Shap-E¶
The Shap-E model was proposed in Shap-E: Generating Conditional 3D Implicit Functions by Alex Nichol and Heewoo Jun from OpenAI.
The abstract from the paper is:
We present Shap-E, a conditional generative model for 3D assets. Unlike recent work on 3D generative models which produce a single output representation, Shap-E directly generates the parameters of implicit functions that can be rendered as both textured meshes and neural radiance fields. We train Shap-E in two stages: first, we train an encoder that deterministically maps 3D assets into the parameters of an implicit function; second, we train a conditional diffusion model on outputs of the encoder. When trained on a large dataset of paired 3D and text data, our resulting models are capable of generating complex and diverse 3D assets in a matter of seconds. When compared to Point-E, an explicit generative model over point clouds, Shap-E converges faster and reaches comparable or better sample quality despite modeling a higher-dimensional, multi-representation output space.
The original codebase can be found at openai/shap-e.
Tip
See the reuse components across pipelines section to learn how to efficiently load the same components into multiple pipelines.
mindone.diffusers.ShapEPipeline
¶
Bases: DiffusionPipeline
Pipeline for generating latent representation of a 3D asset and rendering with the NeRF method.
This model inherits from [DiffusionPipeline
]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
PARAMETER | DESCRIPTION |
---|---|
prior |
The canonical unCLIP prior to approximate the image embedding from the text embedding.
TYPE:
|
text_encoder |
Frozen text-encoder.
TYPE:
|
tokenizer |
A
TYPE:
|
scheduler |
A scheduler to be used in combination with the
TYPE:
|
shap_e_renderer |
Shap-E renderer projects the generated latents into parameters of a MLP to create 3D objects with the NeRF rendering method.
TYPE:
|
Source code in mindone/diffusers/pipelines/shap_e/pipeline_shap_e.py
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
|
mindone.diffusers.ShapEPipeline.__call__(prompt, num_images_per_prompt=1, num_inference_steps=25, generator=None, latents=None, guidance_scale=4.0, frame_size=64, output_type='pil', return_dict=False)
¶
The call function to the pipeline for generation.
PARAMETER | DESCRIPTION |
---|---|
prompt |
The prompt or prompts to guide the image generation.
TYPE:
|
num_images_per_prompt |
The number of images to generate per prompt.
TYPE:
|
num_inference_steps |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
TYPE:
|
generator |
A
TYPE:
|
latents |
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random
TYPE:
|
guidance_scale |
A higher guidance scale value encourages the model to generate images closely linked to the text
TYPE:
|
frame_size |
The width and height of each image frame of the generated 3D output.
TYPE:
|
output_type |
The output format of the generated image. Choose between
TYPE:
|
return_dict |
Whether or not to return a [
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
[ |
Source code in mindone/diffusers/pipelines/shap_e/pipeline_shap_e.py
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
|
mindone.diffusers.ShapEImg2ImgPipeline
¶
Bases: DiffusionPipeline
Pipeline for generating latent representation of a 3D asset and rendering with the NeRF method from an image.
This model inherits from [DiffusionPipeline
]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
PARAMETER | DESCRIPTION |
---|---|
prior |
The canonincal unCLIP prior to approximate the image embedding from the text embedding.
TYPE:
|
image_encoder |
Frozen image-encoder.
TYPE:
|
image_processor |
A
TYPE:
|
scheduler |
A scheduler to be used in combination with the
TYPE:
|
shap_e_renderer |
Shap-E renderer projects the generated latents into parameters of a MLP to create 3D objects with the NeRF rendering method.
TYPE:
|
Source code in mindone/diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
|
mindone.diffusers.ShapEImg2ImgPipeline.__call__(image, num_images_per_prompt=1, num_inference_steps=25, generator=None, latents=None, guidance_scale=4.0, frame_size=64, output_type='pil', return_dict=False)
¶
The call function to the pipeline for generation.
PARAMETER | DESCRIPTION |
---|---|
image |
TYPE:
|
num_images_per_prompt |
The number of images to generate per prompt.
TYPE:
|
num_inference_steps |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
TYPE:
|
generator |
A
TYPE:
|
latents |
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random
TYPE:
|
guidance_scale |
A higher guidance scale value encourages the model to generate images closely linked to the text
TYPE:
|
frame_size |
The width and height of each image frame of the generated 3D output.
TYPE:
|
output_type |
The output format of the generated image. Choose between
TYPE:
|
return_dict |
Whether or not to return a [
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
[ |
Source code in mindone/diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
|
mindone.diffusers.pipelines.shap_e.pipeline_shap_e.ShapEPipelineOutput
dataclass
¶
Bases: BaseOutput
Output class for [ShapEPipeline
] and [ShapEImg2ImgPipeline
].
Source code in mindone/diffusers/pipelines/shap_e/pipeline_shap_e.py
61 62 63 64 65 66 67 68 69 70 71 |
|