Skip to content

DDIMScheduler

Denoising Diffusion Implicit Models (DDIM) by Jiaming Song, Chenlin Meng and Stefano Ermon.

The abstract from the paper is:

Denoising diffusion probabilistic models (DDPMs) have achieved high quality image generation without adversarial training, yet they require simulating a Markov chain for many steps to produce a sample. To accelerate sampling, we present denoising diffusion implicit models (DDIMs), a more efficient class of iterative implicit probabilistic models with the same training procedure as DDPMs. In DDPMs, the generative process is defined as the reverse of a Markovian diffusion process. We construct a class of non-Markovian diffusion processes that lead to the same training objective, but whose reverse process can be much faster to sample from. We empirically demonstrate that DDIMs can produce high quality samples 10× to 50× faster in terms of wall-clock time compared to DDPMs, allow us to trade off computation for sample quality, and can perform semantically meaningful image interpolation directly in the latent space.

The original codebase of this paper can be found at ermongroup/ddim, and you can contact the author on tsong.me.

Tips

The paper Common Diffusion Noise Schedules and Sample Steps are Flawed claims that a mismatch between the training and inference settings leads to suboptimal inference generation results for Stable Diffusion. To fix this, the authors propose:

Warning

🧪 This is an experimental feature!

  1. rescale the noise schedule to enforce zero terminal signal-to-noise ratio (SNR)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config, rescale_betas_zero_snr=True)
  1. train a model with v_prediction (add the following argument to the train_text_to_image.py or train_text_to_image_lora.py scripts)
--prediction_type="v_prediction"
  1. change the sampler to always start from the last timestep
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
  1. rescale classifier-free guidance to prevent over-exposure
image = pipe(prompt, guidance_rescale=0.7)[0][0]

For example:

from mindone.diffusers import DiffusionPipeline, DDIMScheduler
import mindspore as ms

pipe = DiffusionPipeline.from_pretrained("ptx0/pseudo-journey-v2", mindspore_dtype=ms.float16)
pipe.scheduler = DDIMScheduler.from_config(
    pipe.scheduler.config, rescale_betas_zero_snr=True, timestep_spacing="trailing"
)

prompt = "A lion in galaxies, spirals, nebulae, stars, smoke, iridescent, intricate detail, octane render, 8k"
image = pipe(prompt, guidance_rescale=0.7)[0][0]
image

mindone.diffusers.DDIMScheduler

Bases: SchedulerMixin, ConfigMixin

DDIMScheduler extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with non-Markovian guidance.

This model inherits from [SchedulerMixin] and [ConfigMixin]. Check the superclass documentation for the generic methods the library implements for all schedulers such as loading and saving.

PARAMETER DESCRIPTION
num_train_timesteps

The number of diffusion steps to train the model.

TYPE: `int`, defaults to 1000 DEFAULT: 1000

beta_start

The starting beta value of inference.

TYPE: `float`, defaults to 0.0001 DEFAULT: 0.0001

beta_end

The final beta value.

TYPE: `float`, defaults to 0.02 DEFAULT: 0.02

beta_schedule

The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from linear, scaled_linear, or squaredcos_cap_v2.

TYPE: `str`, defaults to `"linear"` DEFAULT: 'linear'

trained_betas

Pass an array of betas directly to the constructor to bypass beta_start and beta_end.

TYPE: `np.ndarray`, *optional* DEFAULT: None

clip_sample

Clip the predicted sample for numerical stability.

TYPE: `bool`, defaults to `True` DEFAULT: True

clip_sample_range

The maximum magnitude for sample clipping. Valid only when clip_sample=True.

TYPE: `float`, defaults to 1.0 DEFAULT: 1.0

set_alpha_to_one

Each diffusion step uses the alphas product value at that step and at the previous one. For the final step there is no previous alpha. When this option is True the previous alpha product is fixed to 1, otherwise it uses the alpha value at step 0.

TYPE: `bool`, defaults to `True` DEFAULT: True

steps_offset

An offset added to the inference steps, as required by some model families.

TYPE: `int`, defaults to 0 DEFAULT: 0

prediction_type

Prediction type of the scheduler function; can be epsilon (predicts the noise of the diffusion process), sample (directly predicts the noisy sample) orv_prediction` (see section 2.4 of Imagen Video paper).

