Skip to content

DDPMScheduler

Denoising Diffusion Probabilistic Models (DDPM) by Jonathan Ho, Ajay Jain and Pieter Abbeel proposes a diffusion based model of the same name. In the context of the 🤗 Diffusers library, DDPM refers to the discrete denoising scheduler from the paper as well as the pipeline.

The abstract from the paper is:

We present high quality image synthesis results using diffusion probabilistic models, a class of latent variable models inspired by considerations from nonequilibrium thermodynamics. Our best results are obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics, and our models naturally admit a progressive lossy decompression scheme that can be interpreted as a generalization of autoregressive decoding. On the unconditional CIFAR10 dataset, we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On 256x256 LSUN, we obtain sample quality similar to ProgressiveGAN. Our implementation is available at this https URL.

mindone.diffusers.DDPMScheduler

Bases: SchedulerMixin, ConfigMixin

DDPMScheduler explores the connections between denoising score matching and Langevin dynamics sampling.

This model inherits from [SchedulerMixin] and [ConfigMixin]. Check the superclass documentation for the generic methods the library implements for all schedulers such as loading and saving.

PARAMETER DESCRIPTION
num_train_timesteps

The number of diffusion steps to train the model.

TYPE: `int`, defaults to 1000 DEFAULT: 1000

beta_start

The starting beta value of inference.

TYPE: `float`, defaults to 0.0001 DEFAULT: 0.0001

beta_end

The final beta value.

TYPE: `float`, defaults to 0.02 DEFAULT: 0.02

beta_schedule

The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from linear, scaled_linear, or squaredcos_cap_v2.

TYPE: `str`, defaults to `"linear"` DEFAULT: 'linear'

trained_betas

An array of betas to pass directly to the constructor without using beta_start and beta_end.

TYPE: `np.ndarray`, *optional* DEFAULT: None

variance_type

Clip the variance when adding noise to the denoised sample. Choose from fixed_small, fixed_small_log, fixed_large, fixed_large_log, learned or learned_range.

TYPE: `str`, defaults to `"fixed_small"` DEFAULT: 'fixed_small'

clip_sample

Clip the predicted sample for numerical stability.

TYPE: `bool`, defaults to `True` DEFAULT: True

clip_sample_range

The maximum magnitude for sample clipping. Valid only when clip_sample=True.

TYPE: `float`, defaults to 1.0 DEFAULT: 1.0

prediction_type

Prediction type of the scheduler function; can be epsilon (predicts the noise of the diffusion process), sample (directly predicts the noisy sample) orv_prediction` (see section 2.4 of Imagen Video paper).

TYPE: `str`, defaults to `epsilon`, *optional* DEFAULT: 'epsilon'

thresholding

Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such as Stable Diffusion.

TYPE: `bool`, defaults to `False` DEFAULT: False

dynamic_thresholding_ratio

The ratio for the dynamic thresholding method. Valid only when thresholding=True.

TYPE: `float`, defaults to 0.995 DEFAULT: 0.995

sample_max_value

The threshold value for dynamic thresholding. Valid only when thresholding=True.

TYPE: `float`, defaults to 1.0 DEFAULT: 1.0

timestep_spacing

The way the timesteps should be scaled. Refer to Table 2 of the Common Diffusion Noise Schedules and Sample Steps are Flawed for more information.

TYPE: `str`, defaults to `"leading"` DEFAULT: 'leading'

steps_offset

An offset added to the inference steps, as required by some model families.

TYPE: `int`, defaults to 0 DEFAULT: 0

rescale_betas_zero_snr

Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and dark samples instead of limiting it to samples with medium brightness. Loosely related to --offset_noise.

TYPE: `bool`, defaults to `False` DEFAULT: False

Source code in mindone/diffusers/schedulers/scheduling_ddpm.py
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
class DDPMScheduler(SchedulerMixin, ConfigMixin):
    """
    `DDPMScheduler` explores the connections between denoising score matching and Langevin dynamics sampling.

    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.

