes(segments)), 1
                            )  # (cls, xywh)
                        lb = np.array(lb, dtype=np.float32)
                    nl = len(lb)
                    if nl:
                        if self.return_keypoints:
                            assert lb.shape[1] == (5 + self.nkpt * self.ndim), \
                                f'labels require {(5 + self.nkpt * self.ndim)} columns each'
                            assert (lb[:, 5::self.ndim] <= 1).all(), 'non-normalized or out of bounds coordinate labels'
                            assert (lb[:, 6::self.ndim] <= 1).all(), 'non-normalized or out of bounds coordinate labels'
                        else:
                            assert lb.shape[1] == 5, f'labels require 5 columns, {lb.shape[1]} columns detected'
                            assert (lb[:, 1:] <= 1).all(), \
                                f'non-normalized or out of bounds coordinates {lb[:, 1:][lb[:, 1:] > 1]}'
                            assert (lb >= 0).all(), f'negative label values {lb[lb < 0]}'
                        # All labels
                        max_cls = int(lb[:, 0].max())  # max label count
                        assert max_cls <= self.num_cls, \
                            f'Label class {max_cls} exceeds dataset class count {self.num_cls}. ' \
                            f'Possible class labels are 0-{self.num_cls - 1}'
                        _, j = np.unique(lb, axis=0, return_index=True)
                        if len(j) < nl:  # duplicate row check
                            lb = lb[j]  # remove duplicates
                            if segments:
                                segments = [segments[x] for x in i]
                            print(f'WARNING ⚠️ {im_file}: {nl - len(j)} duplicate labels removed')
                    else:
                        ne += 1  # label empty
                        lb = np.zeros((0, (5 + self.nkpt * self.ndim)), dtype=np.float32) \
                            if self.return_keypoints else np.zeros((0, 5), dtype=np.float32)
                else:
                    nm += 1  # label missing
                    lb = np.zeros((0, (5 + self.nkpt * self.ndim)), dtype=np.float32) \
                        if self.return_keypoints else np.zeros((0, 5), dtype=np.float32)
                if self.return_keypoints:
                    keypoints = lb[:, 5:].reshape(-1, self.nkpt, self.ndim)
                    if self.ndim == 2:
                        kpt_mask = np.ones(keypoints.shape[:2], dtype=np.float32)
                        kpt_mask = np.where(keypoints[..., 0] < 0, 0.0, kpt_mask)
                        kpt_mask = np.where(keypoints[..., 1] < 0, 0.0, kpt_mask)
                        keypoints = np.concatenate([keypoints, kpt_mask[..., None]], axis=-1)  # (nl, nkpt, 3)
                lb = lb[:, :5]
                x['labels'].append(
                    dict(
                        im_file=im_file,
                        cls=lb[:, 0:1],     # (n, 1)
                        bboxes=lb[:, 1:],   # (n, 4)
                        segments=segments,  # list of (mi, 2)
                        keypoints=keypoints,
                        bbox_format='xywhn',
                        segment_format='polygon'
                    )
                )
            except Exception as e:
                nc += 1
                print(f"WARNING: Ignoring corrupted image and/or label {im_file}: {e}")

            pbar.desc = f"Scanning '{path.parent / path.stem}' images and labels... " \
                        f"{nf} found, {nm} missing, {ne} empty, {nc} corrupted"
        pbar.close()

        if nf == 0:
            print(f"WARNING: No labels found in {path}.")

        x["hash"] = self._get_hash(self.label_files + self.img_files)
        x["results"] = nf, nm, ne, nc, len(self.img_files)
        x["version"] = self.cache_version  # cache version
        np.save(path, x)  # save for next time
        logger.info(f"New cache created: {path}")
        return x

    def __getitem__(self, index):
        sample = self.get_sample(index)

        for _i, ori_trans in enumerate(self.transforms_dict):
            _trans = ori_trans.copy()
            func_name, prob = _trans.pop("func_name"), _trans.pop("prob", 1.0)
            if func_name == 'copy_paste':
                sample = self.copy_paste(sample, prob)
            elif random.random() < prob:
                if func_name == "albumentations" and getattr(self, "albumentations", None) is None:
                    self.albumentations = Albumentations(size=self.img_size, **_trans)
                if func_name == "letterbox":
                    new_shape = self.img_size if not self.rect else self.batch_shapes[self.batch[index]]
                    sample = self.letterbox(sample, new_shape, **_trans)
                else:
                    sample = getattr(self, func_name)(sample, **_trans)

        sample['img'] = np.ascontiguousarray(sample['img'])
        if self.is_training:
            train_sample = []
            for col_name in self.column_names_getitem:
                if sample.get(col_name) is None:
                    train_sample.append(np.nan)
                else:
                    train_sample.append(sample.get(col_name, np.nan))
            return tuple(train_sample)
        return sample

    def __len__(self):
        return len(self.img_files)

    def get_sample(self, index):
        """Get and return label information from the dataset."""
        sample = deepcopy(self.labels[index])
        img = self.imgs[index]
        if img is None:
            path = self.img_files[index]
            img = cv2.imread(path)  # BGR
            assert img is not None, "Image Not Found " + path
            h_ori, w_ori = img.shape[:2]  # orig hw
            r = self.img_size / max(h_ori, w_ori)  # resize image to img_size
            if r != 1:  # always resize down, only resize up if training with augmentation
                interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR
                img = cv2.resize(img, (int(w_ori * r), int(h_ori * r)), interpolation=interp)