TYPE: `str`, defaults to `epsilon`, *optional* DEFAULT: 'epsilon'

thresholding

Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such as Stable Diffusion.

TYPE: `bool`, defaults to `False` DEFAULT: False

dynamic_thresholding_ratio

The ratio for the dynamic thresholding method. Valid only when thresholding=True.

TYPE: `float`, defaults to 0.995 DEFAULT: 0.995

sample_max_value

The threshold value for dynamic thresholding. Valid only when thresholding=True.

TYPE: `float`, defaults to 1.0 DEFAULT: 1.0

timestep_spacing

The way the timesteps should be scaled. Refer to Table 2 of the Common Diffusion Noise Schedules and Sample Steps are Flawed for more information.

TYPE: `str`, defaults to `"leading"` DEFAULT: 'leading'

rescale_betas_zero_snr

Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and dark samples instead of limiting it to samples with medium brightness. Loosely related to --offset_noise.

TYPE: `bool`, defaults to `False` DEFAULT: False

Source code in mindone/diffusers/schedulers/scheduling_ddim.py
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
class DDIMScheduler(SchedulerMixin, ConfigMixin):
    """
    `DDIMScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with
    non-Markovian guidance.

    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.

    Args:
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        clip_sample (`bool`, defaults to `True`):
            Clip the predicted sample for numerical stability.
        clip_sample_range (`float`, defaults to 1.0):
            The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
        set_alpha_to_one (`bool`, defaults to `True`):
            Each diffusion step uses the alphas product value at that step and at the previous one. For the final step
            there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
            otherwise it uses the alpha value at step 0.
        steps_offset (`int`, defaults to 0):
            An offset added to the inference steps, as required by some model families.
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        thresholding (`bool`, defaults to `False`):
            Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
            as Stable Diffusion.
        dynamic_thresholding_ratio (`float`, defaults to 0.995):
            The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
        sample_max_value (`float`, defaults to 1.0):
            The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
        timestep_spacing (`str`, defaults to `"leading"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        rescale_betas_zero_snr (`bool`, defaults to `False`):
            Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
            dark samples instead of limiting it to samples with medium brightness. Loosely related to
            [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
    """

    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
    order = 1

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
        clip_sample: bool = True,
        set_alpha_to_one: bool = True,
        steps_offset: int = 0,
        prediction_type: str = "epsilon",
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        clip_sample_range: float = 1.0,
        sample_max_value: float = 1.0,
        timestep_spacing: str = "leading",
        rescale_betas_zero_snr: bool = False,
    ):
        if trained_betas is not None:
            self.betas = ms.tensor(trained_betas, dtype=ms.float32)
        elif beta_schedule == "linear":
            self.betas = ms.tensor(np.linspace(beta_start, beta_end, num_train_timesteps), dtype=ms.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
            self.betas = (
                ms.tensor(np.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps), dtype=ms.float32) ** 2
            )
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
        else:
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")

        # Rescale for zero SNR
        if rescale_betas_zero_snr:
            self.betas = rescale_zero_terminal_snr(self.betas)

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = ops.cumprod(self.alphas, dim=0)

        # At every step in ddim, we are looking into the previous alphas_cumprod
        # For the final step, there is no previous alphas_cumprod because we are already at 0
        # `set_alpha_to_one` decides whether we set this parameter simply to one or
        # whether we use the final alpha of the "non-previous" one.
        self.final_alpha_cumprod = ms.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]

        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

        # setable values
        self.num_inference_steps = None
        self.timesteps = ms.Tensor(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))

    def scale_model_input(self, sample: ms.Tensor, timestep: Optional[int] = None) -> ms.Tensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
            sample (`ms.Tensor`):
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.

        Returns:
            `ms.Tensor`:
                A scaled input sample.
        """
        return sample

    def _get_variance(self, timestep, prev_timestep):
        alpha_prod_t = self.alphas_cumprod[timestep]
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)

        return variance

    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
    def _threshold_sample(self, sample: ms.Tensor) -> ms.Tensor:
        """
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

        https://arxiv.org/abs/2205.11487
        """
        dtype = sample.dtype
        batch_size, channels, *remaining_dims = sample.shape

        if dtype not in (ms.float32, ms.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
        sample = sample.reshape(batch_size, channels * np.prod(remaining_dims).item())

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = ms.Tensor.from_numpy(np.quantile(abs_sample.asnumpy(), self.config.dynamic_thresholding_ratio, axis=1))
        s = ops.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]
        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = ops.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

        sample = sample.reshape(batch_size, channels, *remaining_dims)
        sample = sample.to(dtype)

        return sample

    def set_timesteps(self, num_inference_steps: int):
        """
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).

