Warning
This pipeline is deprecated but it can still be used. However, we won't test the pipeline anymore and won't accept any changes to it. If you run into any issues, reinstall the last Diffusers version that supported this model.
UniDiffuser¶
The UniDiffuser model was proposed in One Transformer Fits All Distributions in Multi-Modal Diffusion at Scale by Fan Bao, Shen Nie, Kaiwen Xue, Chongxuan Li, Shi Pu, Yaole Wang, Gang Yue, Yue Cao, Hang Su, Jun Zhu.
The abstract from the paper is:
This paper proposes a unified diffusion framework (dubbed UniDiffuser) to fit all distributions relevant to a set of multi-modal data in one model. Our key insight is -- learning diffusion models for marginal, conditional, and joint distributions can be unified as predicting the noise in the perturbed data, where the perturbation levels (i.e. timesteps) can be different for different modalities. Inspired by the unified view, UniDiffuser learns all distributions simultaneously with a minimal modification to the original diffusion model -- perturbs data in all modalities instead of a single modality, inputs individual timesteps in different modalities, and predicts the noise of all modalities instead of a single modality. UniDiffuser is parameterized by a transformer for diffusion models to handle input types of different modalities. Implemented on large-scale paired image-text data, UniDiffuser is able to perform image, text, text-to-image, image-to-text, and image-text pair generation by setting proper timesteps without additional overhead. In particular, UniDiffuser is able to produce perceptually realistic samples in all tasks and its quantitative results (e.g., the FID and CLIP score) are not only superior to existing general-purpose models but also comparable to the bespoken models (e.g., Stable Diffusion and DALL-E 2) in representative tasks (e.g., text-to-image generation).
You can find the original codebase at thu-ml/unidiffuser and additional checkpoints at thu-ml.
Usage Examples¶
Because the UniDiffuser model is trained to model the joint distribution of (image, text) pairs, it is capable of performing a diverse range of generation tasks:
Unconditional Image and Text Generation¶
Unconditional generation (where we start from only latents sampled from a standard Gaussian prior) from a [UniDiffuserPipeline
] will produce a (image, text) pair:
import mindspore as ms
from mindone.diffusers import UniDiffuserPipeline
model_id_or_path = "thu-ml/unidiffuser-v0"
pipe = UniDiffuserPipeline.from_pretrained(model_id_or_path, mindspore_dtype=ms.float16, revision="refs/pr/6")
# Unconditional image and text generation. The generation task is automatically inferred.
sample = pipe(num_inference_steps=20, guidance_scale=8.0)
image = sample.images[0]
text = sample.text[0]
image.save("unidiffuser_joint_sample_image.png")
print(text)
This is also called "joint" generation in the UniDiffuser paper, since we are sampling from the joint image-text distribution.
Note that the generation task is inferred from the inputs used when calling the pipeline.
It is also possible to manually specify the unconditional generation task ("mode") manually with [UniDiffuserPipeline.set_joint_mode
]:
# Equivalent to the above.
pipe.set_joint_mode()
sample = pipe(num_inference_steps=20, guidance_scale=8.0)
When the mode is set manually, subsequent calls to the pipeline will use the set mode without attempting to infer the mode.
You can reset the mode with [UniDiffuserPipeline.reset_mode
], after which the pipeline will once again infer the mode.
You can also generate only an image or only text (which the UniDiffuser paper calls "marginal" generation since we sample from the marginal distribution of images and text, respectively):
# Unlike other generation tasks, image-only and text-only generation don't use classifier-free guidance
# Image-only generation
pipe.set_image_mode()
sample_image = pipe(num_inference_steps=20).images[0]
# Text-only generation
pipe.set_text_mode()
sample_text = pipe(num_inference_steps=20).text[0]
Text-to-Image Generation¶
UniDiffuser is also capable of sampling from conditional distributions; that is, the distribution of images conditioned on a text prompt or the distribution of texts conditioned on an image. Here is an example of sampling from the conditional image distribution (text-to-image generation or text-conditioned image generation):
import mindspore as ms
from mindone.diffusers import UniDiffuserPipeline
model_id_or_path = "thu-ml/unidiffuser-v0"
pipe = UniDiffuserPipeline.from_pretrained(model_id_or_path, mindspore_dtype=ms.float16, revision="refs/pr/6")
# Text-to-image generation
prompt = "an elephant under the sea"
sample = pipe(prompt=prompt, num_inference_steps=20, guidance_scale=8.0)
t2i_image = sample.images[0]
t2i_image
The text2img
mode requires that either an input prompt
or prompt_embeds
be supplied. You can set the text2img
mode manually with [UniDiffuserPipeline.set_text_to_image_mode
].