            if self.augment:
                self.imgs[index], self.img_hw_ori[index] = img, np.array([h_ori, w_ori]) # img, hw_original
                self.buffer.append(index)
                if 1 < len(self.buffer) >= self.max_buffer_length:
                    j = self.buffer.pop(0)
                    self.imgs[j], self.img_hw_ori[j] = None, np.array([None, None])
            sample['img'], sample['ori_shape'] = img, np.array([h_ori, w_ori])  # img, hw_original
        else:
            sample['img'], sample['ori_shape'] = self.imgs[index], self.img_hw_ori[index]  # img, hw_original

        return sample

    def mosaic(
        self,
        sample,
        mosaic9_prob=0.0,
        post_transform=None,
    ):
        segment_format = sample['segment_format']
        bbox_format = sample['bbox_format']
        assert segment_format == 'polygon', f'The segment format should be polygon, but got {segment_format}'
        assert bbox_format == 'xywhn', f'The bbox format should be xywhn, but got {bbox_format}'

        mosaic9_prob = min(1.0, max(mosaic9_prob, 0.0))
        if random.random() < (1 - mosaic9_prob):
            sample = self._mosaic4(sample)
        else:
            sample = self._mosaic9(sample)

        if post_transform:
            for _i, ori_trans in enumerate(post_transform):
                _trans = ori_trans.copy()
                func_name, prob = _trans.pop("func_name"), _trans.pop("prob", 1.0)
                sample = getattr(self, func_name)(sample, **_trans)

        return sample

    def _mosaic4(self, sample):
        # loads images in a 4-mosaic
        classes4, bboxes4, segments4 = [], [], []
        mosaic_samples = [sample, ]
        indices = random.choices(self.buffer, k=3)  # 3 additional image indices

        segments_is_list = isinstance(sample['segments'], list)
        if segments_is_list:
            mosaic_samples += [self.get_sample(i) for i in indices]
        else:
            mosaic_samples += [self.resample_segments(self.get_sample(i)) for i in indices]

        s = self.img_size
        mosaic_border = [-s // 2, -s // 2]
        yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in mosaic_border]  # mosaic center x, y

        for i, mosaic_sample in enumerate(mosaic_samples):
            # Load image
            img = mosaic_sample['img']
            (h, w) = img.shape[:2]

            # place img in img4
            if i == 0:  # top left
                img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles
                x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc  # xmin, ymin, xmax, ymax (large image)
                x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h  # xmin, ymin, xmax, ymax (small image)
            elif i == 1:  # top right
                x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
                x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
            elif i == 2:  # bottom left
                x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
                x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
            elif i == 3:  # bottom right
                x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
                x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)

            img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b]  # img4[ymin:ymax, xmin:xmax]
            padw = x1a - x1b
            padh = y1a - y1b

            # box and cls
            cls, bboxes = mosaic_sample['cls'], mosaic_sample['bboxes']
            assert mosaic_sample['bbox_format'] == 'xywhn'
            bboxes = xywhn2xyxy(bboxes, w, h, padw, padh)  # normalized xywh to pixel xyxy format
            classes4.append(cls)
            bboxes4.append(bboxes)

            # seg
            assert mosaic_sample['segment_format'] == 'polygon'
            segments = mosaic_sample['segments']
            if segments_is_list:
                segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
                segments4.extend(segments)
            else:
                segments = xyn2xy(segments, w, h, padw, padh)
                segments4.append(segments)

        classes4 = np.concatenate(classes4, 0)
        bboxes4 = np.concatenate(bboxes4, 0)
        bboxes4 = bboxes4.clip(0, 2 * s)

        if segments_is_list:
            for x in segments4:
                np.clip(x, 0, 2 * s, out=x)
        else:
            segments4 = np.concatenate(segments4, 0)
            segments4 = segments4.clip(0, 2 * s)

        sample['img'] = img4
        sample['cls'] = classes4
        sample['bboxes'] = bboxes4
        sample['bbox_format'] = 'ltrb'
        sample['segments'] = segments4
        sample['mosaic_border'] = mosaic_border

        return sample

    def _mosaic9(self, sample):
        # loads images in a 9-mosaic
        classes9, bboxes9, segments9 = [], [], []
        mosaic_samples = [sample, ]
        indices = random.choices(self.buffer, k=8)  # 8 additional image indices

        segments_is_list = isinstance(sample['segments'], list)
        if segments_is_list:
            mosaic_samples += [self.get_sample(i) for i in indices]
        else:
            mosaic_samples += [self.resample_segments(self.get_sample(i)) for i in indices]
        s = self.img_size
        mosaic_border = [-s // 2, -s // 2]

        for i, mosaic_sample in enumerate(mosaic_samples):
            # Load image
            img = mosaic_sample['img']
            (h, w) = img.shape[:2]

            # place img in img9
            if i == 0:  # center
                img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles
                h0, w0 = h, w
                c = s, s, s + w, s + h  # xmin, ymin, xmax, ymax (base) coordinates
            elif i == 1:  # top
                c = s, s - h, s + w, s
            elif i == 2:  # top right
                c = s + wp, s - h, s + wp + w, s
            elif i == 3:  # right
                c = s + w0, s, s + w0 + w, s + h
            elif i == 4:  # bottom right
                c = s + w0, s + hp, s + w0 + w, s + hp + h
            elif i == 5:  # bottom
                c = s + w0 - w, s + h0, s + w0, s + h0 + h
            elif i == 6:  # bottom left
                c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
            elif i == 7:  # left
                c = s - w, s + h0 - h, s, s + h0
            elif i == 8:  # top left
                c = s - w, s + h0 - hp - h, s, s + h0 - hp

            padx, pady = c[:2]
            x1, y1, x2, y2 = [max(x, 0) for x in c]  # allocate coords