    Args:
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
        trained_betas (`np.ndarray`, *optional*):
            An array of betas to pass directly to the constructor without using `beta_start` and `beta_end`.
        variance_type (`str`, defaults to `"fixed_small"`):
            Clip the variance when adding noise to the denoised sample. Choose from `fixed_small`, `fixed_small_log`,
            `fixed_large`, `fixed_large_log`, `learned` or `learned_range`.
        clip_sample (`bool`, defaults to `True`):
            Clip the predicted sample for numerical stability.
        clip_sample_range (`float`, defaults to 1.0):
            The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        thresholding (`bool`, defaults to `False`):
            Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
            as Stable Diffusion.
        dynamic_thresholding_ratio (`float`, defaults to 0.995):
            The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
        sample_max_value (`float`, defaults to 1.0):
            The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
        timestep_spacing (`str`, defaults to `"leading"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
            An offset added to the inference steps, as required by some model families.
        rescale_betas_zero_snr (`bool`, defaults to `False`):
            Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
            dark samples instead of limiting it to samples with medium brightness. Loosely related to
            [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
    """

    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
    order = 1

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
        variance_type: str = "fixed_small",
        clip_sample: bool = True,
        prediction_type: str = "epsilon",
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        clip_sample_range: float = 1.0,
        sample_max_value: float = 1.0,
        timestep_spacing: str = "leading",
        steps_offset: int = 0,
        rescale_betas_zero_snr: bool = False,
    ):
        if trained_betas is not None:
            self.betas = ms.tensor(trained_betas, dtype=ms.float32)
        elif beta_schedule == "linear":
            self.betas = ms.tensor(np.linspace(beta_start, beta_end, num_train_timesteps), dtype=ms.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
            self.betas = (
                ms.tensor(np.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps), dtype=ms.float32) ** 2
            )
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
        elif beta_schedule == "sigmoid":
            # GeoDiff sigmoid schedule
            betas = ms.tensor(np.linspace(-6, 6, num_train_timesteps), dtype=ms.float32)
            self.betas = ops.sigmoid(betas) * (beta_end - beta_start) + beta_start
        else:
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")

        # Rescale for zero SNR
        if rescale_betas_zero_snr:
            self.betas = rescale_zero_terminal_snr(self.betas)

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = ops.cumprod(self.alphas, dim=0)
        self.one = ms.Tensor(1.0)

        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

        # setable values
        self.custom_timesteps = False
        self.num_inference_steps = None
        self.timesteps = ms.Tensor(np.arange(0, num_train_timesteps)[::-1].copy())

        self.variance_type = variance_type

    def scale_model_input(self, sample: ms.Tensor, timestep: Optional[int] = None) -> ms.Tensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
            sample (`ms.Tensor`):
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.

        Returns:
            `ms.Tensor`:
                A scaled input sample.
        """
        return sample

    def set_timesteps(
        self,
        num_inference_steps: Optional[int] = None,
        timesteps: Optional[List[int]] = None,
    ):
        """
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).

        Args:
            num_inference_steps (`int`):
                The number of diffusion steps used when generating samples with a pre-trained model. If used,
                `timesteps` must be `None`.
            timesteps (`List[int]`, *optional*):
                Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
                timestep spacing strategy of equal spacing between timesteps is used. If `timesteps` is passed,
                `num_inference_steps` must be `None`.

        """
        if num_inference_steps is not None and timesteps is not None:
            raise ValueError("Can only pass one of `num_inference_steps` or `custom_timesteps`.")

        if timesteps is not None:
            for i in range(1, len(timesteps)):
                if timesteps[i] >= timesteps[i - 1]:
                    raise ValueError("`custom_timesteps` must be in descending order.")

            if timesteps[0] >= self.config.num_train_timesteps:
                raise ValueError(
                    f"`timesteps` must start before `self.config.train_timesteps`:"
                    f" {self.config.num_train_timesteps}."
                )

            timesteps = np.array(timesteps, dtype=np.int64)
            self.custom_timesteps = True
        else:
            if num_inference_steps > self.config.num_train_timesteps:
                raise ValueError(
                    f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
                    f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
                    f" maximal {self.config.num_train_timesteps} timesteps."
                )

            self.num_inference_steps = num_inference_steps
            self.custom_timesteps = False

            # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
            if self.config.timestep_spacing == "linspace":
                timesteps = (
                    np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps)
                    .round()[::-1]
                    .copy()
                    .astype(np.int64)
                )
            elif self.config.timestep_spacing == "leading":
                step_ratio = self.config.num_train_timesteps // self.num_inference_steps
                # creates integer timesteps by multiplying by ratio
                # casting to int to avoid issues when num_inference_step is power of 3
                timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
                timesteps += self.config.steps_offset
            elif self.config.timestep_spacing == "trailing":
                step_ratio = self.config.num_train_timesteps / self.num_inference_steps
                # creates integer timesteps by multiplying by ratio
                # casting to int to avoid issues when num_inference_step is power of 3
                timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64)
                timesteps -= 1
            else:
                raise ValueError(
                    f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
                )

        self.timesteps = ms.Tensor(timesteps)

    def _get_variance(self, t, predicted_variance=None, variance_type=None):
        prev_t = self.previous_timestep(t)

        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
        current_beta_t = 1 - alpha_prod_t / alpha_prod_t_prev

        # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
        # and sample from it to get previous sample
        # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
        variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * current_beta_t

        # we always take the log of variance, so clamp it to ensure it's not 0
        variance = ops.clamp(variance, min=1e-20)

        if variance_type is None:
            variance_type = self.config.variance_type

        # hacks - were probably added for training stability
        if variance_type == "fixed_small":
            variance = variance
        # for rl-diffuser https://arxiv.org/abs/2205.09991
        elif variance_type == "fixed_small_log":
            variance = ops.log(variance)
            variance = ops.exp(0.5 * variance)
        elif variance_type == "fixed_large":
            variance = current_beta_t
        elif variance_type == "fixed_large_log":
            # Glide max_log
            variance = ops.log(current_beta_t)
        elif variance_type == "learned":
            return predicted_variance
        elif variance_type == "learned_range":
            min_log = ops.log(variance)
            max_log = ops.log(current_beta_t)
            frac = (predicted_variance + 1) / 2
            variance = frac * max_log + (1 - frac) * min_log

        return variance

    def _threshold_sample(self, sample: ms.Tensor) -> ms.Tensor:
        """
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

        https://arxiv.org/abs/2205.11487
        """
        dtype = sample.dtype
        batch_size, channels, *remaining_dims = sample.shape

        if dtype not in (ms.float32, ms.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
        sample = sample.reshape(batch_size, channels * np.prod(remaining_dims).item())

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = ms.Tensor.from_numpy(np.quantile(abs_sample.asnumpy(), self.config.dynamic_thresholding_ratio, axis=1))
        s = ops.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]
        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = ops.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

        sample = sample.reshape(batch_size, channels, *remaining_dims)
        sample = sample.to(dtype)

        return sample

    def step(
        self,
        model_output: ms.Tensor,
        timestep: int,
        sample: ms.Tensor,
        generator=None,
        return_dict: bool = False,
    ) -> Union[DDPMSchedulerOutput, Tuple]:
        """
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
            model_output (`ms.Tensor`):
                The direct output from learned diffusion model.
            timestep (`float`):
                The current discrete timestep in the diffusion chain.
            sample (`ms.Tensor`):
                A current instance of a sample created by the diffusion process.
            generator (`np.random.Generator`, *optional*):
                A random number generator.
            return_dict (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`.

        Returns:
            [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.

        """
        t = timestep
        dtype = sample.dtype

        prev_t = self.previous_timestep(t)

        if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
            model_output, predicted_variance = ops.split(model_output, sample.shape[1], axis=1)
        else:
            predicted_variance = None

        # 1. compute alphas, betas
        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev
        current_alpha_t = alpha_prod_t / alpha_prod_t_prev
        current_beta_t = 1 - current_alpha_t

        # 2. compute predicted original sample from predicted noise also called
        # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
        if self.config.prediction_type == "epsilon":
            pred_original_sample = (
                (sample - (beta_prod_t ** (0.5) * model_output).to(dtype)) / alpha_prod_t ** (0.5)
            ).to(dtype)
        elif self.config.prediction_type == "sample":
            pred_original_sample = model_output
        elif self.config.prediction_type == "v_prediction":
            pred_original_sample = (alpha_prod_t**0.5).to(dtype) * sample - (beta_prod_t**0.5).to(
                dtype
            ) * model_output
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or"
                " `v_prediction`  for the DDPMScheduler."
            )

