DDIMScheduler¶
Denoising Diffusion Implicit Models (DDIM) by Jiaming Song, Chenlin Meng and Stefano Ermon.
The abstract from the paper is:
Denoising diffusion probabilistic models (DDPMs) have achieved high quality image generation without adversarial training, yet they require simulating a Markov chain for many steps to produce a sample. To accelerate sampling, we present denoising diffusion implicit models (DDIMs), a more efficient class of iterative implicit probabilistic models with the same training procedure as DDPMs. In DDPMs, the generative process is defined as the reverse of a Markovian diffusion process. We construct a class of non-Markovian diffusion processes that lead to the same training objective, but whose reverse process can be much faster to sample from. We empirically demonstrate that DDIMs can produce high quality samples 10× to 50× faster in terms of wall-clock time compared to DDPMs, allow us to trade off computation for sample quality, and can perform semantically meaningful image interpolation directly in the latent space.
The original codebase of this paper can be found at ermongroup/ddim, and you can contact the author on tsong.me.
Tips¶
The paper Common Diffusion Noise Schedules and Sample Steps are Flawed claims that a mismatch between the training and inference settings leads to suboptimal inference generation results for Stable Diffusion. To fix this, the authors propose:
Warning
🧪 This is an experimental feature!
- rescale the noise schedule to enforce zero terminal signal-to-noise ratio (SNR)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config, rescale_betas_zero_snr=True)
- train a model with
v_prediction
(add the following argument to the train_text_to_image.py or train_text_to_image_lora.py scripts)
--prediction_type="v_prediction"
- change the sampler to always start from the last timestep
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
- rescale classifier-free guidance to prevent over-exposure
image = pipe(prompt, guidance_rescale=0.7)[0][0]
For example:
from mindone.diffusers import DiffusionPipeline, DDIMScheduler
import mindspore as ms
pipe = DiffusionPipeline.from_pretrained("ptx0/pseudo-journey-v2", mindspore_dtype=ms.float16)
pipe.scheduler = DDIMScheduler.from_config(
pipe.scheduler.config, rescale_betas_zero_snr=True, timestep_spacing="trailing"
)
prompt = "A lion in galaxies, spirals, nebulae, stars, smoke, iridescent, intricate detail, octane render, 8k"
image = pipe(prompt, guidance_rescale=0.7)[0][0]
image
mindone.diffusers.DDIMScheduler
¶
Bases: SchedulerMixin
, ConfigMixin
DDIMScheduler
extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with
non-Markovian guidance.
This model inherits from [SchedulerMixin
] and [ConfigMixin
]. Check the superclass documentation for the generic
methods the library implements for all schedulers such as loading and saving.
PARAMETER | DESCRIPTION |
---|---|
num_train_timesteps |
The number of diffusion steps to train the model.
TYPE:
|
beta_start |
The starting
TYPE:
|
beta_end |
The final
TYPE:
|
beta_schedule |
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
TYPE:
|
trained_betas |
Pass an array of betas directly to the constructor to bypass
TYPE:
|
clip_sample |
Clip the predicted sample for numerical stability.
TYPE:
|
clip_sample_range |
The maximum magnitude for sample clipping. Valid only when
TYPE:
|
set_alpha_to_one |
Each diffusion step uses the alphas product value at that step and at the previous one. For the final step
there is no previous alpha. When this option is
TYPE:
|
steps_offset |
An offset added to the inference steps, as required by some model families.
TYPE:
|
prediction_type |
Prediction type of the scheduler function; can be
TYPE:
|
thresholding |
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such as Stable Diffusion.
TYPE:
|
dynamic_thresholding_ratio |
The ratio for the dynamic thresholding method. Valid only when
TYPE:
|
sample_max_value |
The threshold value for dynamic thresholding. Valid only when
TYPE:
|
timestep_spacing |
The way the timesteps should be scaled. Refer to Table 2 of the Common Diffusion Noise Schedules and Sample Steps are Flawed for more information.
TYPE:
|
rescale_betas_zero_snr |
Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
dark samples instead of limiting it to samples with medium brightness. Loosely related to
TYPE:
|
Source code in mindone/diffusers/schedulers/scheduling_ddim.py
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 |
|
mindone.diffusers.DDIMScheduler.scale_model_input(sample, timestep=None)
¶
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep.
PARAMETER | DESCRIPTION |
---|---|
sample |
The input sample.
TYPE:
|
timestep |
The current timestep in the diffusion chain.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
|
Source code in mindone/diffusers/schedulers/scheduling_ddim.py
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
|
mindone.diffusers.DDIMScheduler.set_timesteps(num_inference_steps)
¶
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
PARAMETER | DESCRIPTION |
---|---|
num_inference_steps |
The number of diffusion steps used when generating samples with a pre-trained model.
TYPE:
|
Source code in mindone/diffusers/schedulers/scheduling_ddim.py
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
|
mindone.diffusers.DDIMScheduler.step(model_output, timestep, sample, eta=0.0, use_clipped_model_output=False, generator=None, variance_noise=None, return_dict=False)
¶
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion process from the learned model outputs (most often the predicted noise).
PARAMETER | DESCRIPTION |
---|---|
model_output |
The direct output from learned diffusion model.
TYPE:
|
timestep |
The current discrete timestep in the diffusion chain.
TYPE:
|
sample |
A current instance of a sample created by the diffusion process.
TYPE:
|
eta |
The weight of noise for added noise in diffusion step.
TYPE:
|
use_clipped_model_output |
If
TYPE:
|
generator |
A random number generator.
TYPE:
|
variance_noise |
Alternative to generating noise with
TYPE:
|
return_dict |
Whether or not to return a [
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[DDIMSchedulerOutput, Tuple]
|
[ |
Source code in mindone/diffusers/schedulers/scheduling_ddim.py
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 |
|
mindone.diffusers.schedulers.scheduling_ddim.DDIMSchedulerOutput
dataclass
¶
Bases: BaseOutput
Output class for the scheduler's step
function output.
PARAMETER | DESCRIPTION |
---|---|
prev_sample |
Computed sample
TYPE:
|
pred_original_sample |
The predicted denoised sample
TYPE:
|
Source code in mindone/diffusers/schedulers/scheduling_ddim.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
|