            # box and cls
            assert mosaic_sample['bbox_format'] == 'xywhn'
            cls, bboxes = mosaic_sample['cls'], mosaic_sample['bboxes']
            bboxes = xywhn2xyxy(bboxes, w, h, padx, pady)  # normalized xywh to pixel xyxy format
            classes9.append(cls)
            bboxes9.append(bboxes)

            # seg
            assert mosaic_sample['segment_format'] == 'polygon'
            segments = mosaic_sample['segments']
            if segments_is_list:
                segments = [xyn2xy(x, w, h, padx, pady) for x in segments]
                segments9.extend(segments)
            else:
                segments = xyn2xy(segments, w, h, padx, pady)
                segments9.append(segments)

            # Image
            img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:]  # img9[ymin:ymax, xmin:xmax]
            hp, wp = h, w  # height, width previous

        # Offset
        yc, xc = [int(random.uniform(0, s)) for _ in mosaic_border]  # mosaic center x, y
        img9 = img9[yc: yc + 2 * s, xc: xc + 2 * s]

        # Concat/clip labels
        classes9 = np.concatenate(classes9, 0)
        bboxes9 = np.concatenate(bboxes9, 0)
        bboxes9[:, [0, 2]] -= xc
        bboxes9[:, [1, 3]] -= yc
        bboxes9 = bboxes9.clip(0, 2 * s)

        if segments_is_list:
            c = np.array([xc, yc])  # centers
            segments9 = [x - c for x in segments9]
            for x in segments9:
                np.clip(x, 0, 2 * s, out=x)
        else:
            segments9 = np.concatenate(segments9, 0)
            segments9[..., 0] -= xc
            segments9[..., 1] -= yc
            segments9 = segments9.clip(0, 2 * s)

        sample['img'] = img9
        sample['cls'] = classes9
        sample['bboxes'] = bboxes9
        sample['bbox_format'] = 'ltrb'
        sample['segments'] = segments9
        sample['mosaic_border'] = mosaic_border

        return sample

    def resample_segments(self, sample, n=1000):
        segment_format = sample['segment_format']
        assert segment_format == 'polygon', f'The segment format is should be polygon, but got {segment_format}'

        segments = sample['segments']
        if len(segments) > 0:
            # Up-sample an (n,2) segment
            for i, s in enumerate(segments):
                s = np.concatenate((s, s[0:1, :]), axis=0)
                x = np.linspace(0, len(s) - 1, n)
                xp = np.arange(len(s))
                segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T  # segment xy
            segments = np.stack(segments, axis=0)
        else:
            segments = np.zeros((0, 1000, 2), dtype=np.float32)
        sample['segments'] = segments
        return sample

    def copy_paste(self, sample, probability=0.5):
        # Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
        bbox_format, segment_format = sample['bbox_format'], sample['segment_format']
        assert bbox_format == 'ltrb', f'The bbox format should be ltrb, but got {bbox_format}'
        assert segment_format == 'polygon', f'The segment format should be polygon, but got {segment_format}'

        img = sample['img']
        cls = sample['cls']
        bboxes = sample['bboxes']
        segments = sample['segments']

        n = len(segments)
        if probability and n:
            h, w, _ = img.shape  # height, width, channels
            im_new = np.zeros(img.shape, np.uint8)
            for j in random.sample(range(n), k=round(probability * n)):
                c, l, s = cls[j], bboxes[j], segments[j]
                box = w - l[2], l[1], w - l[0], l[3]
                ioa = bbox_ioa(box, bboxes)  # intersection over area
                if (ioa < 0.30).all():  # allow 30% obscuration of existing labels
                    cls = np.concatenate((cls, [c]), 0)
                    bboxes = np.concatenate((bboxes, [box]), 0)
                    if isinstance(segments, list):
                        segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1))
                    else:
                        segments = np.concatenate((segments, [np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1)]), 0)
                    cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED)

            result = cv2.bitwise_and(src1=img, src2=im_new)
            result = cv2.flip(result, 1)  # augment segments (flip left-right)
            i = result > 0  # pixels to replace
            img[i] = result[i]  # cv2.imwrite('debug.jpg', img)  # debug

        sample['img'] = img
        sample['cls'] = cls
        sample['bboxes'] = bboxes
        sample['segments'] = segments

        return sample

    def random_perspective(
            self, sample, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, border=(0, 0)
    ):
        bbox_format, segment_format = sample['bbox_format'], sample['segment_format']
        assert bbox_format == 'ltrb', f'The bbox format should be ltrb, but got {bbox_format}'
        assert segment_format == 'polygon', f'The segment format should be polygon, but got {segment_format}'

        img = sample['img']
        cls = sample['cls']
        targets = sample['bboxes']
        segments = sample['segments']
        assert isinstance(segments, np.ndarray), f"segments type expect numpy.ndarray, but got {type(segments)}; " \
                                                 f"maybe you should resample_segments before that."

