Skip to content

Warning

This pipeline is deprecated but it can still be used. However, we won't test the pipeline anymore and won't accept any changes to it. If you run into any issues, reinstall the last Diffusers version that supported this model.

UniDiffuser

LoRA

The UniDiffuser model was proposed in One Transformer Fits All Distributions in Multi-Modal Diffusion at Scale by Fan Bao, Shen Nie, Kaiwen Xue, Chongxuan Li, Shi Pu, Yaole Wang, Gang Yue, Yue Cao, Hang Su, Jun Zhu.

The abstract from the paper is:

This paper proposes a unified diffusion framework (dubbed UniDiffuser) to fit all distributions relevant to a set of multi-modal data in one model. Our key insight is -- learning diffusion models for marginal, conditional, and joint distributions can be unified as predicting the noise in the perturbed data, where the perturbation levels (i.e. timesteps) can be different for different modalities. Inspired by the unified view, UniDiffuser learns all distributions simultaneously with a minimal modification to the original diffusion model -- perturbs data in all modalities instead of a single modality, inputs individual timesteps in different modalities, and predicts the noise of all modalities instead of a single modality. UniDiffuser is parameterized by a transformer for diffusion models to handle input types of different modalities. Implemented on large-scale paired image-text data, UniDiffuser is able to perform image, text, text-to-image, image-to-text, and image-text pair generation by setting proper timesteps without additional overhead. In particular, UniDiffuser is able to produce perceptually realistic samples in all tasks and its quantitative results (e.g., the FID and CLIP score) are not only superior to existing general-purpose models but also comparable to the bespoken models (e.g., Stable Diffusion and DALL-E 2) in representative tasks (e.g., text-to-image generation).

You can find the original codebase at thu-ml/unidiffuser and additional checkpoints at thu-ml.

Usage Examples

Because the UniDiffuser model is trained to model the joint distribution of (image, text) pairs, it is capable of performing a diverse range of generation tasks:

Unconditional Image and Text Generation

Unconditional generation (where we start from only latents sampled from a standard Gaussian prior) from a [UniDiffuserPipeline] will produce a (image, text) pair:

import mindspore as ms

from mindone.diffusers import UniDiffuserPipeline

model_id_or_path = "thu-ml/unidiffuser-v0"
pipe = UniDiffuserPipeline.from_pretrained(model_id_or_path, mindspore_dtype=ms.float16, revision="refs/pr/6")

# Unconditional image and text generation. The generation task is automatically inferred.
sample = pipe(num_inference_steps=20, guidance_scale=8.0)
image = sample.images[0]
text = sample.text[0]
image.save("unidiffuser_joint_sample_image.png")
print(text)

This is also called "joint" generation in the UniDiffuser paper, since we are sampling from the joint image-text distribution.

Note that the generation task is inferred from the inputs used when calling the pipeline. It is also possible to manually specify the unconditional generation task ("mode") manually with [UniDiffuserPipeline.set_joint_mode]:

# Equivalent to the above.
pipe.set_joint_mode()
sample = pipe(num_inference_steps=20, guidance_scale=8.0)

When the mode is set manually, subsequent calls to the pipeline will use the set mode without attempting to infer the mode. You can reset the mode with [UniDiffuserPipeline.reset_mode], after which the pipeline will once again infer the mode.

You can also generate only an image or only text (which the UniDiffuser paper calls "marginal" generation since we sample from the marginal distribution of images and text, respectively):

# Unlike other generation tasks, image-only and text-only generation don't use classifier-free guidance
# Image-only generation
pipe.set_image_mode()
sample_image = pipe(num_inference_steps=20).images[0]
# Text-only generation
pipe.set_text_mode()
sample_text = pipe(num_inference_steps=20).text[0]

Text-to-Image Generation

UniDiffuser is also capable of sampling from conditional distributions; that is, the distribution of images conditioned on a text prompt or the distribution of texts conditioned on an image. Here is an example of sampling from the conditional image distribution (text-to-image generation or text-conditioned image generation):

import mindspore as ms

from mindone.diffusers import UniDiffuserPipeline

model_id_or_path = "thu-ml/unidiffuser-v0"
pipe = UniDiffuserPipeline.from_pretrained(model_id_or_path, mindspore_dtype=ms.float16, revision="refs/pr/6")

# Text-to-image generation
prompt = "an elephant under the sea"

sample = pipe(prompt=prompt, num_inference_steps=20, guidance_scale=8.0)
t2i_image = sample.images[0]
t2i_image

The text2img mode requires that either an input prompt or prompt_embeds be supplied. You can set the text2img mode manually with [UniDiffuserPipeline.set_text_to_image_mode].

Image-to-Text Generation

Similarly, UniDiffuser can also produce text samples given an image (image-to-text or image-conditioned text generation):

import mindspore as ms

from mindone.diffusers import UniDiffuserPipeline
from mindone.diffusers.utils import load_image

model_id_or_path = "thu-ml/unidiffuser-v0"
pipe = UniDiffuserPipeline.from_pretrained(model_id_or_path, mindspore_dtype=ms.float16, revision="refs/pr/6")

# Image-to-text generation
image_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unidiffuser/unidiffuser_example_image.jpg"
init_image = load_image(image_url).resize((512, 512))

sample = pipe(image=init_image, num_inference_steps=20, guidance_scale=8.0)
i2t_text = sample.text[0]
print(i2t_text)

The img2text mode requires that an input image be supplied. You can set the img2text mode manually with [UniDiffuserPipeline.set_image_to_text_mode].

Image Variation

The UniDiffuser authors suggest performing image variation through a "round-trip" generation method, where given an input image, we first perform an image-to-text generation, and then perform a text-to-image generation on the outputs of the first generation. This produces a new image which is semantically similar to the input image:

import mindspore as ms

from mindone.diffusers import UniDiffuserPipeline
from mindone.diffusers.utils import load_image

model_id_or_path = "thu-ml/unidiffuser-v0"
pipe = UniDiffuserPipeline.from_pretrained(model_id_or_path, mindspore_dtype=ms.float16, revision="refs/pr/6")


# Image variation can be performed with an image-to-text generation followed by a text-to-image generation:
# 1. Image-to-text generation
image_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unidiffuser/unidiffuser_example_image.jpg"
init_image = load_image(image_url).resize((512, 512))

sample = pipe(image=init_image, num_inference_steps=20, guidance_scale=8.0)
i2t_text = sample.text[0]
print(i2t_text)

# 2. Text-to-image generation
sample = pipe(prompt=i2t_text, num_inference_steps=20, guidance_scale=8.0)
final_image = sample.images[0]
final_image.save("unidiffuser_image_variation_sample.png")

Text Variation

Similarly, text variation can be performed on an input prompt with a text-to-image generation followed by a image-to-text generation:

import mindspore as ms

from mindone.diffusers import UniDiffuserPipeline

model_id_or_path = "thu-ml/unidiffuser-v0"
pipe = UniDiffuserPipeline.from_pretrained(model_id_or_path, mindspore_dtype=ms.float16, revision="refs/pr/6")


# Text variation can be performed with a text-to-image generation followed by a image-to-text generation:
# 1. Text-to-image generation
prompt = "an elephant under the sea"

sample = pipe(prompt=prompt, num_inference_steps=20, guidance_scale=8.0)
t2i_image = sample.images[0]
t2i_image.save("unidiffuser_text2img_sample_image.png")

# 2. Image-to-text generation
sample = pipe(image=t2i_image, num_inference_steps=20, guidance_scale=8.0)
final_prompt = sample.text[0]
print(final_prompt)

Tip

Make sure to check out the Schedulers guide to learn how to explore the tradeoff between scheduler speed and quality, and see the reuse components across pipelines section to learn how to efficiently load the same components into multiple pipelines.

mindone.diffusers.UniDiffuserPipeline

Bases: DeprecatedPipelineMixin, DiffusionPipeline

Pipeline for a bimodal image-text model which supports unconditional text and image generation, text-conditioned image generation, image-conditioned text generation, and joint image-text generation.

This model inherits from [DiffusionPipeline]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).

PARAMETER DESCRIPTION
vae

Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. This is part of the UniDiffuser image representation along with the CLIP vision encoding.

TYPE: [`AutoencoderKL`]

text_encoder

Frozen text-encoder (clip-vit-large-patch14).

TYPE: [`CLIPTextModel`]

image_encoder

A [~transformers.CLIPVisionModel] to encode images as part of its image representation along with the VAE latent representation.

TYPE: [`CLIPVisionModel`]

image_processor

[~transformers.CLIPImageProcessor] to preprocess an image before CLIP encoding it with image_encoder.

TYPE: [`CLIPImageProcessor`]

clip_tokenizer

A [~transformers.CLIPTokenizer] to tokenize the prompt before encoding it with text_encoder.

TYPE: [`CLIPTokenizer`]

text_decoder

Frozen text decoder. This is a GPT-style model which is used to generate text from the UniDiffuser embedding.

TYPE: [`UniDiffuserTextDecoder`]

text_tokenizer

A [~transformers.GPT2Tokenizer] to decode text for text generation; used along with the text_decoder.

TYPE: [`GPT2Tokenizer`]

unet

A U-ViT model with UNNet-style skip connections between transformer layers to denoise the encoded image latents.

TYPE: [`UniDiffuserModel`]

scheduler

A scheduler to be used in combination with unet to denoise the encoded image and/or text latents. The original UniDiffuser paper uses the [DPMSolverMultistepScheduler] scheduler.