Image-to-Text Generation¶
Similarly, UniDiffuser can also produce text samples given an image (image-to-text or image-conditioned text generation):
import mindspore as ms
from mindone.diffusers import UniDiffuserPipeline
from mindone.diffusers.utils import load_image
model_id_or_path = "thu-ml/unidiffuser-v0"
pipe = UniDiffuserPipeline.from_pretrained(model_id_or_path, mindspore_dtype=ms.float16, revision="refs/pr/6")
# Image-to-text generation
image_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unidiffuser/unidiffuser_example_image.jpg"
init_image = load_image(image_url).resize((512, 512))
sample = pipe(image=init_image, num_inference_steps=20, guidance_scale=8.0)
i2t_text = sample.text[0]
print(i2t_text)
The img2text
mode requires that an input image
be supplied. You can set the img2text
mode manually with [UniDiffuserPipeline.set_image_to_text_mode
].
Image Variation¶
The UniDiffuser authors suggest performing image variation through a "round-trip" generation method, where given an input image, we first perform an image-to-text generation, and then perform a text-to-image generation on the outputs of the first generation. This produces a new image which is semantically similar to the input image:
import mindspore as ms
from mindone.diffusers import UniDiffuserPipeline
from mindone.diffusers.utils import load_image
model_id_or_path = "thu-ml/unidiffuser-v0"
pipe = UniDiffuserPipeline.from_pretrained(model_id_or_path, mindspore_dtype=ms.float16, revision="refs/pr/6")
# Image variation can be performed with an image-to-text generation followed by a text-to-image generation:
# 1. Image-to-text generation
image_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unidiffuser/unidiffuser_example_image.jpg"
init_image = load_image(image_url).resize((512, 512))
sample = pipe(image=init_image, num_inference_steps=20, guidance_scale=8.0)
i2t_text = sample.text[0]
print(i2t_text)
# 2. Text-to-image generation
sample = pipe(prompt=i2t_text, num_inference_steps=20, guidance_scale=8.0)
final_image = sample.images[0]
final_image.save("unidiffuser_image_variation_sample.png")
Text Variation¶
Similarly, text variation can be performed on an input prompt with a text-to-image generation followed by a image-to-text generation:
import mindspore as ms
from mindone.diffusers import UniDiffuserPipeline
model_id_or_path = "thu-ml/unidiffuser-v0"
pipe = UniDiffuserPipeline.from_pretrained(model_id_or_path, mindspore_dtype=ms.float16, revision="refs/pr/6")
# Text variation can be performed with a text-to-image generation followed by a image-to-text generation:
# 1. Text-to-image generation
prompt = "an elephant under the sea"
sample = pipe(prompt=prompt, num_inference_steps=20, guidance_scale=8.0)
t2i_image = sample.images[0]
t2i_image.save("unidiffuser_text2img_sample_image.png")
# 2. Image-to-text generation
sample = pipe(image=t2i_image, num_inference_steps=20, guidance_scale=8.0)
final_prompt = sample.text[0]
print(final_prompt)
Tip
Make sure to check out the Schedulers guide to learn how to explore the tradeoff between scheduler speed and quality, and see the reuse components across pipelines section to learn how to efficiently load the same components into multiple pipelines.
mindone.diffusers.UniDiffuserPipeline
¶
Bases: DeprecatedPipelineMixin
, DiffusionPipeline
Pipeline for a bimodal image-text model which supports unconditional text and image generation, text-conditioned image generation, image-conditioned text generation, and joint image-text generation.
This model inherits from [DiffusionPipeline
]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
PARAMETER | DESCRIPTION |
---|---|
vae
|
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. This is part of the UniDiffuser image representation along with the CLIP vision encoding.
TYPE:
|
text_encoder
|
Frozen text-encoder (clip-vit-large-patch14).
TYPE:
|
image_encoder
|
A [
TYPE:
|
image_processor
|
[
TYPE:
|
clip_tokenizer
|
A [
TYPE:
|
text_decoder
|
Frozen text decoder. This is a GPT-style model which is used to generate text from the UniDiffuser embedding.
TYPE:
|
text_tokenizer
|
A [
TYPE:
|
unet
|
A U-ViT model with UNNet-style skip connections between transformer layers to denoise the encoded image latents.
TYPE:
|
scheduler
|
A scheduler to be used in combination with
TYPE:
|
Source code in mindone/diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 |
|
mindone.diffusers.UniDiffuserPipeline.__call__(prompt=None, image=None, height=None, width=None, data_type=1, num_inference_steps=50, guidance_scale=8.0, negative_prompt=None, num_images_per_prompt=1, num_prompts_per_image=1, eta=0.0, generator=None, latents=None, prompt_latents=None, vae_latents=None, clip_latents=None, prompt_embeds=None, negative_prompt_embeds=None, output_type='pil', return_dict=True, callback=None, callback_steps=1)
¶
The call function to the pipeline for generation.