        # 3. Clip or threshold "predicted x_0"
        if self.config.thresholding:
            pred_original_sample = self._threshold_sample(pred_original_sample)
        elif self.config.clip_sample:
            pred_original_sample = pred_original_sample.clamp(
                -self.config.clip_sample_range, self.config.clip_sample_range
            )

        # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
        pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * current_beta_t) / beta_prod_t
        current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t

        # 5. Compute predicted previous sample µ_t
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
        pred_prev_sample = (
            pred_original_sample_coeff.to(dtype) * pred_original_sample + current_sample_coeff.to(dtype) * sample
        )

        # 6. Add noise
        variance = 0
        if t > 0:
            variance_noise = randn_tensor(model_output.shape, generator=generator, dtype=model_output.dtype)
            if self.variance_type == "fixed_small_log":
                variance = self._get_variance(t, predicted_variance=predicted_variance).to(dtype) * variance_noise
            elif self.variance_type == "learned_range":
                variance = self._get_variance(t, predicted_variance=predicted_variance)
                variance = ops.exp(0.5 * variance).to(dtype) * variance_noise
            else:
                variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5).to(
                    dtype
                ) * variance_noise

        pred_prev_sample = pred_prev_sample + variance

        if not return_dict:
            return (pred_prev_sample,)

        return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)

    def add_noise(
        self,
        original_samples: ms.Tensor,
        noise: ms.Tensor,
        timesteps: ms.Tensor,  # ms.int32
    ) -> ms.Tensor:
        broadcast_shape = original_samples.shape
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
        # Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
        # for the subsequent add_noise calls
        alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype)

        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        # while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
        #     sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
        sqrt_alpha_prod = ops.reshape(sqrt_alpha_prod, (timesteps.shape[0],) + (1,) * (len(broadcast_shape) - 1))

        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        # while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
        #     sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
        sqrt_one_minus_alpha_prod = ops.reshape(
            sqrt_one_minus_alpha_prod, (timesteps.shape[0],) + (1,) * (len(broadcast_shape) - 1)
        )

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
        return noisy_samples

    def get_velocity(self, sample: ms.Tensor, noise: ms.Tensor, timesteps: ms.Tensor) -> ms.Tensor:  # ms.int32
        broadcast_shape = sample.shape
        # Make sure alphas_cumprod and timestep have same device and dtype as sample
        alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype)

        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        # while len(sqrt_alpha_prod.shape) < len(sample.shape):
        #     sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
        sqrt_alpha_prod = ops.reshape(sqrt_alpha_prod, (timesteps.shape[0],) + (1,) * (len(broadcast_shape) - 1))

        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        # while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
        #     sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
        sqrt_one_minus_alpha_prod = ops.reshape(
            sqrt_one_minus_alpha_prod, (timesteps.shape[0],) + (1,) * (len(broadcast_shape) - 1)
        )

        velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
        return velocity

    def __len__(self):
        return self.config.num_train_timesteps

    def previous_timestep(self, timestep):
        if self.custom_timesteps:
            index = (self.timesteps == timestep).nonzero()[0][0]
            if index == self.timesteps.shape[0] - 1:
                prev_t = ms.Tensor(-1)
            else:
                prev_t = self.timesteps[index + 1]
        else:
            num_inference_steps = (
                self.num_inference_steps if self.num_inference_steps else self.config.num_train_timesteps
            )
            prev_t = timestep - self.config.num_train_timesteps // num_inference_steps

        return prev_t

mindone.diffusers.DDPMScheduler.scale_model_input(sample, timestep=None)

Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep.

PARAMETER DESCRIPTION
sample

The input sample.

TYPE: `ms.Tensor`

timestep

The current timestep in the diffusion chain.

TYPE: `int`, *optional* DEFAULT: None

RETURNS DESCRIPTION
Tensor

ms.Tensor: A scaled input sample.

Source code in mindone/diffusers/schedulers/scheduling_ddpm.py
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
def scale_model_input(self, sample: ms.Tensor, timestep: Optional[int] = None) -> ms.Tensor:
    """
    Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
    current timestep.