TYPE: [`SchedulerMixin`]

Source code in mindone/diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
class UniDiffuserPipeline(DeprecatedPipelineMixin, DiffusionPipeline):
    r"""
    Pipeline for a bimodal image-text model which supports unconditional text and image generation, text-conditioned
    image generation, image-conditioned text generation, and joint image-text generation.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. This
            is part of the UniDiffuser image representation along with the CLIP vision encoding.
        text_encoder ([`CLIPTextModel`]):
            Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
        image_encoder ([`CLIPVisionModel`]):
            A [`~transformers.CLIPVisionModel`] to encode images as part of its image representation along with the VAE
            latent representation.
        image_processor ([`CLIPImageProcessor`]):
            [`~transformers.CLIPImageProcessor`] to preprocess an image before CLIP encoding it with `image_encoder`.
        clip_tokenizer ([`CLIPTokenizer`]):
             A [`~transformers.CLIPTokenizer`] to tokenize the prompt before encoding it with `text_encoder`.
        text_decoder ([`UniDiffuserTextDecoder`]):
            Frozen text decoder. This is a GPT-style model which is used to generate text from the UniDiffuser
            embedding.
        text_tokenizer ([`GPT2Tokenizer`]):
            A [`~transformers.GPT2Tokenizer`] to decode text for text generation; used along with the `text_decoder`.
        unet ([`UniDiffuserModel`]):
            A [U-ViT](https://github.com/baofff/U-ViT) model with UNNet-style skip connections between transformer
            layers to denoise the encoded image latents.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image and/or text latents. The
            original UniDiffuser paper uses the [`DPMSolverMultistepScheduler`] scheduler.
    """

    _last_supported_version = "0.33.1"
    # TODO: support for moving submodules for components with enable_model_cpu_offload
    model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae->text_decoder"

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        image_encoder: CLIPVisionModelWithProjection,
        clip_image_processor: CLIPImageProcessor,
        clip_tokenizer: CLIPTokenizer,
        text_decoder: UniDiffuserTextDecoder,
        text_tokenizer: GPT2Tokenizer,
        unet: UniDiffuserModel,
        scheduler: KarrasDiffusionSchedulers,
    ):
        super().__init__()

        if text_encoder.config.hidden_size != text_decoder.prefix_inner_dim:
            raise ValueError(
                f"The text encoder hidden size and text decoder prefix inner dim must be the same, but"
                f" `text_encoder.config.hidden_size`: {text_encoder.config.hidden_size} and `text_decoder.prefix_inner_dim`: {text_decoder.prefix_inner_dim}"
            )

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            image_encoder=image_encoder,
            clip_image_processor=clip_image_processor,
            clip_tokenizer=clip_tokenizer,
            text_decoder=text_decoder,
            text_tokenizer=text_tokenizer,
            unet=unet,
            scheduler=scheduler,
        )

        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)

        self.num_channels_latents = vae.config.latent_channels
        self.text_encoder_seq_len = text_encoder.config.max_position_embeddings
        self.text_encoder_hidden_size = text_encoder.config.hidden_size
        self.image_encoder_projection_dim = image_encoder.config.projection_dim
        self.unet_resolution = unet.config.sample_size

        self.text_intermediate_dim = self.text_encoder_hidden_size
        if self.text_decoder.prefix_hidden_dim is not None:
            self.text_intermediate_dim = self.text_decoder.prefix_hidden_dim

        self.mode = None

        # TODO: handle safety checking?
        self.safety_checker = None

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def _infer_mode(self, prompt, prompt_embeds, image, latents, prompt_latents, vae_latents, clip_latents):
        r"""
        Infer the generation task ('mode') from the inputs to `__call__`. If the mode has been manually set, the set
        mode will be used.
        """
        prompt_available = (prompt is not None) or (prompt_embeds is not None)
        image_available = image is not None
        input_available = prompt_available or image_available

        prompt_latents_available = prompt_latents is not None
        vae_latents_available = vae_latents is not None
        clip_latents_available = clip_latents is not None
        full_latents_available = latents is not None
        image_latents_available = vae_latents_available and clip_latents_available
        all_indv_latents_available = prompt_latents_available and image_latents_available

        if self.mode is not None:
            # Preferentially use the mode set by the user
            mode = self.mode
        elif prompt_available:
            mode = "text2img"
        elif image_available:
            mode = "img2text"
        else:
            # Neither prompt nor image supplied, infer based on availability of latents
            if full_latents_available or all_indv_latents_available:
                mode = "joint"
            elif prompt_latents_available:
                mode = "text"
            elif image_latents_available:
                mode = "img"
            else:
                # No inputs or latents available
                mode = "joint"

        # Give warnings for ambiguous cases
        if self.mode is None and prompt_available and image_available:
            logger.warning(
                f"You have supplied both a text prompt and image to the pipeline and mode has not been set manually,"
                f" defaulting to mode '{mode}'."
            )

        if self.mode is None and not input_available:
            if vae_latents_available != clip_latents_available:
                # Exactly one of vae_latents and clip_latents is supplied
                logger.warning(
                    f"You have supplied exactly one of `vae_latents` and `clip_latents`, whereas either both or none"
                    f" are expected to be supplied. Defaulting to mode '{mode}'."
                )
            elif not prompt_latents_available and not vae_latents_available and not clip_latents_available:
                # No inputs or latents supplied
                logger.warning(
                    f"No inputs or latents have been supplied, and mode has not been manually set,"
                    f" defaulting to mode '{mode}'."
                )

        return mode

    # Copied from diffusers.pipelines.pipeline_utils.StableDiffusionMixin.enable_vae_slicing
    def enable_vae_slicing(self):
        r"""
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
        """
        self.vae.enable_slicing()

    # Copied from diffusers.pipelines.pipeline_utils.StableDiffusionMixin.disable_vae_slicing
    def disable_vae_slicing(self):
        r"""
        Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
        computing decoding in one step.
        """
        self.vae.disable_slicing()

    # Copied from diffusers.pipelines.pipeline_utils.StableDiffusionMixin.enable_vae_tiling
    def enable_vae_tiling(self):
        r"""
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
        processing larger images.
        """
        self.vae.enable_tiling()

    # Copied from diffusers.pipelines.pipeline_utils.StableDiffusionMixin.disable_vae_tiling
    def disable_vae_tiling(self):
        r"""
        Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
        computing decoding in one step.
        """
        self.vae.disable_tiling()

    # Functions to manually set the mode
    def set_text_mode(self):
        r"""Manually set the generation mode to unconditional ("marginal") text generation."""
        self.mode = "text"

    def set_image_mode(self):
        r"""Manually set the generation mode to unconditional ("marginal") image generation."""
        self.mode = "img"

    def set_text_to_image_mode(self):
        r"""Manually set the generation mode to text-conditioned image generation."""
        self.mode = "text2img"

    def set_image_to_text_mode(self):
        r"""Manually set the generation mode to image-conditioned text generation."""
        self.mode = "img2text"

    def set_joint_mode(self):
        r"""Manually set the generation mode to unconditional joint image-text generation."""
        self.mode = "joint"

    def reset_mode(self):
        r"""Removes a manually set mode; after calling this, the pipeline will infer the mode from inputs."""
        self.mode = None

    def _infer_batch_size(
        self,
        mode,
        prompt,
        prompt_embeds,
        image,
        num_images_per_prompt,
        num_prompts_per_image,
        latents,
        prompt_latents,
        vae_latents,
        clip_latents,
    ):
        r"""Infers the batch size and multiplier depending on mode and supplied arguments to `__call__`."""
        if num_images_per_prompt is None:
            num_images_per_prompt = 1
        if num_prompts_per_image is None:
            num_prompts_per_image = 1

        assert num_images_per_prompt > 0, "num_images_per_prompt must be a positive integer"
        assert num_prompts_per_image > 0, "num_prompts_per_image must be a positive integer"

        if mode in ["text2img"]:
            if prompt is not None and isinstance(prompt, str):
                batch_size = 1
            elif prompt is not None and isinstance(prompt, list):
                batch_size = len(prompt)
            else:
                # Either prompt or prompt_embeds must be present for text2img.
                batch_size = prompt_embeds.shape[0]
            multiplier = num_images_per_prompt
        elif mode in ["img2text"]:
            if isinstance(image, PIL.Image.Image):
                batch_size = 1
            else:
                # Image must be available and type either PIL.Image.Image or ms.Tensor.
                # Not currently supporting something like image_embeds.
                batch_size = image.shape[0]
            multiplier = num_prompts_per_image
        elif mode in ["img"]:
            if vae_latents is not None:
                batch_size = vae_latents.shape[0]
            elif clip_latents is not None:
                batch_size = clip_latents.shape[0]
            else:
                batch_size = 1
            multiplier = num_images_per_prompt
        elif mode in ["text"]:
            if prompt_latents is not None:
                batch_size = prompt_latents.shape[0]
            else:
                batch_size = 1
            multiplier = num_prompts_per_image
        elif mode in ["joint"]:
            if latents is not None:
                batch_size = latents.shape[0]
            elif prompt_latents is not None:
                batch_size = prompt_latents.shape[0]
            elif vae_latents is not None:
                batch_size = vae_latents.shape[0]
            elif clip_latents is not None:
                batch_size = clip_latents.shape[0]
            else:
                batch_size = 1

            if num_images_per_prompt == num_prompts_per_image:
                multiplier = num_images_per_prompt
            else:
                multiplier = min(num_images_per_prompt, num_prompts_per_image)
                logger.warning(
                    f"You are using mode `{mode}` and `num_images_per_prompt`: {num_images_per_prompt} and"
                    f" num_prompts_per_image: {num_prompts_per_image} are not equal. Using batch size equal to"
                    f" `min(num_images_per_prompt, num_prompts_per_image) = {batch_size}."
                )
        return batch_size, multiplier

