CMStochasticIterativeScheduler¶
Consistency Models by Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever introduced a multistep and onestep scheduler (Algorithm 1) that is capable of generating good samples in one or a small number of steps.
The abstract from the paper is:
Diffusion models have significantly advanced the fields of image, audio, and video generation, but they depend on an iterative sampling process that causes slow generation. To overcome this limitation, we propose consistency models, a new family of models that generate high quality samples by directly mapping noise to data. They support fast one-step generation by design, while still allowing multistep sampling to trade compute for sample quality. They also support zero-shot data editing, such as image inpainting, colorization, and super-resolution, without requiring explicit training on these tasks. Consistency models can be trained either by distilling pre-trained diffusion models, or as standalone generative models altogether. Through extensive experiments, we demonstrate that they outperform existing distillation techniques for diffusion models in one- and few-step sampling, achieving the new state-of-the-art FID of 3.55 on CIFAR-10 and 6.20 on ImageNet 64x64 for one-step generation. When trained in isolation, consistency models become a new family of generative models that can outperform existing one-step, non-adversarial generative models on standard benchmarks such as CIFAR-10, ImageNet 64x64 and LSUN 256x256.
The original codebase can be found at openai/consistency_models.
mindone.diffusers.CMStochasticIterativeScheduler
¶
Bases: SchedulerMixin
, ConfigMixin
Multistep and onestep sampling for consistency models.
This model inherits from [SchedulerMixin
] and [ConfigMixin
]. Check the superclass documentation for the generic
methods the library implements for all schedulers such as loading and saving.
PARAMETER | DESCRIPTION |
---|---|
num_train_timesteps |
The number of diffusion steps to train the model.
TYPE:
|
sigma_min |
Minimum noise magnitude in the sigma schedule. Defaults to 0.002 from the original implementation.
TYPE:
|
sigma_max |
Maximum noise magnitude in the sigma schedule. Defaults to 80.0 from the original implementation.
TYPE:
|
sigma_data |
The standard deviation of the data distribution from the EDM paper. Defaults to 0.5 from the original implementation.
TYPE:
|
s_noise |
The amount of additional noise to counteract loss of detail during sampling. A reasonable range is [1.000, 1.011]. Defaults to 1.0 from the original implementation.
TYPE:
|
rho |
The parameter for calculating the Karras sigma schedule from the EDM paper. Defaults to 7.0 from the original implementation.
TYPE:
|
clip_denoised |
Whether to clip the denoised outputs to
TYPE:
|
timesteps |
An explicit timestep schedule that can be optionally specified. The timesteps are expected to be in increasing order.
TYPE:
|
Source code in mindone/diffusers/schedulers/scheduling_consistency_models.py
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
|
mindone.diffusers.CMStochasticIterativeScheduler.begin_index
property
¶
The index for the first timestep. It should be set from pipeline with set_begin_index
method.
mindone.diffusers.CMStochasticIterativeScheduler.step_index
property
¶
The index counter for current timestep. It will increase 1 after each scheduler step.
mindone.diffusers.CMStochasticIterativeScheduler.get_scalings_for_boundary_condition(sigma)
¶
Gets the scalings used in the consistency model parameterization (from Appendix C of the paper) to enforce boundary condition.
epsilon
in the equations for c_skip
and c_out
is set to sigma_min
.
PARAMETER | DESCRIPTION |
---|---|
sigma |
The current sigma in the Karras sigma schedule.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
|
Source code in mindone/diffusers/schedulers/scheduling_consistency_models.py
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
|
mindone.diffusers.CMStochasticIterativeScheduler.scale_model_input(sample, timestep)
¶
Scales the consistency model input by (sigma**2 + sigma_data**2) ** 0.5
.
PARAMETER | DESCRIPTION |
---|---|
sample |
The input sample.
TYPE:
|
timestep |
The current timestep in the diffusion chain.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
|
Source code in mindone/diffusers/schedulers/scheduling_consistency_models.py
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
|
mindone.diffusers.CMStochasticIterativeScheduler.set_begin_index(begin_index=0)
¶
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
PARAMETER | DESCRIPTION |
---|---|
begin_index |
The begin index for the scheduler.
TYPE:
|
Source code in mindone/diffusers/schedulers/scheduling_consistency_models.py
119 120 121 122 123 124 125 126 127 |
|
mindone.diffusers.CMStochasticIterativeScheduler.set_timesteps(num_inference_steps=None, timesteps=None)
¶
Sets the timesteps used for the diffusion chain (to be run before inference).
PARAMETER | DESCRIPTION |
---|---|
num_inference_steps |
The number of diffusion steps used when generating samples with a pre-trained model.
TYPE:
|
timesteps |
Custom timesteps used to support arbitrary spacing between timesteps. If
TYPE:
|
Source code in mindone/diffusers/schedulers/scheduling_consistency_models.py
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
|
mindone.diffusers.CMStochasticIterativeScheduler.sigma_to_t(sigmas)
¶
Gets scaled timesteps from the Karras sigmas for input to the consistency model.
PARAMETER | DESCRIPTION |
---|---|
sigmas |
A single Karras sigma or an array of Karras sigmas.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
|
Source code in mindone/diffusers/schedulers/scheduling_consistency_models.py
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
|
mindone.diffusers.CMStochasticIterativeScheduler.step(model_output, timestep, sample, generator=None, return_dict=False)
¶
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion process from the learned model outputs (most often the predicted noise).
PARAMETER | DESCRIPTION |
---|---|
model_output |
The direct output from the learned diffusion model.
TYPE:
|
timestep |
The current timestep in the diffusion chain.
TYPE:
|
sample |
A current instance of a sample created by the diffusion process.
TYPE:
|
generator |
A random number generator.
TYPE:
|
return_dict |
Whether or not to return a
[
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[CMStochasticIterativeSchedulerOutput, Tuple]
|
[ |
Source code in mindone/diffusers/schedulers/scheduling_consistency_models.py
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
|
mindone.diffusers.schedulers.scheduling_consistency_models.CMStochasticIterativeSchedulerOutput
dataclass
¶
Bases: BaseOutput
Output class for the scheduler's step
function.
PARAMETER | DESCRIPTION |
---|---|
prev_sample |
Computed sample
TYPE:
|
Source code in mindone/diffusers/schedulers/scheduling_consistency_models.py
31 32 33 34 35 36 37 38 39 40 41 42 |
|