        Args:
            num_inference_steps (`int`):
                The number of diffusion steps used when generating samples with a pre-trained model.
        """

        if num_inference_steps > self.config.num_train_timesteps:
            raise ValueError(
                f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
                f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
                f" maximal {self.config.num_train_timesteps} timesteps."
            )

        self.num_inference_steps = num_inference_steps

        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
        if self.config.timestep_spacing == "linspace":
            timesteps = (
                np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps)
                .round()[::-1]
                .copy()
                .astype(np.int64)
            )
        elif self.config.timestep_spacing == "leading":
            step_ratio = self.config.num_train_timesteps // self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = self.config.num_train_timesteps / self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64)
            timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'leading' or 'trailing'."
            )

        self.timesteps = ms.Tensor(timesteps)

    def step(
        self,
        model_output: ms.Tensor,
        timestep: int,
        sample: ms.Tensor,
        eta: float = 0.0,
        use_clipped_model_output: bool = False,
        generator=None,
        variance_noise: Optional[ms.Tensor] = None,
        return_dict: bool = False,
    ) -> Union[DDIMSchedulerOutput, Tuple]:
        """
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
            model_output (`ms.Tensor`):
                The direct output from learned diffusion model.
            timestep (`float`):
                The current discrete timestep in the diffusion chain.
            sample (`ms.Tensor`):
                A current instance of a sample created by the diffusion process.
            eta (`float`):
                The weight of noise for added noise in diffusion step.
            use_clipped_model_output (`bool`, defaults to `False`):
                If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary
                because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no
                clipping has happened, "corrected" `model_output` would coincide with the one provided as input and
                `use_clipped_model_output` has no effect.
            generator (`np.random.Generator`, *optional*):
                A random number generator.
            variance_noise (`ms.Tensor`):
                Alternative to generating noise with `generator` by directly providing the noise for the variance
                itself. Useful for methods such as [`CycleDiffusion`].
            return_dict (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`.

        Returns:
            [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.

        """
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

        # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
        # Ideally, read DDIM paper in-detail understanding

        # Notation (<variable name> -> <name in paper>
        # - pred_noise_t -> e_theta(x_t, t)
        # - pred_original_sample -> f_theta(x_t, t) or x_0
        # - std_dev_t -> sigma_t
        # - eta -> η
        # - pred_sample_direction -> "direction pointing to x_t"
        # - pred_prev_sample -> "x_t-1"

        dtype = sample.dtype
        # 1. get previous step value (=t-1)
        prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps

        # 2. compute alphas, betas
        alpha_prod_t = self.alphas_cumprod[timestep]
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod

        beta_prod_t = 1 - alpha_prod_t

        # 3. compute predicted original sample from predicted noise also called
        # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
        if self.config.prediction_type == "epsilon":
            pred_original_sample = (
                (sample - (beta_prod_t ** (0.5)).to(dtype) * model_output) / alpha_prod_t ** (0.5)
            ).to(dtype)
            pred_epsilon = model_output
        elif self.config.prediction_type == "sample":
            pred_original_sample = model_output
            pred_epsilon = (
                (sample - (alpha_prod_t ** (0.5)).to(dtype) * pred_original_sample) / beta_prod_t ** (0.5)
            ).to(dtype)
        elif self.config.prediction_type == "v_prediction":
            pred_original_sample = (alpha_prod_t**0.5).to(dtype) * sample - (beta_prod_t**0.5).to(
                dtype
            ) * model_output
            pred_epsilon = (alpha_prod_t**0.5).to(dtype) * model_output + (beta_prod_t**0.5).to(dtype) * sample
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
                " `v_prediction`"
            )

        # 4. Clip or threshold "predicted x_0"
        if self.config.thresholding:
            pred_original_sample = self._threshold_sample(pred_original_sample)
        elif self.config.clip_sample:
            pred_original_sample = pred_original_sample.clamp(
                -self.config.clip_sample_range, self.config.clip_sample_range
            )