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
    def _encode_prompt(
        self,
        prompt,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[ms.Tensor] = None,
        negative_prompt_embeds: Optional[ms.Tensor] = None,
        lora_scale: Optional[float] = None,
        **kwargs,
    ):
        deprecation_message = (
            "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead."
            "Also, be aware that the output format changed from a concatenated tensor to a tuple."
        )
        deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)

        prompt_embeds_tuple = self.encode_prompt(
            prompt=prompt,
            num_images_per_prompt=num_images_per_prompt,
            do_classifier_free_guidance=do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=lora_scale,
            **kwargs,
        )

        # concatenate for backwards comp
        prompt_embeds = mint.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])

        return prompt_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt with self.tokenizer->self.clip_tokenizer
    def encode_prompt(
        self,
        prompt,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[ms.Tensor] = None,
        negative_prompt_embeds: Optional[ms.Tensor] = None,
        lora_scale: Optional[float] = None,
        clip_skip: Optional[int] = None,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            lora_scale (`float`, *optional*):
                A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
        """
        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
        if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
            self._lora_scale = lora_scale

            scale_lora_layers(self.text_encoder, lora_scale)

        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if prompt_embeds is None:
            # textual inversion: process multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                prompt = self.maybe_convert_prompt(prompt, self.clip_tokenizer)

            text_inputs = self.clip_tokenizer(
                prompt,
                padding="max_length",
                max_length=self.clip_tokenizer.model_max_length,
                truncation=True,
                return_tensors="np",
            )
            text_input_ids = text_inputs.input_ids
            untruncated_ids = self.clip_tokenizer(prompt, padding="longest", return_tensors="np").input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not mint.equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = self.clip_tokenizer.batch_decode(
                    untruncated_ids[:, self.clip_tokenizer.model_max_length - 1 : -1]
                )
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {self.clip_tokenizer.model_max_length} tokens: {removed_text}"
                )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = ms.tensor(text_inputs.attention_mask)
            else:
                attention_mask = None

            if clip_skip is None:
                prompt_embeds = self.text_encoder(ms.tensor(text_input_ids), attention_mask=attention_mask)
                prompt_embeds = prompt_embeds[0]
            else:
                prompt_embeds = self.text_encoder(
                    ms.tensor(text_input_ids), attention_mask=attention_mask, output_hidden_states=True
                )
                # Access the `hidden_states` first, that contains a tuple of
                # all the hidden states from the encoder layers. Then index into
                # the tuple to access the hidden states from the desired layer.
                prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
                # We also need to apply the final LayerNorm here to not mess with the
                # representations. The `last_hidden_states` that we typically use for
                # obtaining the final prompt representations passes through the LayerNorm
                # layer.
                prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)

        if self.text_encoder is not None:
            prompt_embeds_dtype = self.text_encoder.dtype
        elif self.unet is not None:
            prompt_embeds_dtype = self.unet.dtype
        else:
            prompt_embeds_dtype = prompt_embeds.dtype

        prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype)

        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.tile((1, num_images_per_prompt, 1))
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif prompt is not None and type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

            # textual inversion: process multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.clip_tokenizer)

            max_length = prompt_embeds.shape[1]
            uncond_input = self.clip_tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="np",
            )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = ms.tensor(uncond_input.attention_mask)
            else:
                attention_mask = None

            negative_prompt_embeds = self.text_encoder(
                ms.tensor(uncond_input.input_ids),
                attention_mask=attention_mask,
            )
            negative_prompt_embeds = negative_prompt_embeds[0]

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

            negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype)

            negative_prompt_embeds = negative_prompt_embeds.tile((1, num_images_per_prompt, 1))
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

        if self.text_encoder is not None:
            if isinstance(self, StableDiffusionLoraLoaderMixin):
                # Retrieve the original scale by scaling back the LoRA layers
                unscale_lora_layers(self.text_encoder, lora_scale)

        return prompt_embeds, negative_prompt_embeds

    # Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_instruct_pix2pix.StableDiffusionInstructPix2PixPipeline.prepare_image_latents
    # Add num_prompts_per_image argument, sample from autoencoder moment distribution
    def encode_image_vae_latents(
        self,
        image,
        batch_size,
        num_prompts_per_image,
        dtype,
        do_classifier_free_guidance,
        generator=None,
    ):
        if not isinstance(image, (ms.Tensor, PIL.Image.Image, list)):
            raise ValueError(f"`image` has to be of type `ms.Tensor`, `PIL.Image.Image` or list but is {type(image)}")

        image = image.to(dtype=dtype)

        batch_size = batch_size * num_prompts_per_image
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if isinstance(generator, list):
            image_latents = [
                self.vae.diag_gauss_dist.sample(self.vae.encode(image[i : i + 1])[0], generator=generator[i])
                * self.vae.config.scaling_factor
                for i in range(batch_size)
            ]
            image_latents = mint.cat(image_latents, dim=0)
        else:
            image_latents = self.vae.diag_gauss_dist.sample(self.vae.encode(image)[0], generator=generator)
            # Scale image_latents by the VAE's scaling factor
            image_latents = image_latents * self.vae.config.scaling_factor

        if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
            # expand image_latents for batch_size
            deprecation_message = (
                f"You have passed {batch_size} text prompts (`prompt`), but only {image_latents.shape[0]} initial"
                " images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
                " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
                " your script to pass as many initial images as text prompts to suppress this warning."
            )
            deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
            additional_image_per_prompt = batch_size // image_latents.shape[0]
            image_latents = mint.cat([image_latents] * additional_image_per_prompt, dim=0)
        elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
            raise ValueError(
                f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
            )
        else:
            image_latents = mint.cat([image_latents], dim=0)

        if do_classifier_free_guidance:
            uncond_image_latents = mint.zeros_like(image_latents)
            image_latents = mint.cat([image_latents, image_latents, uncond_image_latents], dim=0)

        return image_latents

    def encode_image_clip_latents(
        self,
        image,
        batch_size,
        num_prompts_per_image,
        dtype,
        generator=None,
    ):
        # Map image to CLIP embedding.
        if not isinstance(image, (ms.Tensor, PIL.Image.Image, list)):
            raise ValueError(f"`image` has to be of type `ms.Tensor`, `PIL.Image.Image` or list but is {type(image)}")

        preprocessed_image = self.clip_image_processor.preprocess(
            image,
            return_tensors="np",
        )["pixel_values"]
        preprocessed_image = ms.Tensor.from_numpy(preprocessed_image).to(dtype=dtype)

        batch_size = batch_size * num_prompts_per_image
        if isinstance(generator, list):
            image_latents = [self.image_encoder(preprocessed_image[i : i + 1])[0] for i in range(batch_size)]
            image_latents = mint.cat(image_latents, dim=0)
        else:
            image_latents = self.image_encoder(preprocessed_image)[0]

        if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
            # expand image_latents for batch_size
            deprecation_message = (
                f"You have passed {batch_size} text prompts (`prompt`), but only {image_latents.shape[0]} initial"
                " images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
                " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
                " your script to pass as many initial images as text prompts to suppress this warning."
            )
            deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
            additional_image_per_prompt = batch_size // image_latents.shape[0]
            image_latents = mint.cat([image_latents] * additional_image_per_prompt, dim=0)
        elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
            raise ValueError(
                f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
            )
        else:
            image_latents = mint.cat([image_latents], dim=0)

        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        return image_latents

    def prepare_text_latents(
        self, batch_size, num_images_per_prompt, seq_len, hidden_size, dtype, generator, latents=None
    ):
        # Prepare latents for the CLIP embedded prompt.
        shape = (batch_size * num_images_per_prompt, seq_len, hidden_size)
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(shape, generator=generator, dtype=dtype)
        else:
            # latents is assumed to have shace (B, L, D)
            latents = latents.tile((num_images_per_prompt, 1, 1))
            latents = latents.to(dtype=dtype)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

    # Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
    # Rename prepare_latents -> prepare_image_vae_latents and add num_prompts_per_image argument.
    def prepare_image_vae_latents(
        self,
        batch_size,
        num_prompts_per_image,
        num_channels_latents,
        height,
        width,
        dtype,
        generator,
        latents=None,
    ):
        shape = (
            batch_size * num_prompts_per_image,
            num_channels_latents,
            height // self.vae_scale_factor,
            width // self.vae_scale_factor,
        )
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(shape, generator=generator, dtype=dtype)
        else:
            # latents is assumed to have shape (B, C, H, W)
            latents = latents.tile((num_prompts_per_image, 1, 1, 1))
            latents = latents.to(dtype=dtype)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

    def prepare_image_clip_latents(
        self, batch_size, num_prompts_per_image, clip_img_dim, dtype, generator, latents=None
    ):
        # Prepare latents for the CLIP embedded image.
        shape = (batch_size * num_prompts_per_image, 1, clip_img_dim)
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(shape, generator=generator, dtype=dtype)
        else:
            # latents is assumed to have shape (B, L, D)
            latents = latents.tile((num_prompts_per_image, 1, 1))
            latents = latents.to(dtype=dtype)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

    def decode_text_latents(self, text_latents):
        output_token_list, seq_lengths = self.text_decoder.generate_captions(
            text_latents,
            self.text_tokenizer.eos_token_id,
        )
        output_list = output_token_list.asnumpy()
        generated_text = [
            self.text_tokenizer.decode(output[: int(length)], skip_special_tokens=True)
            for output, length in zip(output_list, seq_lengths)
        ]
        return generated_text

    def _split(self, x, height, width):
        r"""
        Splits a flattened embedding x of shape (B, C * H * W + clip_img_dim) into two tensors of shape (B, C, H, W)
        and (B, 1, clip_img_dim)
        """
        batch_size = x.shape[0]
        latent_height = height // self.vae_scale_factor
        latent_width = width // self.vae_scale_factor
        img_vae_dim = self.num_channels_latents * latent_height * latent_width