PARAMETER | DESCRIPTION |
---|---|
prompt
|
The prompt or prompts to guide image generation. If not defined, you need to pass
TYPE:
|
image
|
TYPE:
|
height
|
The height in pixels of the generated image.
TYPE:
|
width
|
The width in pixels of the generated image.
TYPE:
|
data_type
|
The data type (either 0 or 1). Only used if you are loading a checkpoint which supports a data type embedding; this is added for compatibility with the UniDiffuser-v1 checkpoint.
TYPE:
|
num_inference_steps
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
TYPE:
|
guidance_scale
|
A higher guidance scale value encourages the model to generate images closely linked to the text
TYPE:
|
negative_prompt
|
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
pass
TYPE:
|
num_images_per_prompt
|
The number of images to generate per prompt. Used in
TYPE:
|
num_prompts_per_image
|
The number of prompts to generate per image. Used in
TYPE:
|
eta
|
Corresponds to parameter eta (η) from the DDIM paper. Only
applies to the [
TYPE:
|
generator
|
A
TYPE:
|
latents
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for joint
image-text generation. Can be used to tweak the same generation with different prompts. If not
provided, a latents tensor is generated by sampling using the supplied random
TYPE:
|
prompt_latents
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for text
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random
TYPE:
|
vae_latents
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random
TYPE:
|
clip_latents
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random
TYPE:
|
prompt_embeds
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the
TYPE:
|
negative_prompt_embeds
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided,
TYPE:
|
output_type
|
The output format of the generated image. Choose between
TYPE:
|
return_dict
|
Whether or not to return a [
TYPE:
|
callback
|
A function that calls every
TYPE:
|
callback_steps
|
The frequency at which the
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
[ |
Source code in mindone/diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 |
|
mindone.diffusers.UniDiffuserPipeline.disable_vae_slicing()
¶
Disable sliced VAE decoding. If enable_vae_slicing
was previously enabled, this method will go back to
computing decoding in one step.
Source code in mindone/diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py
224 225 226 227 228 229 |
|
mindone.diffusers.UniDiffuserPipeline.disable_vae_tiling()
¶
Disable tiled VAE decoding. If enable_vae_tiling
was previously enabled, this method will go back to
computing decoding in one step.
Source code in mindone/diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py
241 242 243 244 245 246 |
|
mindone.diffusers.UniDiffuserPipeline.enable_vae_slicing()
¶
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
Source code in mindone/diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py
216 217 218 219 220 221 |
|
mindone.diffusers.UniDiffuserPipeline.enable_vae_tiling()
¶
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images.
Source code in mindone/diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py
232 233 234 235 236 237 238 |
|
mindone.diffusers.UniDiffuserPipeline.encode_prompt(prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, lora_scale=None, clip_skip=None)
¶
Encodes the prompt into text encoder hidden states.
PARAMETER | DESCRIPTION |
---|---|
prompt
|
prompt to be encoded
TYPE:
|
num_images_per_prompt
|
number of images that should be generated per prompt
TYPE:
|
do_classifier_free_guidance
|
whether to use classifier free guidance or not
TYPE:
|
negative_prompt
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
TYPE:
|
prompt_embeds
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not
provided, text embeddings will be generated from
TYPE:
|
negative_prompt_embeds
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt
weighting. If not provided, negative_prompt_embeds will be generated from
TYPE:
|
lora_scale
|
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
TYPE:
|
clip_skip
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings.
TYPE:
|
Source code in mindone/diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 |
|
mindone.diffusers.UniDiffuserPipeline.reset_mode()
¶
Removes a manually set mode; after calling this, the pipeline will infer the mode from inputs.
Source code in mindone/diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py
269 270 271 |
|
mindone.diffusers.UniDiffuserPipeline.set_image_mode()
¶
Manually set the generation mode to unconditional ("marginal") image generation.
Source code in mindone/diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py
253 254 255 |
|
mindone.diffusers.UniDiffuserPipeline.set_image_to_text_mode()
¶
Manually set the generation mode to image-conditioned text generation.
Source code in mindone/diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py
261 262 263 |
|
mindone.diffusers.UniDiffuserPipeline.set_joint_mode()
¶
Manually set the generation mode to unconditional joint image-text generation.
Source code in mindone/diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py
265 266 267 |
|
mindone.diffusers.UniDiffuserPipeline.set_text_mode()
¶
Manually set the generation mode to unconditional ("marginal") text generation.
Source code in mindone/diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py
249 250 251 |
|
mindone.diffusers.UniDiffuserPipeline.set_text_to_image_mode()
¶
Manually set the generation mode to text-conditioned image generation.
Source code in mindone/diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py
257 258 259 |
|
mindone.diffusers.pipelines.ImageTextPipelineOutput
dataclass
¶
Bases: BaseOutput
Output class for joint image-text pipelines.
Source code in mindone/diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
|