        border = sample.pop('mosaic_border', border)
        height = img.shape[0] + border[0] * 2  # shape(h,w,c)
        width = img.shape[1] + border[1] * 2

        # Center
        C = np.eye(3)
        C[0, 2] = -img.shape[1] / 2  # x translation (pixels)
        C[1, 2] = -img.shape[0] / 2  # y translation (pixels)

        # Perspective
        P = np.eye(3)
        P[2, 0] = random.uniform(-perspective, perspective)  # x perspective (about y)
        P[2, 1] = random.uniform(-perspective, perspective)  # y perspective (about x)

        # Rotation and Scale
        R = np.eye(3)
        a = random.uniform(-degrees, degrees)
        s = random.uniform(1 - scale, 1 + scale)
        R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)

        # Shear
        S = np.eye(3)
        S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180)  # x shear (deg)
        S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180)  # y shear (deg)

        # Translation
        T = np.eye(3)
        T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width  # x translation (pixels)
        T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height  # y translation (pixels)

        # Combined rotation matrix
        M = T @ S @ R @ P @ C  # order of operations (right to left) is IMPORTANT
        if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any():  # image changed
            if perspective:
                img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114))
            else:  # affine
                img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114))

        # Transform label coordinates
        n = len(targets)
        if n:
            use_segments = len(segments)
            new_bboxes = np.zeros((n, 4))
            if use_segments:  # warp segments
                point_num = segments[0].shape[0]
                new_segments = np.zeros((n, point_num, 2))
                for i, segment in enumerate(segments):
                    xy = np.ones((len(segment), 3))
                    xy[:, :2] = segment
                    xy = xy @ M.T  # transform
                    xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]  # perspective rescale or affine

                    # clip
                    new_segments[i] = xy
                    new_bboxes[i] = segment2box(xy, width, height)

            else:  # warp boxes
                xy = np.ones((n * 4, 3))
                xy[:, :2] = targets[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(n * 4, 2)  # x1y1, x2y2, x1y2, x2y1
                xy = xy @ M.T  # transform
                xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8)  # perspective rescale or affine

                # create new boxes
                x = xy[:, [0, 2, 4, 6]]
                y = xy[:, [1, 3, 5, 7]]
                new_bboxes = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T

                # clip
                new_bboxes[:, [0, 2]] = new_bboxes[:, [0, 2]].clip(0, width)
                new_bboxes[:, [1, 3]] = new_bboxes[:, [1, 3]].clip(0, height)

            # filter candidates
            i = box_candidates(box1=targets.T * s, box2=new_bboxes.T, area_thr=0.01 if use_segments else 0.10)

            cls = cls[i]
            targets = new_bboxes[i]
            sample['cls'] = cls
            sample['bboxes'] = targets
            if use_segments:
                sample['segments'] = new_segments[i]

        sample['img'] = img

        return sample

    def mixup(self, sample, alpha: 32.0, beta: 32.0, pre_transform=None):
        bbox_format, segment_format = sample['bbox_format'], sample['segment_format']
        assert bbox_format == 'ltrb', f'The bbox format should be ltrb, but got {bbox_format}'
        assert segment_format == 'polygon', f'The segment format should be polygon, but got {segment_format}'

        index = random.choices(self.indices, k=1)[0]
        sample2 = self.get_sample(index)
        if pre_transform:
            for _i, ori_trans in enumerate(pre_transform):
                _trans = ori_trans.copy()
                func_name, prob = _trans.pop("func_name"), _trans.pop("prob", 1.0)
                if func_name == 'copy_paste':
                    sample2 = self.copy_paste(sample2, prob)
                elif random.random() < prob:
                    if func_name == "albumentations" and getattr(self, "albumentations", None) is None:
                        self.albumentations = Albumentations(size=self.img_size, **_trans)
                    sample2 = getattr(self, func_name)(sample2, **_trans)

        assert isinstance(sample['segments'], np.ndarray), \
            f"MixUp: sample segments type expect numpy.ndarray, but got {type(sample['segments'])}; " \
            f"maybe you should resample_segments before that."
        assert isinstance(sample2['segments'], np.ndarray), \
            f"MixUp: sample2 segments type expect numpy.ndarray, but got {type(sample2['segments'])}; " \
            f"maybe you should add resample_segments in pre_transform."

        image, image2 = sample['img'], sample2['img']
        r = np.random.beta(alpha, beta)  # mixup ratio, alpha=beta=8.0
        image = (image * r + image2 * (1 - r)).astype(np.uint8)

        sample['img'] = image
        sample['cls'] = np.concatenate((sample['cls'], sample2['cls']), 0)
        sample['bboxes'] = np.concatenate((sample['bboxes'], sample2['bboxes']), 0)
        sample['segments'] = np.concatenate((sample['segments'], sample2['segments']), 0)
        return sample

    def pastein(self, sample, num_sample=30):
        bbox_format = sample['bbox_format']
        assert bbox_format == 'ltrb', f'The bbox format should be ltrb, but got {bbox_format}'
        assert not self.return_segments, "pastein currently does not support seg data."
        assert not self.return_keypoints, "pastein currently does not support keypoint data."
        sample.pop('segments', None)
        sample.pop('keypoints', None)

        image = sample['img']
        cls = sample['cls']
        bboxes = sample['bboxes']
        # load sample
        sample_labels, sample_images, sample_masks = [], [], []
        while len(sample_labels) < num_sample:
            sample_labels_, sample_images_, sample_masks_ = self._pastin_load_samples()
            sample_labels += sample_labels_
            sample_images += sample_images_
            sample_masks += sample_masks_
            if len(sample_labels) == 0:
                break