        img_vae, img_clip = x.split([img_vae_dim, self.image_encoder_projection_dim], dim=1)

        img_vae = mint.reshape(img_vae, (batch_size, self.num_channels_latents, latent_height, latent_width))
        img_clip = mint.reshape(img_clip, (batch_size, 1, self.image_encoder_projection_dim))
        return img_vae, img_clip

    def _combine(self, img_vae, img_clip):
        r"""
        Combines a latent image img_vae of shape (B, C, H, W) and a CLIP-embedded image img_clip of shape (B, 1,
        clip_img_dim) into a single tensor of shape (B, C * H * W + clip_img_dim).
        """
        img_vae = mint.reshape(img_vae, (img_vae.shape[0], -1))
        img_clip = mint.reshape(img_clip, (img_clip.shape[0], -1))
        return mint.concat([img_vae, img_clip], dim=-1)

    def _split_joint(self, x, height, width):
        r"""
        Splits a flattened embedding x of shape (B, C * H * W + clip_img_dim + text_seq_len * text_dim] into (img_vae,
        img_clip, text) where img_vae is of shape (B, C, H, W), img_clip is of shape (B, 1, clip_img_dim), and text is
        of shape (B, text_seq_len, text_dim).
        """
        batch_size = x.shape[0]
        latent_height = height // self.vae_scale_factor
        latent_width = width // self.vae_scale_factor
        img_vae_dim = self.num_channels_latents * latent_height * latent_width
        text_dim = self.text_encoder_seq_len * self.text_intermediate_dim

        img_vae, img_clip, text = x.split([img_vae_dim, self.image_encoder_projection_dim, text_dim], dim=1)

        img_vae = mint.reshape(img_vae, (batch_size, self.num_channels_latents, latent_height, latent_width))
        img_clip = mint.reshape(img_clip, (batch_size, 1, self.image_encoder_projection_dim))
        text = mint.reshape(text, (batch_size, self.text_encoder_seq_len, self.text_intermediate_dim))
        return img_vae, img_clip, text

    def _combine_joint(self, img_vae, img_clip, text):
        r"""
        Combines a latent image img_vae of shape (B, C, H, W), a CLIP-embedded image img_clip of shape (B, L_img,
        clip_img_dim), and a text embedding text of shape (B, L_text, text_dim) into a single embedding x of shape (B,
        C * H * W + L_img * clip_img_dim + L_text * text_dim).
        """
        img_vae = mint.reshape(img_vae, (img_vae.shape[0], -1))
        img_clip = mint.reshape(img_clip, (img_clip.shape[0], -1))
        text = mint.reshape(text, (text.shape[0], -1))
        return mint.concat([img_vae, img_clip, text], dim=-1)

    def _get_noise_pred(
        self,
        mode,
        latents,
        t,
        prompt_embeds,
        img_vae,
        img_clip,
        max_timestep,
        data_type,
        guidance_scale,
        generator,
        height,
        width,
    ):
        r"""
        Gets the noise prediction using the `unet` and performs classifier-free guidance, if necessary.
        """
        if mode == "joint":
            # Joint text-image generation
            img_vae_latents, img_clip_latents, text_latents = self._split_joint(latents, height, width)

            img_vae_out, img_clip_out, text_out = self.unet(
                img_vae_latents, img_clip_latents, text_latents, timestep_img=t, timestep_text=t, data_type=data_type
            )

            x_out = self._combine_joint(img_vae_out, img_clip_out, text_out)

            if guidance_scale <= 1.0:
                return x_out

            # Classifier-free guidance
            img_vae_T = randn_tensor(img_vae.shape, generator=generator, dtype=img_vae.dtype)
            img_clip_T = randn_tensor(img_clip.shape, generator=generator, dtype=img_clip.dtype)
            text_T = randn_tensor(prompt_embeds.shape, generator=generator, dtype=prompt_embeds.dtype)

            _, _, text_out_uncond = self.unet(
                img_vae_T, img_clip_T, text_latents, timestep_img=max_timestep, timestep_text=t, data_type=data_type
            )

            img_vae_out_uncond, img_clip_out_uncond, _ = self.unet(
                img_vae_latents,
                img_clip_latents,
                text_T,
                timestep_img=t,
                timestep_text=max_timestep,
                data_type=data_type,
            )

            x_out_uncond = self._combine_joint(img_vae_out_uncond, img_clip_out_uncond, text_out_uncond)

            return guidance_scale * x_out + (1.0 - guidance_scale) * x_out_uncond
        elif mode == "text2img":
            # Text-conditioned image generation
            img_vae_latents, img_clip_latents = self._split(latents, height, width)

            img_vae_out, img_clip_out, text_out = self.unet(
                img_vae_latents, img_clip_latents, prompt_embeds, timestep_img=t, timestep_text=0, data_type=data_type
            )

            img_out = self._combine(img_vae_out, img_clip_out)

            if guidance_scale <= 1.0:
                return img_out

            # Classifier-free guidance
            text_T = randn_tensor(prompt_embeds.shape, generator=generator, dtype=prompt_embeds.dtype)

            img_vae_out_uncond, img_clip_out_uncond, text_out_uncond = self.unet(
                img_vae_latents,
                img_clip_latents,
                text_T,
                timestep_img=t,
                timestep_text=max_timestep,
                data_type=data_type,
            )

            img_out_uncond = self._combine(img_vae_out_uncond, img_clip_out_uncond)

            return guidance_scale * img_out + (1.0 - guidance_scale) * img_out_uncond
        elif mode == "img2text":
            # Image-conditioned text generation
            img_vae_out, img_clip_out, text_out = self.unet(
                img_vae, img_clip, latents, timestep_img=0, timestep_text=t, data_type=data_type
            )

            if guidance_scale <= 1.0:
                return text_out

            # Classifier-free guidance
            img_vae_T = randn_tensor(img_vae.shape, generator=generator, dtype=img_vae.dtype)
            img_clip_T = randn_tensor(img_clip.shape, generator=generator, dtype=img_clip.dtype)

            img_vae_out_uncond, img_clip_out_uncond, text_out_uncond = self.unet(
                img_vae_T, img_clip_T, latents, timestep_img=max_timestep, timestep_text=t, data_type=data_type
            )

            return guidance_scale * text_out + (1.0 - guidance_scale) * text_out_uncond
        elif mode == "text":
            # Unconditional ("marginal") text generation (no CFG)
            img_vae_out, img_clip_out, text_out = self.unet(
                img_vae, img_clip, latents, timestep_img=max_timestep, timestep_text=t, data_type=data_type
            )

            return text_out
        elif mode == "img":
            # Unconditional ("marginal") image generation (no CFG)
            img_vae_latents, img_clip_latents = self._split(latents, height, width)

            img_vae_out, img_clip_out, text_out = self.unet(
                img_vae_latents,
                img_clip_latents,
                prompt_embeds,
                timestep_img=t,
                timestep_text=max_timestep,
                data_type=data_type,
            )

            img_out = self._combine(img_vae_out, img_clip_out)
            return img_out

    def check_latents_shape(self, latents_name, latents, expected_shape):
        latents_shape = latents.shape
        expected_num_dims = len(expected_shape) + 1  # expected dimensions plus the batch dimension
        expected_shape_str = ", ".join(str(dim) for dim in expected_shape)
        if len(latents_shape) != expected_num_dims:
            raise ValueError(
                f"`{latents_name}` should have shape (batch_size, {expected_shape_str}), but the current shape"
                f" {latents_shape} has {len(latents_shape)} dimensions."
            )
        for i in range(1, expected_num_dims):
            if latents_shape[i] != expected_shape[i - 1]:
                raise ValueError(
                    f"`{latents_name}` should have shape (batch_size, {expected_shape_str}), but the current shape"
                    f" {latents_shape} has {latents_shape[i]} != {expected_shape[i - 1]} at dimension {i}."
                )

    def check_inputs(
        self,
        mode,
        prompt,
        image,
        height,
        width,
        callback_steps,
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
        latents=None,
        prompt_latents=None,
        vae_latents=None,
        clip_latents=None,
    ):
        # Check inputs before running the generative process.
        if height % self.vae_scale_factor != 0 or width % self.vae_scale_factor != 0:
            raise ValueError(
                f"`height` and `width` have to be divisible by {self.vae_scale_factor} but are {height} and {width}."
            )

        if (callback_steps is None) or (
            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

        if mode == "text2img":
            if prompt is not None and prompt_embeds is not None:
                raise ValueError(
                    f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                    " only forward one of the two."
                )
            elif prompt is None and prompt_embeds is None:
                raise ValueError(
                    "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
                )
            elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
                raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

            if negative_prompt is not None and negative_prompt_embeds is not None:
                raise ValueError(
                    f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                    f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
                )

            if prompt_embeds is not None and negative_prompt_embeds is not None:
                if prompt_embeds.shape != negative_prompt_embeds.shape:
                    raise ValueError(
                        "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                        f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                        f" {negative_prompt_embeds.shape}."
                    )

        if mode == "img2text":
            if image is None:
                raise ValueError("`img2text` mode requires an image to be provided.")