    Args:
        sample (`ms.Tensor`):
            The input sample.
        timestep (`int`, *optional*):
            The current timestep in the diffusion chain.

    Returns:
        `ms.Tensor`:
            A scaled input sample.
    """
    return sample

mindone.diffusers.DDPMScheduler.set_timesteps(num_inference_steps=None, timesteps=None)

Sets the discrete timesteps used for the diffusion chain (to be run before inference).

PARAMETER DESCRIPTION
num_inference_steps

The number of diffusion steps used when generating samples with a pre-trained model. If used, timesteps must be None.

TYPE: `int` DEFAULT: None

timesteps

Custom timesteps used to support arbitrary spacing between timesteps. If None, then the default timestep spacing strategy of equal spacing between timesteps is used. If timesteps is passed, num_inference_steps must be None.

TYPE: `List[int]`, *optional* DEFAULT: None

Source code in mindone/diffusers/schedulers/scheduling_ddpm.py
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
def set_timesteps(
    self,
    num_inference_steps: Optional[int] = None,
    timesteps: Optional[List[int]] = None,
):
    """
    Sets the discrete timesteps used for the diffusion chain (to be run before inference).

    Args:
        num_inference_steps (`int`):
            The number of diffusion steps used when generating samples with a pre-trained model. If used,
            `timesteps` must be `None`.
        timesteps (`List[int]`, *optional*):
            Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
            timestep spacing strategy of equal spacing between timesteps is used. If `timesteps` is passed,
            `num_inference_steps` must be `None`.

    """
    if num_inference_steps is not None and timesteps is not None:
        raise ValueError("Can only pass one of `num_inference_steps` or `custom_timesteps`.")

    if timesteps is not None:
        for i in range(1, len(timesteps)):
            if timesteps[i] >= timesteps[i - 1]:
                raise ValueError("`custom_timesteps` must be in descending order.")

        if timesteps[0] >= self.config.num_train_timesteps:
            raise ValueError(
                f"`timesteps` must start before `self.config.train_timesteps`:"
                f" {self.config.num_train_timesteps}."
            )

        timesteps = np.array(timesteps, dtype=np.int64)
        self.custom_timesteps = True
    else:
        if num_inference_steps > self.config.num_train_timesteps:
            raise ValueError(
                f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
                f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
                f" maximal {self.config.num_train_timesteps} timesteps."
            )

        self.num_inference_steps = num_inference_steps
        self.custom_timesteps = False

        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
        if self.config.timestep_spacing == "linspace":
            timesteps = (
                np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps)
                .round()[::-1]
                .copy()
                .astype(np.int64)
            )
        elif self.config.timestep_spacing == "leading":
            step_ratio = self.config.num_train_timesteps // self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = self.config.num_train_timesteps / self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64)
            timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
            )

    self.timesteps = ms.Tensor(timesteps)

mindone.diffusers.DDPMScheduler.step(model_output, timestep, sample, generator=None, return_dict=False)

Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion process from the learned model outputs (most often the predicted noise).

PARAMETER DESCRIPTION
model_output

The direct output from learned diffusion model.

TYPE: `ms.Tensor`

timestep

The current discrete timestep in the diffusion chain.

TYPE: `float`

sample

A current instance of a sample created by the diffusion process.

TYPE: `ms.Tensor`

generator

A random number generator.

TYPE: `np.random.Generator`, *optional* DEFAULT: None

return_dict

Whether or not to return a [~schedulers.scheduling_ddpm.DDPMSchedulerOutput] or tuple.

TYPE: `bool`, *optional*, defaults to `False` DEFAULT: False

RETURNS DESCRIPTION
Union[DDPMSchedulerOutput, Tuple]

[~schedulers.scheduling_ddpm.DDPMSchedulerOutput] or tuple: If return_dict is True, [~schedulers.scheduling_ddpm.DDPMSchedulerOutput] is returned, otherwise a tuple is returned where the first element is the sample tensor.

Source code in mindone/diffusers/schedulers/scheduling_ddpm.py
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
def step(
    self,
    model_output: ms.Tensor,
    timestep: int,
    sample: ms.Tensor,
    generator=None,
    return_dict: bool = False,
) -> Union[DDPMSchedulerOutput, Tuple]:
    """
    Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
    process from the learned model outputs (most often the predicted noise).