        # Applies image cutout augmentation https://arxiv.org/abs/1708.04552
        h, w = image.shape[:2]

        # create random masks
        scales = [0.75] * 2 + [0.5] * 4 + [0.25] * 4 + [0.125] * 4 + [0.0625] * 6  # image size fraction
        for s in scales:
            if random.random() < 0.2:
                continue
            mask_h = random.randint(1, int(h * s))
            mask_w = random.randint(1, int(w * s))

            # box
            xmin = max(0, random.randint(0, w) - mask_w // 2)
            ymin = max(0, random.randint(0, h) - mask_h // 2)
            xmax = min(w, xmin + mask_w)
            ymax = min(h, ymin + mask_h)

            box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
            if len(bboxes):
                ioa = bbox_ioa(box, bboxes)  # intersection over area
            else:
                ioa = np.zeros(1)

            if (
                    (ioa < 0.30).all() and len(sample_labels) and (xmax > xmin + 20) and (ymax > ymin + 20)
            ):  # allow 30% obscuration of existing labels
                sel_ind = random.randint(0, len(sample_labels) - 1)
                hs, ws, cs = sample_images[sel_ind].shape
                r_scale = min((ymax - ymin) / hs, (xmax - xmin) / ws)
                r_w = int(ws * r_scale)
                r_h = int(hs * r_scale)

                if (r_w > 10) and (r_h > 10):
                    r_mask = cv2.resize(sample_masks[sel_ind], (r_w, r_h))
                    r_image = cv2.resize(sample_images[sel_ind], (r_w, r_h))
                    temp_crop = image[ymin: ymin + r_h, xmin: xmin + r_w]
                    m_ind = r_mask > 0
                    if m_ind.astype(np.int_).sum() > 60:
                        temp_crop[m_ind] = r_image[m_ind]
                        box = np.array([xmin, ymin, xmin + r_w, ymin + r_h], dtype=np.float32)
                        if len(bboxes):
                            cls = np.concatenate((cls, [[sample_labels[sel_ind]]]), 0)
                            bboxes = np.concatenate((bboxes, [box]), 0)
                        else:
                            cls = np.array([[sample_labels[sel_ind]]])
                            bboxes = np.array([box])

                        image[ymin: ymin + r_h, xmin: xmin + r_w] = temp_crop  # Modify on the original image

        sample['img'] = image
        sample['bboxes'] = bboxes
        sample['cls'] = cls
        return sample

    def _pastin_load_samples(self):
        # loads images in a 4-mosaic
        classes4, bboxes4, segments4 = [], [], []
        mosaic_samples = []
        indices = random.choices(self.indices, k=4)  # 3 additional image indices
        mosaic_samples += [self.get_sample(i) for i in indices]
        s = self.img_size
        mosaic_border = [-s // 2, -s // 2]
        yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in mosaic_border]  # mosaic center x, y

        for i, sample in enumerate(mosaic_samples):
            # Load image
            img = sample['img']
            (h, w) = img.shape[:2]

            # place img in img4
            if i == 0:  # top left
                img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles
                x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc  # xmin, ymin, xmax, ymax (large image)
                x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h  # xmin, ymin, xmax, ymax (small image)
            elif i == 1:  # top right
                x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
                x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
            elif i == 2:  # bottom left
                x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
                x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
            elif i == 3:  # bottom right
                x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
                x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)

            img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b]  # img4[ymin:ymax, xmin:xmax]
            padw = x1a - x1b
            padh = y1a - y1b

            # Labels
            cls, bboxes = sample['cls'], sample['bboxes']
            bboxes = xywhn2xyxy(bboxes, w, h, padw, padh)  # normalized xywh to pixel xyxy format

            classes4.append(cls)
            bboxes4.append(bboxes)

            segments = sample['segments']
            segments_is_list = isinstance(segments, list)
            if segments_is_list:
                segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
                segments4.extend(segments)
            else:
                segments = xyn2xy(segments, w, h, padw, padh)
                segments4.append(segments)

        # Concat/clip labels
        classes4 = np.concatenate(classes4, 0)
        bboxes4 = np.concatenate(bboxes4, 0)
        bboxes4 = bboxes4.clip(0, 2 * s)

        if segments_is_list:
            for x in segments4:
                np.clip(x, 0, 2 * s, out=x)
        else:
            segments4 = np.concatenate(segments4, 0)
            segments4 = segments4.clip(0, 2 * s)

        # Augment
        sample_labels, sample_images, sample_masks = \
            self._pastin_sample_segments(img4, classes4, bboxes4, segments4, probability=0.5)

        return sample_labels, sample_images, sample_masks

    def _pastin_sample_segments(self, img, classes, bboxes, segments, probability=0.5):
        # Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
        n = len(segments)
        sample_labels = []
        sample_images = []
        sample_masks = []
        if probability and n:
            h, w, c = img.shape  # height, width, channels
            for j in random.sample(range(n), k=round(probability * n)):
                cls, l, s = classes[j], bboxes[j], segments[j]
                box = (
                    l[0].astype(int).clip(0, w - 1),
                    l[1].astype(int).clip(0, h - 1),
                    l[2].astype(int).clip(0, w - 1),
                    l[3].astype(int).clip(0, h - 1),
                )