        # Check provided latents
        latent_height = height // self.vae_scale_factor
        latent_width = width // self.vae_scale_factor
        full_latents_available = latents is not None
        prompt_latents_available = prompt_latents is not None
        vae_latents_available = vae_latents is not None
        clip_latents_available = clip_latents is not None

        if full_latents_available:
            individual_latents_available = (
                prompt_latents is not None or vae_latents is not None or clip_latents is not None
            )
            if individual_latents_available:
                logger.warning(
                    "You have supplied both `latents` and at least one of `prompt_latents`, `vae_latents`, and"
                    " `clip_latents`. The value of `latents` will override the value of any individually supplied latents."
                )
            # Check shape of full latents
            img_vae_dim = self.num_channels_latents * latent_height * latent_width
            text_dim = self.text_encoder_seq_len * self.text_encoder_hidden_size
            latents_dim = img_vae_dim + self.image_encoder_projection_dim + text_dim
            latents_expected_shape = (latents_dim,)
            self.check_latents_shape("latents", latents, latents_expected_shape)

        # Check individual latent shapes, if present
        if prompt_latents_available:
            prompt_latents_expected_shape = (self.text_encoder_seq_len, self.text_encoder_hidden_size)
            self.check_latents_shape("prompt_latents", prompt_latents, prompt_latents_expected_shape)

        if vae_latents_available:
            vae_latents_expected_shape = (self.num_channels_latents, latent_height, latent_width)
            self.check_latents_shape("vae_latents", vae_latents, vae_latents_expected_shape)

        if clip_latents_available:
            clip_latents_expected_shape = (1, self.image_encoder_projection_dim)
            self.check_latents_shape("clip_latents", clip_latents, clip_latents_expected_shape)

        if mode in ["text2img", "img"] and vae_latents_available and clip_latents_available:
            if vae_latents.shape[0] != clip_latents.shape[0]:
                raise ValueError(
                    f"Both `vae_latents` and `clip_latents` are supplied, but their batch dimensions are not equal:"
                    f" {vae_latents.shape[0]} != {clip_latents.shape[0]}."
                )

        if mode == "joint" and prompt_latents_available and vae_latents_available and clip_latents_available:
            if prompt_latents.shape[0] != vae_latents.shape[0] or prompt_latents.shape[0] != clip_latents.shape[0]:
                raise ValueError(
                    f"All of `prompt_latents`, `vae_latents`, and `clip_latents` are supplied, but their batch"
                    f" dimensions are not equal: {prompt_latents.shape[0]} != {vae_latents.shape[0]}"
                    f" != {clip_latents.shape[0]}."
                )

    def __call__(
        self,
        prompt: Optional[Union[str, List[str]]] = None,
        image: Optional[Union[ms.Tensor, PIL.Image.Image]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        data_type: Optional[int] = 1,
        num_inference_steps: int = 50,
        guidance_scale: float = 8.0,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        num_prompts_per_image: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
        latents: Optional[ms.Tensor] = None,
        prompt_latents: Optional[ms.Tensor] = None,
        vae_latents: Optional[ms.Tensor] = None,
        clip_latents: Optional[ms.Tensor] = None,
        prompt_embeds: Optional[ms.Tensor] = None,
        negative_prompt_embeds: Optional[ms.Tensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, ms.Tensor], None]] = None,
        callback_steps: int = 1,
    ):
        r"""
        The call function to the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
                Required for text-conditioned image generation (`text2img`) mode.
            image (`ms.Tensor` or `PIL.Image.Image`, *optional*):
                `Image` or tensor representing an image batch. Required for image-conditioned text generation
                (`img2text`) mode.
            height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
                The width in pixels of the generated image.
            data_type (`int`, *optional*, defaults to 1):
                The data type (either 0 or 1). Only used if you are loading a checkpoint which supports a data type
                embedding; this is added for compatibility with the
                [UniDiffuser-v1](https://huggingface.co/thu-ml/unidiffuser-v1) checkpoint.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 8.0):
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). Used in
                text-conditioned image generation (`text2img`) mode.
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt. Used in `text2img` (text-conditioned image generation) and
                `img` mode. If the mode is joint and both `num_images_per_prompt` and `num_prompts_per_image` are
                supplied, `min(num_images_per_prompt, num_prompts_per_image)` samples are generated.
            num_prompts_per_image (`int`, *optional*, defaults to 1):
                The number of prompts to generate per image. Used in `img2text` (image-conditioned text generation) and
                `text` mode. If the mode is joint and both `num_images_per_prompt` and `num_prompts_per_image` are
                supplied, `min(num_images_per_prompt, num_prompts_per_image)` samples are generated.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) from the [DDIM](https://huggingface.co/papers/2010.02502) paper. Only
                applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
            generator (`np.random.Generator` or `List[np.random.Generator]`, *optional*):
                A [`np.random.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
            latents (`ms.Tensor`, *optional*):
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for joint
                image-text generation. Can be used to tweak the same generation with different prompts. If not
                provided, a latents tensor is generated by sampling using the supplied random `generator`. This assumes
                a full set of VAE, CLIP, and text latents, if supplied, overrides the value of `prompt_latents`,
                `vae_latents`, and `clip_latents`.
            prompt_latents (`ms.Tensor`, *optional*):
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for text
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor is generated by sampling using the supplied random `generator`.
            vae_latents (`ms.Tensor`, *optional*):
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor is generated by sampling using the supplied random `generator`.
            clip_latents (`ms.Tensor`, *optional*):
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor is generated by sampling using the supplied random `generator`.
            prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument. Used in text-conditioned
                image generation (`text2img`) mode.
            negative_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are be generated from the `negative_prompt` input argument. Used
                in text-conditioned image generation (`text2img`) mode.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.ImageTextPipelineOutput`] instead of a plain tuple.
            callback (`Callable`, *optional*):
                A function that calls every `callback_steps` steps during inference. The function is called with the
                following arguments: `callback(step: int, timestep: int, latents: ms.Tensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function is called. If not specified, the callback is called at
                every step.

        Returns:
            [`~pipelines.unidiffuser.ImageTextPipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.unidiffuser.ImageTextPipelineOutput`] is returned, otherwise a
                `tuple` is returned where the first element is a list with the generated images and the second element
                is a list of generated texts.
        """

        # 0. Default height and width to unet
        height = height or self.unet_resolution * self.vae_scale_factor
        width = width or self.unet_resolution * self.vae_scale_factor

        # 1. Check inputs
        # Recalculate mode for each call to the pipeline.
        mode = self._infer_mode(prompt, prompt_embeds, image, latents, prompt_latents, vae_latents, clip_latents)
        self.check_inputs(
            mode,
            prompt,
            image,
            height,
            width,
            callback_steps,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
            latents,
            prompt_latents,
            vae_latents,
            clip_latents,
        )

        # 2. Define call parameters
        batch_size, multiplier = self._infer_batch_size(
            mode,
            prompt,
            prompt_embeds,
            image,
            num_images_per_prompt,
            num_prompts_per_image,
            latents,
            prompt_latents,
            vae_latents,
            clip_latents,
        )
        reduce_text_emb_dim = self.text_intermediate_dim < self.text_encoder_hidden_size or self.mode != "text2img"

        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        # Note that this differs from the formulation in the unidiffusers paper!
        do_classifier_free_guidance = guidance_scale > 1.0

        # check if scheduler is in sigmas space
        # scheduler_is_in_sigma_space = hasattr(self.scheduler, "sigmas")

        # 3. Encode input prompt, if available; otherwise prepare text latents
        if latents is not None:
            # Overwrite individual latents
            vae_latents, clip_latents, prompt_latents = self._split_joint(latents, height, width)

        if mode in ["text2img"]:
            # 3.1. Encode input prompt, if available
            assert prompt is not None or prompt_embeds is not None
            prompt_embeds, negative_prompt_embeds = self.encode_prompt(
                prompt=prompt,
                num_images_per_prompt=multiplier,
                do_classifier_free_guidance=do_classifier_free_guidance,
                negative_prompt=negative_prompt,
                prompt_embeds=prompt_embeds,
                negative_prompt_embeds=negative_prompt_embeds,
            )

            # if do_classifier_free_guidance:
            #     prompt_embeds = mint.cat([negative_prompt_embeds, prompt_embeds])
        else:
            # 3.2. Prepare text latent variables, if input not available
            prompt_embeds = self.prepare_text_latents(
                batch_size=batch_size,
                num_images_per_prompt=multiplier,
                seq_len=self.text_encoder_seq_len,
                hidden_size=self.text_encoder_hidden_size,
                dtype=self.text_encoder.dtype,  # Should work with both full precision and mixed precision
                generator=generator,
                latents=prompt_latents,
            )

        if reduce_text_emb_dim:
            prompt_embeds = self.text_decoder.encode(prompt_embeds)

        # 4. Encode image, if available; otherwise prepare image latents
        if mode in ["img2text"]:
            # 4.1. Encode images, if available
            assert image is not None, "`img2text` requires a conditioning image"
            # Encode image using VAE
            image_vae = self.image_processor.preprocess(image)
            height, width = image_vae.shape[-2:]
            image_vae_latents = self.encode_image_vae_latents(
                image=image_vae,
                batch_size=batch_size,
                num_prompts_per_image=multiplier,
                dtype=prompt_embeds.dtype,
                do_classifier_free_guidance=False,  # Copied from InstructPix2Pix, don't use their version of CFG
                generator=generator,
            )

            # Encode image using CLIP
            image_clip_latents = self.encode_image_clip_latents(
                image=image,
                batch_size=batch_size,
                num_prompts_per_image=multiplier,
                dtype=prompt_embeds.dtype,
                generator=generator,
            )
            # (batch_size, clip_hidden_size) => (batch_size, 1, clip_hidden_size)
            image_clip_latents = image_clip_latents.unsqueeze(1)
        else:
            # 4.2. Prepare image latent variables, if input not available
            # Prepare image VAE latents in latent space
            image_vae_latents = self.prepare_image_vae_latents(
                batch_size=batch_size,
                num_prompts_per_image=multiplier,
                num_channels_latents=self.num_channels_latents,
                height=height,
                width=width,
                dtype=prompt_embeds.dtype,
                generator=generator,
                latents=vae_latents,
            )

            # Prepare image CLIP latents
            image_clip_latents = self.prepare_image_clip_latents(
                batch_size=batch_size,
                num_prompts_per_image=multiplier,
                clip_img_dim=self.image_encoder_projection_dim,
                dtype=prompt_embeds.dtype,
                generator=generator,
                latents=clip_latents,
            )

