TCDScheduler¶
Trajectory Consistency Distillation by Jianbin Zheng, Minghui Hu, Zhongyi Fan, Chaoyue Wang, Changxing Ding, Dacheng Tao and Tat-Jen Cham introduced a Strategic Stochastic Sampling (Algorithm 4) that is capable of generating good samples in a small number of steps. Distinguishing it as an advanced iteration of the multistep scheduler (Algorithm 1) in the Consistency Models, Strategic Stochastic Sampling specifically tailored for the trajectory consistency function.
The abstract from the paper is:
Latent Consistency Model (LCM) extends the Consistency Model to the latent space and leverages the guided consistency distillation technique to achieve impressive performance in accelerating text-to-image synthesis. However, we observed that LCM struggles to generate images with both clarity and detailed intricacy. To address this limitation, we initially delve into and elucidate the underlying causes. Our investigation identifies that the primary issue stems from errors in three distinct areas. Consequently, we introduce Trajectory Consistency Distillation (TCD), which encompasses trajectory consistency function and strategic stochastic sampling. The trajectory consistency function diminishes the distillation errors by broadening the scope of the self-consistency boundary condition and endowing the TCD with the ability to accurately trace the entire trajectory of the Probability Flow ODE. Additionally, strategic stochastic sampling is specifically designed to circumvent the accumulated errors inherent in multi-step consistency sampling, which is meticulously tailored to complement the TCD model. Experiments demonstrate that TCD not only significantly enhances image quality at low NFEs but also yields more detailed results compared to the teacher model at high NFEs.
The original codebase can be found at jabir-zheng/TCD.
mindone.diffusers.TCDScheduler
¶
Bases: SchedulerMixin
, ConfigMixin
TCDScheduler
incorporates the Strategic Stochastic Sampling
introduced by the paper Trajectory Consistency
Distillation
, extending the original Multistep Consistency Sampling to enable unrestricted trajectory traversal.
This code is based on the official repo of TCD(https://github.com/jabir-zheng/TCD).
This model inherits from [SchedulerMixin
] and [ConfigMixin
]. [~ConfigMixin
] takes care of storing all config
attributes that are passed in the scheduler's __init__
function, such as num_train_timesteps
. They can be
accessed via scheduler.config.num_train_timesteps
. [SchedulerMixin
] provides general loading and saving
functionality via the [SchedulerMixin.save_pretrained
] and [~SchedulerMixin.from_pretrained
] functions.
PARAMETER | DESCRIPTION |
---|---|
num_train_timesteps |
The number of diffusion steps to train the model.
TYPE:
|
beta_start |
The starting
TYPE:
|
beta_end |
The final
TYPE:
|
beta_schedule |
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
TYPE:
|
trained_betas |
Pass an array of betas directly to the constructor to bypass
TYPE:
|
original_inference_steps |
The default number of inference steps used to generate a linearly-spaced timestep schedule, from which we
will ultimately take
TYPE:
|
clip_sample |
Clip the predicted sample for numerical stability.
TYPE:
|
clip_sample_range |
The maximum magnitude for sample clipping. Valid only when
TYPE:
|
set_alpha_to_one |
Each diffusion step uses the alphas product value at that step and at the previous one. For the final step
there is no previous alpha. When this option is
TYPE:
|
steps_offset |
An offset added to the inference steps, as required by some model families.
TYPE:
|
prediction_type |
Prediction type of the scheduler function; can be
TYPE:
|
thresholding |
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such as Stable Diffusion.
TYPE:
|
dynamic_thresholding_ratio |
The ratio for the dynamic thresholding method. Valid only when
TYPE:
|
sample_max_value |
The threshold value for dynamic thresholding. Valid only when
TYPE:
|
timestep_spacing |
The way the timesteps should be scaled. Refer to Table 2 of the Common Diffusion Noise Schedules and Sample Steps are Flawed for more information.
TYPE:
|
timestep_scaling |
The factor the timesteps will be multiplied by when calculating the consistency model boundary conditions
TYPE:
|
rescale_betas_zero_snr |
Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
dark samples instead of limiting it to samples with medium brightness. Loosely related to
TYPE:
|
Source code in mindone/diffusers/schedulers/scheduling_tcd.py
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 |
|
mindone.diffusers.TCDScheduler.begin_index
property
¶
The index for the first timestep. It should be set from pipeline with set_begin_index
method.
mindone.diffusers.TCDScheduler.scale_model_input(sample, timestep=None)
¶
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep.
PARAMETER | DESCRIPTION |
---|---|
sample |
The input sample.
TYPE:
|
timestep |
The current timestep in the diffusion chain.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
|
Source code in mindone/diffusers/schedulers/scheduling_tcd.py
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
|
mindone.diffusers.TCDScheduler.set_begin_index(begin_index=0)
¶
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
PARAMETER | DESCRIPTION |
---|---|
begin_index |
The begin index for the scheduler.
TYPE:
|
Source code in mindone/diffusers/schedulers/scheduling_tcd.py
294 295 296 297 298 299 300 301 302 |
|
mindone.diffusers.TCDScheduler.set_timesteps(num_inference_steps=None, original_inference_steps=None, timesteps=None, strength=1.0)
¶
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
PARAMETER | DESCRIPTION |
---|---|
num_inference_steps |
The number of diffusion steps used when generating samples with a pre-trained model. If used,
TYPE:
|
original_inference_steps |
The original number of inference steps, which will be used to generate a linearly-spaced timestep
schedule (which is different from the standard
TYPE:
|
timesteps |
Custom timesteps used to support arbitrary spacing between timesteps. If
TYPE:
|
strength |
Used to determine the number of timesteps used for inference when using img2img, inpaint, etc.
TYPE:
|
Source code in mindone/diffusers/schedulers/scheduling_tcd.py
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 |
|
mindone.diffusers.TCDScheduler.step(model_output, timestep, sample, eta=0.3, generator=None, return_dict=False)
¶
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion process from the learned model outputs (most often the predicted noise).
PARAMETER | DESCRIPTION |
---|---|
model_output |
The direct output from learned diffusion model.
TYPE:
|
timestep |
The current discrete timestep in the diffusion chain.
TYPE:
|
sample |
A current instance of a sample created by the diffusion process.
TYPE:
|
eta |
A stochastic parameter (referred to as
TYPE:
|
generator |
A random number generator.
TYPE:
|
return_dict |
Whether or not to return a [
TYPE:
|
Source code in mindone/diffusers/schedulers/scheduling_tcd.py
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 |
|
mindone.diffusers.schedulers.scheduling_tcd.TCDSchedulerOutput
dataclass
¶
Bases: BaseOutput
Output class for the scheduler's step
function output.
PARAMETER | DESCRIPTION |
---|---|
prev_sample |
Computed sample
TYPE:
|
pred_noised_sample |
The predicted noised sample
TYPE:
|
Source code in mindone/diffusers/schedulers/scheduling_tcd.py
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
|