                if (box[2] <= box[0]) or (box[3] <= box[1]):
                    continue

                sample_labels.append(cls[0])

                mask = np.zeros(img.shape, np.uint8)

                cv2.drawContours(mask, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED)
                sample_masks.append(mask[box[1]: box[3], box[0]: box[2], :])

                result = cv2.bitwise_and(src1=img, src2=mask)
                i = result > 0  # pixels to replace
                mask[i] = result[i]  # cv2.imwrite('debug.jpg', img)  # debug
                sample_images.append(mask[box[1]: box[3], box[0]: box[2], :])

        return sample_labels, sample_images, sample_masks

    def hsv_augment(self, sample, hgain=0.5, sgain=0.5, vgain=0.5):
        image = sample['img']
        r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1  # random gains
        hue, sat, val = cv2.split(cv2.cvtColor(image, cv2.COLOR_BGR2HSV))
        dtype = image.dtype  # uint8

        x = np.arange(0, 256, dtype=np.int16)
        lut_hue = ((x * r[0]) % 180).astype(dtype)
        lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
        lut_val = np.clip(x * r[2], 0, 255).astype(dtype)

        img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
        cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=image)  # Modify on the original image

        sample['img'] = image
        return sample

    def fliplr(self, sample):
        # flip image left-right
        image = sample['img']
        image = np.fliplr(image)
        sample['img'] = image

        # flip box
        _, w = image.shape[:2]
        bboxes, bbox_format = sample['bboxes'], sample['bbox_format']
        if bbox_format == "ltrb":
            if len(bboxes):
                x1 = bboxes[:, 0].copy()
                x2 = bboxes[:, 2].copy()
                bboxes[:, 0] = w - x2
                bboxes[:, 2] = w - x1
        elif bbox_format == "xywhn":
            if len(bboxes):
                bboxes[:, 0] = 1 - bboxes[:, 0]
        else:
            raise NotImplementedError
        sample['bboxes'] = bboxes

        # flip seg
        if self.return_segments:
            segment_format, segments = sample['segment_format'], sample['segments']
            assert segment_format == 'polygon', \
                f'FlipLR: The segment format should be polygon, but got {segment_format}'
            assert isinstance(segments, np.ndarray), \
                f"FlipLR: segments type expect numpy.ndarray, but got {type(segments)}; " \
                f"maybe you should resample_segments before that."

            if len(segments):
                segments[..., 0] = w - segments[..., 0]

            sample['segments'] = segments

        return sample

    def letterbox(self, sample, new_shape=None, xywhn2xyxy_=True, scaleup=False, only_image=False, color=(114, 114, 114)):
        # Resize and pad image while meeting stride-multiple constraints
        if sample['bbox_format'] == 'ltrb':
            xywhn2xyxy_ = False

        if not new_shape:
            new_shape = self.img_size

        if isinstance(new_shape, int):
            new_shape = (new_shape, new_shape)

        image = sample['img']
        shape = image.shape[:2]  # current shape [height, width]

        h, w = shape[:]
        ori_shape = sample['ori_shape']
        h0, w0 = ori_shape
        hw_scale = np.array([h / h0, w / w0])
        sample['hw_scale'] = hw_scale

        # Scale ratio (new / old)
        r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
        if not scaleup:  # only scale down, do not scale up (for better test mAP)
            r = min(r, 1.0)

        # Compute padding
        new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
        dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding

        dw /= 2  # divide padding into 2 sides
        dh /= 2
        hw_pad = np.array([dh, dw])

        if shape != new_shape:
            if shape[::-1] != new_unpad:  # resize
                image = cv2.resize(image, new_unpad, interpolation=cv2.INTER_LINEAR)
            top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
            left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
            image = cv2.copyMakeBorder(image, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
            sample['hw_pad'] = hw_pad
        else:
            sample['hw_pad'] = np.array([0., 0.])
        bboxes = sample['bboxes']
        if not only_image:
            # convert bboxes
            if len(bboxes):
                if xywhn2xyxy_:
                    bboxes = xywhn2xyxy(bboxes, r * w, r * h, padw=dw, padh=dh)
                else:
                    bboxes *= r
                    bboxes[:, [0, 2]] += dw
                    bboxes[:, [1, 3]] += dh
                sample['bboxes'] = bboxes
            sample['bbox_format'] = 'ltrb'

            # convert segments
            if 'segments' in sample:
                segments, segment_format = sample['segments'], sample['segment_format']
                assert segment_format == 'polygon', f'The segment format should be polygon, but got {segment_format}'

                if len(segments):
                    if isinstance(segments, np.ndarray):
                        if xywhn2xyxy_:
                            segments[..., 0] *= w
                            segments[..., 1] *= h
                        else:
                            segments *= r
                        segments[..., 0] += dw
                        segments[..., 1] += dh
                    elif isinstance(segments, list):
                        for segment in segments:
                            if xywhn2xyxy_:
                                segment[..., 0] *= w
                                segment[..., 1] *= h
                            else:
                                segment *= r
                            segment[..., 0] += dw
                            segment[..., 1] += dh
                    sample['segments'] = segments

        sample['img'] = image
        return sample

    def label_norm(self, sample, xyxy2xywh_=True):
        bbox_format = sample['bbox_format']
        if bbox_format == "xywhn":
            return sample

        bboxes = sample['bboxes']
        if len(bboxes) == 0:
            sample['bbox_format'] = 'xywhn'
            return sample