        # 5. Set timesteps
        self.scheduler.set_timesteps(num_inference_steps)
        timesteps = self.scheduler.timesteps
        # max_timestep = timesteps[0]
        max_timestep = self.scheduler.config.num_train_timesteps

        # 6. Prepare latent variables
        if mode == "joint":
            latents = self._combine_joint(image_vae_latents, image_clip_latents, prompt_embeds)
        elif mode in ["text2img", "img"]:
            latents = self._combine(image_vae_latents, image_clip_latents)
        elif mode in ["img2text", "text"]:
            latents = prompt_embeds

        # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        logger.debug(f"Scheduler extra step kwargs: {extra_step_kwargs}")

        # 8. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # predict the noise residual
                # Also applies classifier-free guidance as described in the UniDiffuser paper
                noise_pred = self._get_noise_pred(
                    mode,
                    latents,
                    t,
                    prompt_embeds,
                    image_vae_latents,
                    image_clip_latents,
                    max_timestep,
                    data_type,
                    guidance_scale,
                    generator,
                    height,
                    width,
                )

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs)[0]

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)

        # 9. Post-processing
        image = None
        text = None
        if mode == "joint":
            image_vae_latents, image_clip_latents, text_latents = self._split_joint(latents, height, width)

            if not output_type == "latent":
                # Map latent VAE image back to pixel space
                image = self.vae.decode(image_vae_latents / self.vae.config.scaling_factor, return_dict=False)[0]
            else:
                image = image_vae_latents

            text = self.decode_text_latents(text_latents)
        elif mode in ["text2img", "img"]:
            image_vae_latents, image_clip_latents = self._split(latents, height, width)

            if not output_type == "latent":
                # Map latent VAE image back to pixel space
                image = self.vae.decode(image_vae_latents / self.vae.config.scaling_factor, return_dict=False)[0]
            else:
                image = image_vae_latents
        elif mode in ["img2text", "text"]:
            text_latents = latents
            text = self.decode_text_latents(text_latents)

        # 10. Postprocess the image, if necessary
        if image is not None:
            do_denormalize = [True] * image.shape[0]
            image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)

        if not return_dict:
            return (image, text)

        return ImageTextPipelineOutput(images=image, text=text)

mindone.diffusers.UniDiffuserPipeline.__call__(prompt=None, image=None, height=None, width=None, data_type=1, num_inference_steps=50, guidance_scale=8.0, negative_prompt=None, num_images_per_prompt=1, num_prompts_per_image=1, eta=0.0, generator=None, latents=None, prompt_latents=None, vae_latents=None, clip_latents=None, prompt_embeds=None, negative_prompt_embeds=None, output_type='pil', return_dict=True, callback=None, callback_steps=1)

The call function to the pipeline for generation.

PARAMETER DESCRIPTION
prompt

The prompt or prompts to guide image generation. If not defined, you need to pass prompt_embeds. Required for text-conditioned image generation (text2img) mode.

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

image

Image or tensor representing an image batch. Required for image-conditioned text generation (img2text) mode.

TYPE: `ms.Tensor` or `PIL.Image.Image`, *optional* DEFAULT: None

height

The height in pixels of the generated image.

TYPE: `int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor` DEFAULT: None

width

The width in pixels of the generated image.

TYPE: `int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor` DEFAULT: None

data_type

The data type (either 0 or 1). Only used if you are loading a checkpoint which supports a data type embedding; this is added for compatibility with the UniDiffuser-v1 checkpoint.

TYPE: `int`, *optional*, defaults to 1 DEFAULT: 1

num_inference_steps

The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.

TYPE: `int`, *optional*, defaults to 50 DEFAULT: 50

guidance_scale

A higher guidance scale value encourages the model to generate images closely linked to the text prompt at the expense of lower image quality. Guidance scale is enabled when guidance_scale > 1.

TYPE: `float`, *optional*, defaults to 8.0 DEFAULT: 8.0

negative_prompt

The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass negative_prompt_embeds instead. Ignored when not using guidance (guidance_scale < 1). Used in text-conditioned image generation (text2img) mode.

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

num_images_per_prompt

The number of images to generate per prompt. Used in text2img (text-conditioned image generation) and img mode. If the mode is joint and both num_images_per_prompt and num_prompts_per_image are supplied, min(num_images_per_prompt, num_prompts_per_image) samples are generated.

TYPE: `int`, *optional*, defaults to 1 DEFAULT: 1

num_prompts_per_image

The number of prompts to generate per image. Used in img2text (image-conditioned text generation) and text mode. If the mode is joint and both num_images_per_prompt and num_prompts_per_image are supplied, min(num_images_per_prompt, num_prompts_per_image) samples are generated.

TYPE: `int`, *optional*, defaults to 1 DEFAULT: 1

eta

Corresponds to parameter eta (η) from the DDIM paper. Only applies to the [~schedulers.DDIMScheduler], and is ignored in other schedulers.

TYPE: `float`, *optional*, defaults to 0.0 DEFAULT: 0.0

generator

A np.random.Generator to make generation deterministic.

TYPE: `np.random.Generator` or `List[np.random.Generator]`, *optional* DEFAULT: None

latents

Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for joint image-text generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random generator. This assumes a full set of VAE, CLIP, and text latents, if supplied, overrides the value of prompt_latents, vae_latents, and clip_latents.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

prompt_latents

Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for text generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random generator.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

vae_latents

Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random generator.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

clip_latents

Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random generator.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

prompt_embeds

Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the prompt input argument. Used in text-conditioned image generation (text2img) mode.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_prompt_embeds

Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, negative_prompt_embeds are be generated from the negative_prompt input argument. Used in text-conditioned image generation (text2img) mode.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

output_type

The output format of the generated image. Choose between PIL.Image or np.array.

TYPE: `str`, *optional*, defaults to `"pil"` DEFAULT: 'pil'

return_dict

Whether or not to return a [~pipelines.ImageTextPipelineOutput] instead of a plain tuple.

TYPE: `bool`, *optional*, defaults to `True` DEFAULT: True

callback

A function that calls every callback_steps steps during inference. The function is called with the following arguments: callback(step: int, timestep: int, latents: ms.Tensor).

TYPE: `Callable`, *optional* DEFAULT: None

callback_steps

The frequency at which the callback function is called. If not specified, the callback is called at every step.

TYPE: `int`, *optional*, defaults to 1 DEFAULT: 1

RETURNS DESCRIPTION

[~pipelines.unidiffuser.ImageTextPipelineOutput] or tuple: If return_dict is True, [~pipelines.unidiffuser.ImageTextPipelineOutput] is returned, otherwise a tuple is returned where the first element is a list with the generated images and the second element is a list of generated texts.

Source code in mindone/diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
def __call__(
    self,
    prompt: Optional[Union[str, List[str]]] = None,
    image: Optional[Union[ms.Tensor, PIL.Image.Image]] = None,
    height: Optional[int] = None,
    width: Optional[int] = None,
    data_type: Optional[int] = 1,
    num_inference_steps: int = 50,
    guidance_scale: float = 8.0,
    negative_prompt: Optional[Union[str, List[str]]] = None,
    num_images_per_prompt: Optional[int] = 1,
    num_prompts_per_image: Optional[int] = 1,
    eta: float = 0.0,
    generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
    latents: Optional[ms.Tensor] = None,
    prompt_latents: Optional[ms.Tensor] = None,
    vae_latents: Optional[ms.Tensor] = None,
    clip_latents: Optional[ms.Tensor] = None,
    prompt_embeds: Optional[ms.Tensor] = None,
    negative_prompt_embeds: Optional[ms.Tensor] = None,
    output_type: Optional[str] = "pil",
    return_dict: bool = True,
    callback: Optional[Callable[[int, int, ms.Tensor], None]] = None,
    callback_steps: int = 1,
):
    r"""
    The call function to the pipeline for generation.