        # 5. compute variance: "sigma_t(η)" -> see formula (16)
        # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
        variance = self._get_variance(timestep, prev_timestep)
        std_dev_t = (eta * variance ** (0.5)).to(dtype)

        if use_clipped_model_output:
            # the pred_epsilon is always re-derived from the clipped x_0 in Glide
            pred_epsilon = (
                (sample - (alpha_prod_t ** (0.5)).to(dtype) * pred_original_sample) / beta_prod_t ** (0.5)
            ).to(dtype)

        # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
        pred_sample_direction = ((1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5)).to(dtype) * pred_epsilon

        # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
        prev_sample = (alpha_prod_t_prev ** (0.5)).to(dtype) * pred_original_sample + pred_sample_direction

        if eta > 0:
            if variance_noise is not None and generator is not None:
                raise ValueError(
                    "Cannot pass both generator and variance_noise. Please make sure that either `generator` or"
                    " `variance_noise` stays `None`."
                )

            if variance_noise is None:
                variance_noise = randn_tensor(model_output.shape, generator=generator, dtype=dtype)
            variance = std_dev_t * variance_noise

            prev_sample = prev_sample + variance

        if not return_dict:
            return (prev_sample,)

        return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)

    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
    def add_noise(
        self,
        original_samples: ms.Tensor,
        noise: ms.Tensor,
        timesteps: ms.Tensor,
    ) -> ms.Tensor:
        broadcast_shape = original_samples.shape
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
        # Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
        # for the subsequent add_noise calls
        alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype)

        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        # while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
        #     sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
        sqrt_alpha_prod = ops.reshape(
            sqrt_alpha_prod, (timesteps.reshape((-1,)).shape[0],) + (1,) * (len(broadcast_shape) - 1)
        )

        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        # while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
        #     sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
        sqrt_one_minus_alpha_prod = ops.reshape(
            sqrt_one_minus_alpha_prod, (timesteps.reshape((-1,)).shape[0],) + (1,) * (len(broadcast_shape) - 1)
        )

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
        return noisy_samples

    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity
    def get_velocity(self, sample: ms.Tensor, noise: ms.Tensor, timesteps: ms.Tensor) -> ms.Tensor:
        # Make sure alphas_cumprod and timestep have same device and dtype as sample
        broadcast_shape = sample.shape
        alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype)

        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        # while len(sqrt_alpha_prod.shape) < len(sample.shape):
        #     sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
        sqrt_alpha_prod = ops.reshape(sqrt_alpha_prod, (timesteps.shape[0],) + (1,) * (len(broadcast_shape) - 1))

        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        # while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
        #     sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
        sqrt_one_minus_alpha_prod = ops.reshape(
            sqrt_one_minus_alpha_prod, (timesteps.shape[0],) + (1,) * (len(broadcast_shape) - 1)
        )

        velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
        return velocity

    def __len__(self):
        return self.config.num_train_timesteps

mindone.diffusers.DDIMScheduler.scale_model_input(sample, timestep=None)

Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep.

PARAMETER DESCRIPTION
sample

The input sample.

TYPE: `ms.Tensor`

timestep

The current timestep in the diffusion chain.

TYPE: `int`, *optional* DEFAULT: None

RETURNS DESCRIPTION
Tensor

ms.Tensor: A scaled input sample.

Source code in mindone/diffusers/schedulers/scheduling_ddim.py
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
def scale_model_input(self, sample: ms.Tensor, timestep: Optional[int] = None) -> ms.Tensor:
    """
    Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
    current timestep.

    Args:
        sample (`ms.Tensor`):
            The input sample.
        timestep (`int`, *optional*):
            The current timestep in the diffusion chain.

    Returns:
        `ms.Tensor`:
            A scaled input sample.
    """
    return sample

mindone.diffusers.DDIMScheduler.set_timesteps(num_inference_steps)

Sets the discrete timesteps used for the diffusion chain (to be run before inference).

PARAMETER DESCRIPTION
num_inference_steps

The number of diffusion steps used when generating samples with a pre-trained model.

TYPE: `int`

Source code in mindone/diffusers/schedulers/scheduling_ddim.py
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
def set_timesteps(self, num_inference_steps: int):
    """
    Sets the discrete timesteps used for the diffusion chain (to be run before inference).