        if xyxy2xywh_:
            bboxes = xyxy2xywh(bboxes)  # convert xyxy to xywh
        height, width = sample['img'].shape[:2]
        bboxes[:, [1, 3]] /= height  # normalized height 0-1
        bboxes[:, [0, 2]] /= width  # normalized width 0-1
        sample['bboxes'] = bboxes
        sample['bbox_format'] = 'xywhn'

        return sample

    def label_pad(self, sample, padding_size=160, padding_value=-1):
        # create fixed label, avoid dynamic shape problem.
        bbox_format = sample['bbox_format']
        assert bbox_format == 'xywhn', f'The bbox format should be xywhn, but got {bbox_format}'

        cls, bboxes = sample['cls'], sample['bboxes']
        cls_pad = np.full((padding_size, 1), padding_value, dtype=np.float32)
        bboxes_pad = np.full((padding_size, 4), padding_value, dtype=np.float32)
        nL = len(bboxes)
        if nL:
            cls_pad[:min(nL, padding_size)] = cls[:min(nL, padding_size)]
            bboxes_pad[:min(nL, padding_size)] = bboxes[:min(nL, padding_size)]
        sample['cls'] = cls_pad
        sample['bboxes'] = bboxes_pad

        if "segments" in sample:
            if sample['segment_format'] == "mask":
                segments = sample['segments']
                assert isinstance(segments, np.ndarray), \
                    f"Label Pad: segments type expect numpy.ndarray, but got {type(segments)}; " \
                    f"maybe you should resample_segments before that."
                assert nL == segments.shape[0], f"Label Pad: segments len not equal bboxes"
                h, w = segments.shape[1:]
                segments_pad = np.full((padding_size, h, w), padding_value, dtype=np.float32)
                segments_pad[:min(nL, padding_size)] = segments[:min(nL, padding_size)]
                sample['segments'] = segments_pad

        return sample

    def image_norm(self, sample, scale=255.0):
        image = sample['img']
        image = image.astype(np.float32, copy=False)
        image /= scale
        sample['img'] = image
        return sample

    def image_transpose(self, sample, bgr2rgb=True, hwc2chw=True):
        image = sample['img']
        if bgr2rgb:
            image = image[:, :, ::-1]
        if hwc2chw:
            image = image.transpose(2, 0, 1)
        sample['img'] = image
        return sample

    def segment_poly2mask(self, sample, mask_overlap, mask_ratio):
        """convert polygon points to bitmap."""
        segments, segment_format = sample['segments'], sample['segment_format']
        assert segment_format == 'polygon', f'The segment format should be polygon, but got {segment_format}'
        assert isinstance(segments, np.ndarray), \
            f"Segment Poly2Mask: segments type expect numpy.ndarray, but got {type(segments)}; " \
            f"maybe you should resample_segments before that."

        h, w = sample['img'].shape[:2]
        if mask_overlap:
            masks, sorted_idx = polygons2masks_overlap((h, w), segments, downsample_ratio=mask_ratio)
            sample['cls'] = sample['cls'][sorted_idx]
            sample['bboxes'] = sample['bboxes'][sorted_idx]
            sample['segments'] = masks  # (h/mask_ratio, w/mask_ratio)
            sample['segment_format'] = 'overlap'
        else:
            masks = polygons2masks((h, w), segments, color=1, downsample_ratio=mask_ratio)
            sample['segments'] = masks
            sample['segment_format'] = 'mask'

        return sample

    def _img2label_paths(self, img_paths):
        # Define label paths as a function of image paths
        sa, sb = os.sep + "images" + os.sep, os.sep + "labels" + os.sep  # /images/, /labels/ substrings
        return ["txt".join(x.replace(sa, sb, 1).rsplit(x.split(".")[-1], 1)) for x in img_paths]

    def _get_hash(self, paths):
        # Returns a single hash value of a list of paths (files or dirs)
        size = sum(os.path.getsize(p) for p in paths if os.path.exists(p))  # sizes
        h = hashlib.md5(str(size).encode())  # hash sizes
        h.update("".join(paths).encode())  # hash paths
        return h.hexdigest()  # return hash

    def _exif_size(self, img):
        # Returns exif-corrected PIL size
        s = img.size  # (width, height)
        try:
            rotation = dict(img._getexif().items())[orientation]
            if rotation == 6:  # rotation 270
                s = (s[1], s[0])
            elif rotation == 8:  # rotation 90
                s = (s[1], s[0])
        except:
            pass

        return s

    def train_collate_fn(self, im_file, cls, bboxes, segments, keypoints, bbox_format, 
                         segment_format, img, ori_shape, hw_scale, hw_pad, batch_info):
        labels = []
        for i, (c, b) in enumerate(zip(cls, bboxes)):
            labels.append(np.concatenate((np.full_like(c, i), c, b), axis=-1))
        return_items = [np.stack(img, 0), np.stack(labels, 0)]
        if self.return_segments:
            return_items.append(np.stack(segments, 0))
        if self.return_keypoints:
            return_items.append(np.stack(keypoints, 0))

        return tuple(return_items)

    def test_collate_fn(self, batch_samples, batch_info):
        imgs = [sample.pop('img') for sample in batch_samples]
        path = [sample.pop('im_file') for sample in batch_samples]
        hw_ori = [sample.pop('ori_shape') for sample in batch_samples]
        hw_scale = [sample.pop('hw_scale') for sample in batch_samples]
        pad = [sample.pop('hw_pad') for sample in batch_samples]
        return (
            np.stack(imgs, 0),
            path,
            np.stack(hw_ori, 0),
            np.stack(hw_scale, 0),
            np.stack(pad, 0),
        )

mindyolo.data.dataset.COCODataset.get_sample(index)

Get and return label information from the dataset.