    Args:
        model_output (`ms.Tensor`):
            The direct output from learned diffusion model.
        timestep (`float`):
            The current discrete timestep in the diffusion chain.
        sample (`ms.Tensor`):
            A current instance of a sample created by the diffusion process.
        generator (`np.random.Generator`, *optional*):
            A random number generator.
        return_dict (`bool`, *optional*, defaults to `False`):
            Whether or not to return a [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`.

    Returns:
        [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`:
            If return_dict is `True`, [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] is returned, otherwise a
            tuple is returned where the first element is the sample tensor.

    """
    t = timestep
    dtype = sample.dtype

    prev_t = self.previous_timestep(t)

    if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
        model_output, predicted_variance = ops.split(model_output, sample.shape[1], axis=1)
    else:
        predicted_variance = None

    # 1. compute alphas, betas
    alpha_prod_t = self.alphas_cumprod[t]
    alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
    beta_prod_t = 1 - alpha_prod_t
    beta_prod_t_prev = 1 - alpha_prod_t_prev
    current_alpha_t = alpha_prod_t / alpha_prod_t_prev
    current_beta_t = 1 - current_alpha_t

    # 2. compute predicted original sample from predicted noise also called
    # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
    if self.config.prediction_type == "epsilon":
        pred_original_sample = (
            (sample - (beta_prod_t ** (0.5) * model_output).to(dtype)) / alpha_prod_t ** (0.5)
        ).to(dtype)
    elif self.config.prediction_type == "sample":
        pred_original_sample = model_output
    elif self.config.prediction_type == "v_prediction":
        pred_original_sample = (alpha_prod_t**0.5).to(dtype) * sample - (beta_prod_t**0.5).to(
            dtype
        ) * model_output
    else:
        raise ValueError(
            f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or"
            " `v_prediction`  for the DDPMScheduler."
        )

    # 3. Clip or threshold "predicted x_0"
    if self.config.thresholding:
        pred_original_sample = self._threshold_sample(pred_original_sample)
    elif self.config.clip_sample:
        pred_original_sample = pred_original_sample.clamp(
            -self.config.clip_sample_range, self.config.clip_sample_range
        )

    # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
    # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
    pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * current_beta_t) / beta_prod_t
    current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t

    # 5. Compute predicted previous sample µ_t
    # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
    pred_prev_sample = (
        pred_original_sample_coeff.to(dtype) * pred_original_sample + current_sample_coeff.to(dtype) * sample
    )

    # 6. Add noise
    variance = 0
    if t > 0:
        variance_noise = randn_tensor(model_output.shape, generator=generator, dtype=model_output.dtype)
        if self.variance_type == "fixed_small_log":
            variance = self._get_variance(t, predicted_variance=predicted_variance).to(dtype) * variance_noise
        elif self.variance_type == "learned_range":
            variance = self._get_variance(t, predicted_variance=predicted_variance)
            variance = ops.exp(0.5 * variance).to(dtype) * variance_noise
        else:
            variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5).to(
                dtype
            ) * variance_noise

    pred_prev_sample = pred_prev_sample + variance

    if not return_dict:
        return (pred_prev_sample,)

    return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)

mindone.diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput dataclass

Bases: BaseOutput

Output class for the scheduler's step function output.

PARAMETER DESCRIPTION
prev_sample

Computed sample (x_{t-1}) of previous timestep. prev_sample should be used as next model input in the denoising loop.

TYPE: `ms.Tensor` of shape `(batch_size, num_channels, height, width)` for images

pred_original_sample

The predicted denoised sample (x_{0}) based on the model output from the current timestep. pred_original_sample can be used to preview progress or for guidance.

TYPE: `ms.Tensor` of shape `(batch_size, num_channels, height, width)` for images DEFAULT: None

Source code in mindone/diffusers/schedulers/scheduling_ddpm.py
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
@dataclass
class DDPMSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's `step` function output.

    Args:
        prev_sample (`ms.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`ms.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: ms.Tensor
    pred_original_sample: Optional[ms.Tensor] = None