    Args:
        num_inference_steps (`int`):
            The number of diffusion steps used when generating samples with a pre-trained model.
    """

    if num_inference_steps > self.config.num_train_timesteps:
        raise ValueError(
            f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
            f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
            f" maximal {self.config.num_train_timesteps} timesteps."
        )

    self.num_inference_steps = num_inference_steps

    # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
    if self.config.timestep_spacing == "linspace":
        timesteps = (
            np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps)
            .round()[::-1]
            .copy()
            .astype(np.int64)
        )
    elif self.config.timestep_spacing == "leading":
        step_ratio = self.config.num_train_timesteps // self.num_inference_steps
        # creates integer timesteps by multiplying by ratio
        # casting to int to avoid issues when num_inference_step is power of 3
        timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
        timesteps += self.config.steps_offset
    elif self.config.timestep_spacing == "trailing":
        step_ratio = self.config.num_train_timesteps / self.num_inference_steps
        # creates integer timesteps by multiplying by ratio
        # casting to int to avoid issues when num_inference_step is power of 3
        timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64)
        timesteps -= 1
    else:
        raise ValueError(
            f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'leading' or 'trailing'."
        )

    self.timesteps = ms.Tensor(timesteps)

mindone.diffusers.DDIMScheduler.step(model_output, timestep, sample, eta=0.0, use_clipped_model_output=False, generator=None, variance_noise=None, return_dict=False)

Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion process from the learned model outputs (most often the predicted noise).

PARAMETER DESCRIPTION
model_output

The direct output from learned diffusion model.

TYPE: `ms.Tensor`

timestep

The current discrete timestep in the diffusion chain.

TYPE: `float`

sample

A current instance of a sample created by the diffusion process.

TYPE: `ms.Tensor`

eta

The weight of noise for added noise in diffusion step.

TYPE: `float` DEFAULT: 0.0

use_clipped_model_output

If True, computes "corrected" model_output from the clipped predicted original sample. Necessary because predicted original sample is clipped to [-1, 1] when self.config.clip_sample is True. If no clipping has happened, "corrected" model_output would coincide with the one provided as input and use_clipped_model_output has no effect.

TYPE: `bool`, defaults to `False` DEFAULT: False

generator

A random number generator.

TYPE: `np.random.Generator`, *optional* DEFAULT: None

variance_noise

Alternative to generating noise with generator by directly providing the noise for the variance itself. Useful for methods such as [CycleDiffusion].

TYPE: `ms.Tensor` DEFAULT: None

return_dict

Whether or not to return a [~schedulers.scheduling_ddim.DDIMSchedulerOutput] or tuple.

TYPE: `bool`, *optional*, defaults to `False` DEFAULT: False

RETURNS DESCRIPTION
Union[DDIMSchedulerOutput, Tuple]

[~schedulers.scheduling_ddim.DDIMSchedulerOutput] or tuple: If return_dict is True, [~schedulers.scheduling_ddim.DDIMSchedulerOutput] is returned, otherwise a tuple is returned where the first element is the sample tensor.

Source code in mindone/diffusers/schedulers/scheduling_ddim.py
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
def step(
    self,
    model_output: ms.Tensor,
    timestep: int,
    sample: ms.Tensor,
    eta: float = 0.0,
    use_clipped_model_output: bool = False,
    generator=None,
    variance_noise: Optional[ms.Tensor] = None,
    return_dict: bool = False,
) -> Union[DDIMSchedulerOutput, Tuple]:
    """
    Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
    process from the learned model outputs (most often the predicted noise).

    Args:
        model_output (`ms.Tensor`):
            The direct output from learned diffusion model.
        timestep (`float`):
            The current discrete timestep in the diffusion chain.
        sample (`ms.Tensor`):
            A current instance of a sample created by the diffusion process.
        eta (`float`):
            The weight of noise for added noise in diffusion step.
        use_clipped_model_output (`bool`, defaults to `False`):
            If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary
            because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no
            clipping has happened, "corrected" `model_output` would coincide with the one provided as input and
            `use_clipped_model_output` has no effect.
        generator (`np.random.Generator`, *optional*):
            A random number generator.
        variance_noise (`ms.Tensor`):
            Alternative to generating noise with `generator` by directly providing the noise for the variance
            itself. Useful for methods such as [`CycleDiffusion`].
        return_dict (`bool`, *optional*, defaults to `False`):
            Whether or not to return a [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`.