Source code in mindyolo/data/dataset.py
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
def get_sample(self, index):
    """Get and return label information from the dataset."""
    sample = deepcopy(self.labels[index])
    img = self.imgs[index]
    if img is None:
        path = self.img_files[index]
        img = cv2.imread(path)  # BGR
        assert img is not None, "Image Not Found " + path
        h_ori, w_ori = img.shape[:2]  # orig hw
        r = self.img_size / max(h_ori, w_ori)  # resize image to img_size
        if r != 1:  # always resize down, only resize up if training with augmentation
            interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR
            img = cv2.resize(img, (int(w_ori * r), int(h_ori * r)), interpolation=interp)

        if self.augment:
            self.imgs[index], self.img_hw_ori[index] = img, np.array([h_ori, w_ori]) # img, hw_original
            self.buffer.append(index)
            if 1 < len(self.buffer) >= self.max_buffer_length:
                j = self.buffer.pop(0)
                self.imgs[j], self.img_hw_ori[j] = None, np.array([None, None])
        sample['img'], sample['ori_shape'] = img, np.array([h_ori, w_ori])  # img, hw_original
    else:
        sample['img'], sample['ori_shape'] = self.imgs[index], self.img_hw_ori[index]  # img, hw_original

    return sample

mindyolo.data.dataset.COCODataset.segment_poly2mask(sample, mask_overlap, mask_ratio)

convert polygon points to bitmap.

Source code in mindyolo/data/dataset.py
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
def segment_poly2mask(self, sample, mask_overlap, mask_ratio):
    """convert polygon points to bitmap."""
    segments, segment_format = sample['segments'], sample['segment_format']
    assert segment_format == 'polygon', f'The segment format should be polygon, but got {segment_format}'
    assert isinstance(segments, np.ndarray), \
        f"Segment Poly2Mask: segments type expect numpy.ndarray, but got {type(segments)}; " \
        f"maybe you should resample_segments before that."

    h, w = sample['img'].shape[:2]
    if mask_overlap:
        masks, sorted_idx = polygons2masks_overlap((h, w), segments, downsample_ratio=mask_ratio)
        sample['cls'] = sample['cls'][sorted_idx]
        sample['bboxes'] = sample['bboxes'][sorted_idx]
        sample['segments'] = masks  # (h/mask_ratio, w/mask_ratio)
        sample['segment_format'] = 'overlap'
    else:
        masks = polygons2masks((h, w), segments, color=1, downsample_ratio=mask_ratio)
        sample['segments'] = masks
        sample['segment_format'] = 'mask'

    return sample

Albumentations

mindyolo.data.albumentations.Albumentations

Source code in mindyolo/data/albumentations.py
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
class Albumentations:
    # Implement Albumentations augmentation https://github.com/ultralytics/yolov5
    # YOLOv5 Albumentations class (optional, only used if package is installed)
    def __init__(self, size=640, random_resized_crop=True, **kwargs):
        self.transform = None
        prefix = _colorstr("albumentations: ")
        try:
            import albumentations as A

            _check_version(A.__version__, "1.0.3", hard=True)  # version requirement
            T = []
            if random_resized_crop:
                T.extend([
                    A.RandomResizedCrop(height=size, width=size, scale=(0.8, 1.0), ratio=(0.9, 1.11), p=0.0),
                ])
            T.extend([
                A.Blur(p=0.01),
                A.MedianBlur(p=0.01),
                A.ToGray(p=0.01),
                A.CLAHE(p=0.01),
                A.RandomBrightnessContrast(p=0.0),
                A.RandomGamma(p=0.0),
                A.ImageCompression(quality_lower=75, p=0.0),
            ])
            self.transform = A.Compose(T, bbox_params=A.BboxParams(format="yolo", label_fields=["class_labels"]))

            print(prefix + ", ".join(f"{x}".replace("always_apply=False, ", "") for x in T if x.p), flush=True)
            print("[INFO] albumentations load success", flush=True)
        except ImportError:  # package not installed, skip
            pass
            print("[WARNING] package not installed, albumentations load failed", flush=True)
        except Exception as e:
            print(f"{prefix}{e}", flush=True)
            print("[WARNING] albumentations load failed", flush=True)

    def __call__(self, sample, p=1.0, **kwargs):
        if self.transform and random.random() < p:
            im, bboxes, cls, bbox_format = sample['img'], sample['bboxes'], sample['cls'], sample['bbox_format']
            assert bbox_format in ("ltrb", "xywhn")
            if bbox_format == "ltrb" and bboxes.shape[0] > 0:
                h, w = im.shape[:2]
                bboxes = xyxy2xywh(bboxes)
                bboxes[:, [0, 2]] /= w
                bboxes[:, [1, 3]] /= h

            new = self.transform(image=im, bboxes=bboxes, class_labels=cls)  # transformed

            sample['img'] = new['image']
            sample['bboxes'] = np.array(new['bboxes'])
            sample['cls'] = np.array(new['class_labels']).reshape(-1, 1)
            sample['bbox_format'] = "xywhn"

        return sample