    Args:
        prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
            Required for text-conditioned image generation (`text2img`) mode.
        image (`ms.Tensor` or `PIL.Image.Image`, *optional*):
            `Image` or tensor representing an image batch. Required for image-conditioned text generation
            (`img2text`) mode.
        height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
            The height in pixels of the generated image.
        width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
            The width in pixels of the generated image.
        data_type (`int`, *optional*, defaults to 1):
            The data type (either 0 or 1). Only used if you are loading a checkpoint which supports a data type
            embedding; this is added for compatibility with the
            [UniDiffuser-v1](https://huggingface.co/thu-ml/unidiffuser-v1) checkpoint.
        num_inference_steps (`int`, *optional*, defaults to 50):
            The number of denoising steps. More denoising steps usually lead to a higher quality image at the
            expense of slower inference.
        guidance_scale (`float`, *optional*, defaults to 8.0):
            A higher guidance scale value encourages the model to generate images closely linked to the text
            `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
        negative_prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts to guide what to not include in image generation. If not defined, you need to
            pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). Used in
            text-conditioned image generation (`text2img`) mode.
        num_images_per_prompt (`int`, *optional*, defaults to 1):
            The number of images to generate per prompt. Used in `text2img` (text-conditioned image generation) and
            `img` mode. If the mode is joint and both `num_images_per_prompt` and `num_prompts_per_image` are
            supplied, `min(num_images_per_prompt, num_prompts_per_image)` samples are generated.
        num_prompts_per_image (`int`, *optional*, defaults to 1):
            The number of prompts to generate per image. Used in `img2text` (image-conditioned text generation) and
            `text` mode. If the mode is joint and both `num_images_per_prompt` and `num_prompts_per_image` are
            supplied, `min(num_images_per_prompt, num_prompts_per_image)` samples are generated.
        eta (`float`, *optional*, defaults to 0.0):
            Corresponds to parameter eta (η) from the [DDIM](https://huggingface.co/papers/2010.02502) paper. Only
            applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
        generator (`np.random.Generator` or `List[np.random.Generator]`, *optional*):
            A [`np.random.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
            generation deterministic.
        latents (`ms.Tensor`, *optional*):
            Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for joint
            image-text generation. Can be used to tweak the same generation with different prompts. If not
            provided, a latents tensor is generated by sampling using the supplied random `generator`. This assumes
            a full set of VAE, CLIP, and text latents, if supplied, overrides the value of `prompt_latents`,
            `vae_latents`, and `clip_latents`.
        prompt_latents (`ms.Tensor`, *optional*):
            Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for text
            generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
            tensor is generated by sampling using the supplied random `generator`.
        vae_latents (`ms.Tensor`, *optional*):
            Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
            generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
            tensor is generated by sampling using the supplied random `generator`.
        clip_latents (`ms.Tensor`, *optional*):
            Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
            generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
            tensor is generated by sampling using the supplied random `generator`.
        prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
            provided, text embeddings are generated from the `prompt` input argument. Used in text-conditioned
            image generation (`text2img`) mode.
        negative_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
            not provided, `negative_prompt_embeds` are be generated from the `negative_prompt` input argument. Used
            in text-conditioned image generation (`text2img`) mode.
        output_type (`str`, *optional*, defaults to `"pil"`):
            The output format of the generated image. Choose between `PIL.Image` or `np.array`.
        return_dict (`bool`, *optional*, defaults to `True`):
            Whether or not to return a [`~pipelines.ImageTextPipelineOutput`] instead of a plain tuple.
        callback (`Callable`, *optional*):
            A function that calls every `callback_steps` steps during inference. The function is called with the
            following arguments: `callback(step: int, timestep: int, latents: ms.Tensor)`.
        callback_steps (`int`, *optional*, defaults to 1):
            The frequency at which the `callback` function is called. If not specified, the callback is called at
            every step.

    Returns:
        [`~pipelines.unidiffuser.ImageTextPipelineOutput`] or `tuple`:
            If `return_dict` is `True`, [`~pipelines.unidiffuser.ImageTextPipelineOutput`] is returned, otherwise a
            `tuple` is returned where the first element is a list with the generated images and the second element
            is a list of generated texts.
    """

    # 0. Default height and width to unet
    height = height or self.unet_resolution * self.vae_scale_factor
    width = width or self.unet_resolution * self.vae_scale_factor

    # 1. Check inputs
    # Recalculate mode for each call to the pipeline.
    mode = self._infer_mode(prompt, prompt_embeds, image, latents, prompt_latents, vae_latents, clip_latents)
    self.check_inputs(
        mode,
        prompt,
        image,
        height,
        width,
        callback_steps,
        negative_prompt,
        prompt_embeds,
        negative_prompt_embeds,
        latents,
        prompt_latents,
        vae_latents,
        clip_latents,
    )

    # 2. Define call parameters
    batch_size, multiplier = self._infer_batch_size(
        mode,
        prompt,
        prompt_embeds,
        image,
        num_images_per_prompt,
        num_prompts_per_image,
        latents,
        prompt_latents,
        vae_latents,
        clip_latents,
    )
    reduce_text_emb_dim = self.text_intermediate_dim < self.text_encoder_hidden_size or self.mode != "text2img"

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    # Note that this differs from the formulation in the unidiffusers paper!
    do_classifier_free_guidance = guidance_scale > 1.0

    # check if scheduler is in sigmas space
    # scheduler_is_in_sigma_space = hasattr(self.scheduler, "sigmas")

    # 3. Encode input prompt, if available; otherwise prepare text latents
    if latents is not None:
        # Overwrite individual latents
        vae_latents, clip_latents, prompt_latents = self._split_joint(latents, height, width)

    if mode in ["text2img"]:
        # 3.1. Encode input prompt, if available
        assert prompt is not None or prompt_embeds is not None
        prompt_embeds, negative_prompt_embeds = self.encode_prompt(
            prompt=prompt,
            num_images_per_prompt=multiplier,
            do_classifier_free_guidance=do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
        )

        # if do_classifier_free_guidance:
        #     prompt_embeds = mint.cat([negative_prompt_embeds, prompt_embeds])
    else:
        # 3.2. Prepare text latent variables, if input not available
        prompt_embeds = self.prepare_text_latents(
            batch_size=batch_size,
            num_images_per_prompt=multiplier,
            seq_len=self.text_encoder_seq_len,
            hidden_size=self.text_encoder_hidden_size,
            dtype=self.text_encoder.dtype,  # Should work with both full precision and mixed precision
            generator=generator,
            latents=prompt_latents,
        )

    if reduce_text_emb_dim:
        prompt_embeds = self.text_decoder.encode(prompt_embeds)

    # 4. Encode image, if available; otherwise prepare image latents
    if mode in ["img2text"]:
        # 4.1. Encode images, if available
        assert image is not None, "`img2text` requires a conditioning image"
        # Encode image using VAE
        image_vae = self.image_processor.preprocess(image)
        height, width = image_vae.shape[-2:]
        image_vae_latents = self.encode_image_vae_latents(
            image=image_vae,
            batch_size=batch_size,
            num_prompts_per_image=multiplier,
            dtype=prompt_embeds.dtype,
            do_classifier_free_guidance=False,  # Copied from InstructPix2Pix, don't use their version of CFG
            generator=generator,
        )

        # Encode image using CLIP
        image_clip_latents = self.encode_image_clip_latents(
            image=image,
            batch_size=batch_size,
            num_prompts_per_image=multiplier,
            dtype=prompt_embeds.dtype,
            generator=generator,
        )
        # (batch_size, clip_hidden_size) => (batch_size, 1, clip_hidden_size)
        image_clip_latents = image_clip_latents.unsqueeze(1)
    else:
        # 4.2. Prepare image latent variables, if input not available
        # Prepare image VAE latents in latent space
        image_vae_latents = self.prepare_image_vae_latents(
            batch_size=batch_size,
            num_prompts_per_image=multiplier,
            num_channels_latents=self.num_channels_latents,
            height=height,
            width=width,
            dtype=prompt_embeds.dtype,
            generator=generator,
            latents=vae_latents,
        )

        # Prepare image CLIP latents
        image_clip_latents = self.prepare_image_clip_latents(
            batch_size=batch_size,
            num_prompts_per_image=multiplier,
            clip_img_dim=self.image_encoder_projection_dim,
            dtype=prompt_embeds.dtype,
            generator=generator,
            latents=clip_latents,
        )

    # 5. Set timesteps
    self.scheduler.set_timesteps(num_inference_steps)
    timesteps = self.scheduler.timesteps
    # max_timestep = timesteps[0]
    max_timestep = self.scheduler.config.num_train_timesteps

    # 6. Prepare latent variables
    if mode == "joint":
        latents = self._combine_joint(image_vae_latents, image_clip_latents, prompt_embeds)
    elif mode in ["text2img", "img"]:
        latents = self._combine(image_vae_latents, image_clip_latents)
    elif mode in ["img2text", "text"]:
        latents = prompt_embeds

    # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
    extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

    logger.debug(f"Scheduler extra step kwargs: {extra_step_kwargs}")

    # 8. Denoising loop
    num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
    with self.progress_bar(total=num_inference_steps) as progress_bar:
        for i, t in enumerate(timesteps):
            # predict the noise residual
            # Also applies classifier-free guidance as described in the UniDiffuser paper
            noise_pred = self._get_noise_pred(
                mode,
                latents,
                t,
                prompt_embeds,
                image_vae_latents,
                image_clip_latents,
                max_timestep,
                data_type,
                guidance_scale,
                generator,
                height,
                width,
            )

            # compute the previous noisy sample x_t -> x_t-1
            latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs)[0]

            # call the callback, if provided
            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                progress_bar.update()
                if callback is not None and i % callback_steps == 0:
                    step_idx = i // getattr(self.scheduler, "order", 1)
                    callback(step_idx, t, latents)

    # 9. Post-processing
    image = None
    text = None
    if mode == "joint":
        image_vae_latents, image_clip_latents, text_latents = self._split_joint(latents, height, width)

        if not output_type == "latent":
            # Map latent VAE image back to pixel space
            image = self.vae.decode(image_vae_latents / self.vae.config.scaling_factor, return_dict=False)[0]
        else:
            image = image_vae_latents

        text = self.decode_text_latents(text_latents)
    elif mode in ["text2img", "img"]:
        image_vae_latents, image_clip_latents = self._split(latents, height, width)

        if not output_type == "latent":
            # Map latent VAE image back to pixel space
            image = self.vae.decode(image_vae_latents / self.vae.config.scaling_factor, return_dict=False)[0]
        else:
            image = image_vae_latents
    elif mode in ["img2text", "text"]:
        text_latents = latents
        text = self.decode_text_latents(text_latents)

    # 10. Postprocess the image, if necessary
    if image is not None:
        do_denormalize = [True] * image.shape[0]
        image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)

    if not return_dict:
        return (image, text)

    return ImageTextPipelineOutput(images=image, text=text)

mindone.diffusers.UniDiffuserPipeline.disable_vae_slicing()

Disable sliced VAE decoding. If enable_vae_slicing was previously enabled, this method will go back to computing decoding in one step.

Source code in mindone/diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py
224
225
226
227
228
229
def disable_vae_slicing(self):
    r"""
    Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
    computing decoding in one step.
    """
    self.vae.disable_slicing()

mindone.diffusers.UniDiffuserPipeline.disable_vae_tiling()

Disable tiled VAE decoding. If enable_vae_tiling was previously enabled, this method will go back to computing decoding in one step.