    Returns:
        [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`:
            If return_dict is `True`, [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] is returned, otherwise a
            tuple is returned where the first element is the sample tensor.

    """
    if self.num_inference_steps is None:
        raise ValueError(
            "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
        )

    # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
    # Ideally, read DDIM paper in-detail understanding

    # Notation (<variable name> -> <name in paper>
    # - pred_noise_t -> e_theta(x_t, t)
    # - pred_original_sample -> f_theta(x_t, t) or x_0
    # - std_dev_t -> sigma_t
    # - eta -> η
    # - pred_sample_direction -> "direction pointing to x_t"
    # - pred_prev_sample -> "x_t-1"

    dtype = sample.dtype
    # 1. get previous step value (=t-1)
    prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps

    # 2. compute alphas, betas
    alpha_prod_t = self.alphas_cumprod[timestep]
    alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod

    beta_prod_t = 1 - alpha_prod_t

    # 3. compute predicted original sample from predicted noise also called
    # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
    if self.config.prediction_type == "epsilon":
        pred_original_sample = (
            (sample - (beta_prod_t ** (0.5)).to(dtype) * model_output) / alpha_prod_t ** (0.5)
        ).to(dtype)
        pred_epsilon = model_output
    elif self.config.prediction_type == "sample":
        pred_original_sample = model_output
        pred_epsilon = (
            (sample - (alpha_prod_t ** (0.5)).to(dtype) * pred_original_sample) / beta_prod_t ** (0.5)
        ).to(dtype)
    elif self.config.prediction_type == "v_prediction":
        pred_original_sample = (alpha_prod_t**0.5).to(dtype) * sample - (beta_prod_t**0.5).to(
            dtype
        ) * model_output
        pred_epsilon = (alpha_prod_t**0.5).to(dtype) * model_output + (beta_prod_t**0.5).to(dtype) * sample
    else:
        raise ValueError(
            f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
            " `v_prediction`"
        )

    # 4. Clip or threshold "predicted x_0"
    if self.config.thresholding:
        pred_original_sample = self._threshold_sample(pred_original_sample)
    elif self.config.clip_sample:
        pred_original_sample = pred_original_sample.clamp(
            -self.config.clip_sample_range, self.config.clip_sample_range
        )

    # 5. compute variance: "sigma_t(η)" -> see formula (16)
    # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
    variance = self._get_variance(timestep, prev_timestep)
    std_dev_t = (eta * variance ** (0.5)).to(dtype)

    if use_clipped_model_output:
        # the pred_epsilon is always re-derived from the clipped x_0 in Glide
        pred_epsilon = (
            (sample - (alpha_prod_t ** (0.5)).to(dtype) * pred_original_sample) / beta_prod_t ** (0.5)
        ).to(dtype)

    # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
    pred_sample_direction = ((1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5)).to(dtype) * pred_epsilon

    # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
    prev_sample = (alpha_prod_t_prev ** (0.5)).to(dtype) * pred_original_sample + pred_sample_direction

    if eta > 0:
        if variance_noise is not None and generator is not None:
            raise ValueError(
                "Cannot pass both generator and variance_noise. Please make sure that either `generator` or"
                " `variance_noise` stays `None`."
            )

        if variance_noise is None:
            variance_noise = randn_tensor(model_output.shape, generator=generator, dtype=dtype)
        variance = std_dev_t * variance_noise

        prev_sample = prev_sample + variance

    if not return_dict:
        return (prev_sample,)

    return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)

mindone.diffusers.schedulers.scheduling_ddim.DDIMSchedulerOutput dataclass

Bases: BaseOutput

Output class for the scheduler's step function output.

PARAMETER DESCRIPTION
prev_sample

Computed sample (x_{t-1}) of previous timestep. prev_sample should be used as next model input in the denoising loop.

TYPE: `ms.Tensor` of shape `(batch_size, num_channels, height, width)` for images

pred_original_sample

The predicted denoised sample (x_{0}) based on the model output from the current timestep. pred_original_sample can be used to preview progress or for guidance.

TYPE: `ms.Tensor` of shape `(batch_size, num_channels, height, width)` for images DEFAULT: None

Source code in mindone/diffusers/schedulers/scheduling_ddim.py
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
class DDIMSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's `step` function output.

    Args:
        prev_sample (`ms.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`ms.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: ms.Tensor
    pred_original_sample: Optional[ms.Tensor] = None