DDPMScheduler¶
Denoising Diffusion Probabilistic Models (DDPM) by Jonathan Ho, Ajay Jain and Pieter Abbeel proposes a diffusion based model of the same name. In the context of the 🤗 Diffusers library, DDPM refers to the discrete denoising scheduler from the paper as well as the pipeline.
The abstract from the paper is:
We present high quality image synthesis results using diffusion probabilistic models, a class of latent variable models inspired by considerations from nonequilibrium thermodynamics. Our best results are obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics, and our models naturally admit a progressive lossy decompression scheme that can be interpreted as a generalization of autoregressive decoding. On the unconditional CIFAR10 dataset, we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On 256x256 LSUN, we obtain sample quality similar to ProgressiveGAN. Our implementation is available at this https URL.
mindone.diffusers.DDPMScheduler
¶
Bases: SchedulerMixin
, ConfigMixin
DDPMScheduler
explores the connections between denoising score matching and Langevin dynamics sampling.
This model inherits from [SchedulerMixin
] and [ConfigMixin
]. Check the superclass documentation for the generic
methods the library implements for all schedulers such as loading and saving.
PARAMETER | DESCRIPTION |
---|---|
num_train_timesteps |
The number of diffusion steps to train the model.
TYPE:
|
beta_start |
The starting
TYPE:
|
beta_end |
The final
TYPE:
|
beta_schedule |
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
TYPE:
|
trained_betas |
An array of betas to pass directly to the constructor without using
TYPE:
|
variance_type |
Clip the variance when adding noise to the denoised sample. Choose from
TYPE:
|
clip_sample |
Clip the predicted sample for numerical stability.
TYPE:
|
clip_sample_range |
The maximum magnitude for sample clipping. Valid only when
TYPE:
|
prediction_type |
Prediction type of the scheduler function; can be
TYPE:
|
thresholding |
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such as Stable Diffusion.
TYPE:
|
dynamic_thresholding_ratio |
The ratio for the dynamic thresholding method. Valid only when
TYPE:
|
sample_max_value |
The threshold value for dynamic thresholding. Valid only when
TYPE:
|
timestep_spacing |
The way the timesteps should be scaled. Refer to Table 2 of the Common Diffusion Noise Schedules and Sample Steps are Flawed for more information.
TYPE:
|
steps_offset |
An offset added to the inference steps, as required by some model families.
TYPE:
|
rescale_betas_zero_snr |
Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
dark samples instead of limiting it to samples with medium brightness. Loosely related to
TYPE:
|
Source code in mindone/diffusers/schedulers/scheduling_ddpm.py
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 |
|
mindone.diffusers.DDPMScheduler.scale_model_input(sample, timestep=None)
¶
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep.
PARAMETER | DESCRIPTION |
---|---|
sample |
The input sample.
TYPE:
|
timestep |
The current timestep in the diffusion chain.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
|
Source code in mindone/diffusers/schedulers/scheduling_ddpm.py
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
|
mindone.diffusers.DDPMScheduler.set_timesteps(num_inference_steps=None, timesteps=None)
¶
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
PARAMETER | DESCRIPTION |
---|---|
num_inference_steps |
The number of diffusion steps used when generating samples with a pre-trained model. If used,
TYPE:
|
timesteps |
Custom timesteps used to support arbitrary spacing between timesteps. If
TYPE:
|
Source code in mindone/diffusers/schedulers/scheduling_ddpm.py
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
|
mindone.diffusers.DDPMScheduler.step(model_output, timestep, sample, generator=None, return_dict=False)
¶
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion process from the learned model outputs (most often the predicted noise).
PARAMETER | DESCRIPTION |
---|---|
model_output |
The direct output from learned diffusion model.
TYPE:
|
timestep |
The current discrete timestep in the diffusion chain.
TYPE:
|
sample |
A current instance of a sample created by the diffusion process.
TYPE:
|
generator |
A random number generator.
TYPE:
|
return_dict |
Whether or not to return a [
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[DDPMSchedulerOutput, Tuple]
|
[ |
Source code in mindone/diffusers/schedulers/scheduling_ddpm.py
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 |
|
mindone.diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput
dataclass
¶
Bases: BaseOutput
Output class for the scheduler's step
function output.
PARAMETER | DESCRIPTION |
---|---|
prev_sample |
Computed sample
TYPE:
|
pred_original_sample |
The predicted denoised sample
TYPE:
|
Source code in mindone/diffusers/schedulers/scheduling_ddpm.py
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
|