Source code in mindone/diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py
241
242
243
244
245
246
def disable_vae_tiling(self):
    r"""
    Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
    computing decoding in one step.
    """
    self.vae.disable_tiling()

mindone.diffusers.UniDiffuserPipeline.enable_vae_slicing()

Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.

Source code in mindone/diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py
216
217
218
219
220
221
def enable_vae_slicing(self):
    r"""
    Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
    compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
    """
    self.vae.enable_slicing()

mindone.diffusers.UniDiffuserPipeline.enable_vae_tiling()

Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images.

Source code in mindone/diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py
232
233
234
235
236
237
238
def enable_vae_tiling(self):
    r"""
    Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
    compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
    processing larger images.
    """
    self.vae.enable_tiling()

mindone.diffusers.UniDiffuserPipeline.encode_prompt(prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, lora_scale=None, clip_skip=None)

Encodes the prompt into text encoder hidden states.

PARAMETER DESCRIPTION
prompt

prompt to be encoded

TYPE: `str` or `List[str]`, *optional*

num_images_per_prompt

number of images that should be generated per prompt

TYPE: `int`

do_classifier_free_guidance

whether to use classifier free guidance or not

TYPE: `bool`

negative_prompt

The prompt or prompts not to guide the image generation. If not defined, one has to pass negative_prompt_embeds instead. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1).

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

prompt_embeds

Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_prompt_embeds

Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

lora_scale

A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.

TYPE: `float`, *optional* DEFAULT: None

clip_skip

Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings.

TYPE: `int`, *optional* DEFAULT: None

Source code in mindone/diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
def encode_prompt(
    self,
    prompt,
    num_images_per_prompt,
    do_classifier_free_guidance,
    negative_prompt=None,
    prompt_embeds: Optional[ms.Tensor] = None,
    negative_prompt_embeds: Optional[ms.Tensor] = None,
    lora_scale: Optional[float] = None,
    clip_skip: Optional[int] = None,
):
    r"""
    Encodes the prompt into text encoder hidden states.

    Args:
        prompt (`str` or `List[str]`, *optional*):
            prompt to be encoded
        num_images_per_prompt (`int`):
            number of images that should be generated per prompt
        do_classifier_free_guidance (`bool`):
            whether to use classifier free guidance or not
        negative_prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts not to guide the image generation. If not defined, one has to pass
            `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
            less than `1`).
        prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
            provided, text embeddings will be generated from `prompt` input argument.
        negative_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
            weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
            argument.
        lora_scale (`float`, *optional*):
            A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
        clip_skip (`int`, *optional*):
            Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
            the output of the pre-final layer will be used for computing the prompt embeddings.
    """
    # set lora scale so that monkey patched LoRA
    # function of text encoder can correctly access it
    if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
        self._lora_scale = lora_scale

        scale_lora_layers(self.text_encoder, lora_scale)

    if prompt is not None and isinstance(prompt, str):
        batch_size = 1
    elif prompt is not None and isinstance(prompt, list):
        batch_size = len(prompt)
    else:
        batch_size = prompt_embeds.shape[0]

    if prompt_embeds is None:
        # textual inversion: process multi-vector tokens if necessary
        if isinstance(self, TextualInversionLoaderMixin):
            prompt = self.maybe_convert_prompt(prompt, self.clip_tokenizer)

        text_inputs = self.clip_tokenizer(
            prompt,
            padding="max_length",
            max_length=self.clip_tokenizer.model_max_length,
            truncation=True,
            return_tensors="np",
        )
        text_input_ids = text_inputs.input_ids
        untruncated_ids = self.clip_tokenizer(prompt, padding="longest", return_tensors="np").input_ids

        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not mint.equal(
            text_input_ids, untruncated_ids
        ):
            removed_text = self.clip_tokenizer.batch_decode(
                untruncated_ids[:, self.clip_tokenizer.model_max_length - 1 : -1]
            )
            logger.warning(
                "The following part of your input was truncated because CLIP can only handle sequences up to"
                f" {self.clip_tokenizer.model_max_length} tokens: {removed_text}"
            )

        if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
            attention_mask = ms.tensor(text_inputs.attention_mask)
        else:
            attention_mask = None

        if clip_skip is None:
            prompt_embeds = self.text_encoder(ms.tensor(text_input_ids), attention_mask=attention_mask)
            prompt_embeds = prompt_embeds[0]
        else:
            prompt_embeds = self.text_encoder(
                ms.tensor(text_input_ids), attention_mask=attention_mask, output_hidden_states=True
            )
            # Access the `hidden_states` first, that contains a tuple of
            # all the hidden states from the encoder layers. Then index into
            # the tuple to access the hidden states from the desired layer.
            prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
            # We also need to apply the final LayerNorm here to not mess with the
            # representations. The `last_hidden_states` that we typically use for
            # obtaining the final prompt representations passes through the LayerNorm
            # layer.
            prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)

    if self.text_encoder is not None:
        prompt_embeds_dtype = self.text_encoder.dtype
    elif self.unet is not None:
        prompt_embeds_dtype = self.unet.dtype
    else:
        prompt_embeds_dtype = prompt_embeds.dtype

    prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype)

    bs_embed, seq_len, _ = prompt_embeds.shape
    # duplicate text embeddings for each generation per prompt, using mps friendly method
    prompt_embeds = prompt_embeds.tile((1, num_images_per_prompt, 1))
    prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

    # get unconditional embeddings for classifier free guidance
    if do_classifier_free_guidance and negative_prompt_embeds is None:
        uncond_tokens: List[str]
        if negative_prompt is None:
            uncond_tokens = [""] * batch_size
        elif prompt is not None and type(prompt) is not type(negative_prompt):
            raise TypeError(
                f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                f" {type(prompt)}."
            )
        elif isinstance(negative_prompt, str):
            uncond_tokens = [negative_prompt]
        elif batch_size != len(negative_prompt):
            raise ValueError(
                f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                " the batch size of `prompt`."
            )
        else:
            uncond_tokens = negative_prompt

        # textual inversion: process multi-vector tokens if necessary
        if isinstance(self, TextualInversionLoaderMixin):
            uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.clip_tokenizer)

        max_length = prompt_embeds.shape[1]
        uncond_input = self.clip_tokenizer(
            uncond_tokens,
            padding="max_length",
            max_length=max_length,
            truncation=True,
            return_tensors="np",
        )

        if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
            attention_mask = ms.tensor(uncond_input.attention_mask)
        else:
            attention_mask = None

        negative_prompt_embeds = self.text_encoder(
            ms.tensor(uncond_input.input_ids),
            attention_mask=attention_mask,
        )
        negative_prompt_embeds = negative_prompt_embeds[0]

    if do_classifier_free_guidance:
        # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
        seq_len = negative_prompt_embeds.shape[1]

        negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype)

        negative_prompt_embeds = negative_prompt_embeds.tile((1, num_images_per_prompt, 1))
        negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

    if self.text_encoder is not None:
        if isinstance(self, StableDiffusionLoraLoaderMixin):
            # Retrieve the original scale by scaling back the LoRA layers
            unscale_lora_layers(self.text_encoder, lora_scale)

    return prompt_embeds, negative_prompt_embeds

mindone.diffusers.UniDiffuserPipeline.reset_mode()

Removes a manually set mode; after calling this, the pipeline will infer the mode from inputs.

Source code in mindone/diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py
269
270
271
def reset_mode(self):
    r"""Removes a manually set mode; after calling this, the pipeline will infer the mode from inputs."""
    self.mode = None

mindone.diffusers.UniDiffuserPipeline.set_image_mode()

Manually set the generation mode to unconditional ("marginal") image generation.

Source code in mindone/diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py
253
254
255
def set_image_mode(self):
    r"""Manually set the generation mode to unconditional ("marginal") image generation."""
    self.mode = "img"

mindone.diffusers.UniDiffuserPipeline.set_image_to_text_mode()

Manually set the generation mode to image-conditioned text generation.

Source code in mindone/diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py
261
262
263
def set_image_to_text_mode(self):
    r"""Manually set the generation mode to image-conditioned text generation."""
    self.mode = "img2text"

mindone.diffusers.UniDiffuserPipeline.set_joint_mode()

Manually set the generation mode to unconditional joint image-text generation.

Source code in mindone/diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py
265
266
267
def set_joint_mode(self):
    r"""Manually set the generation mode to unconditional joint image-text generation."""
    self.mode = "joint"

mindone.diffusers.UniDiffuserPipeline.set_text_mode()

Manually set the generation mode to unconditional ("marginal") text generation.

Source code in mindone/diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py
249
250
251
def set_text_mode(self):
    r"""Manually set the generation mode to unconditional ("marginal") text generation."""
    self.mode = "text"

mindone.diffusers.UniDiffuserPipeline.set_text_to_image_mode()

Manually set the generation mode to text-conditioned image generation.

Source code in mindone/diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py
257
258
259
def set_text_to_image_mode(self):
    r"""Manually set the generation mode to text-conditioned image generation."""
    self.mode = "text2img"

mindone.diffusers.pipelines.ImageTextPipelineOutput dataclass

Bases: BaseOutput

Output class for joint image-text pipelines.

Source code in mindone/diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
@dataclass
class ImageTextPipelineOutput(BaseOutput):
    """
    Output class for joint image-text pipelines.

    Args:
        images (`List[PIL.Image.Image]` or `np.ndarray`)
            List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
            num_channels)`.
        text (`List[str]` or `List[List[str]]`)
            List of generated text strings of length `batch_size` or a list of list of strings whose outer list has
            length `batch_size`.
    """

    images: Optional[Union[List[PIL.Image.Image], np.ndarray]]
    text: Optional[Union[List[str], List[List[str]]]]