Skip to content

SANA-Sprint

LoRA

SANA-Sprint: One-Step Diffusion with Continuous-Time Consistency Distillation from NVIDIA, MIT HAN Lab, and Hugging Face by Junsong Chen, Shuchen Xue, Yuyang Zhao, Jincheng Yu, Sayak Paul, Junyu Chen, Han Cai, Enze Xie, Song Han

The abstract from the paper is:

This paper presents SANA-Sprint, an efficient diffusion model for ultra-fast text-to-image (T2I) generation. SANA-Sprint is built on a pre-trained foundation model and augmented with hybrid distillation, dramatically reducing inference steps from 20 to 1-4. We introduce three key innovations: (1) We propose a training-free approach that transforms a pre-trained flow-matching model for continuous-time consistency distillation (sCM), eliminating costly training from scratch and achieving high training efficiency. Our hybrid distillation strategy combines sCM with latent adversarial distillation (LADD): sCM ensures alignment with the teacher model, while LADD enhances single-step generation fidelity. (2) SANA-Sprint is a unified step-adaptive model that achieves high-quality generation in 1-4 steps, eliminating step-specific training and improving efficiency. (3) We integrate ControlNet with SANA-Sprint for real-time interactive image generation, enabling instant visual feedback for user interaction. SANA-Sprint establishes a new Pareto frontier in speed-quality tradeoffs, achieving state-of-the-art performance with 7.59 FID and 0.74 GenEval in only 1 step — outperforming FLUX-schnell (7.94 FID / 0.71 GenEval) while being 10× faster (0.1s vs 1.1s on H100). It also achieves 0.1s (T2I) and 0.25s (ControlNet) latency for 1024×1024 images on H100, and 0.31s (T2I) on an RTX 4090, showcasing its exceptional efficiency and potential for AI-powered consumer applications (AIPC). Code and pre-trained models will be open-sourced.

Tip

Make sure to check out the Schedulers guide to learn how to explore the tradeoff between scheduler speed and quality, and see the reuse components across pipelines section to learn how to efficiently load the same components into multiple pipelines.

This pipeline was contributed by lawrence-cj, shuchen Xue and Enze Xie. The original codebase can be found here. The original weights can be found under hf.co/Efficient-Large-Model.

Available models:

Model Recommended dtype
Efficient-Large-Model/Sana_Sprint_1.6B_1024px_diffusers mindspore.bfloat16
Efficient-Large-Model/Sana_Sprint_0.6B_1024px_diffusers mindspore.bfloat16

Refer to this collection for more information.

Note: The recommended dtype mentioned is for the transformer weights. The text encoder must stay in mindspore.bfloat16 and VAE weights must stay in mindspore.bfloat16 or mindspore.float32 for the model to work correctly. Please refer to the inference example below to see how to load the model with the recommended dtype.

Setting max_timesteps

Users can tweak the max_timesteps value for experimenting with the visual quality of the generated outputs. The default max_timesteps value was obtained with an inference-time search process. For more details about it, check out the paper.

mindone.diffusers.SanaSprintPipeline

Bases: DiffusionPipeline, SanaLoraLoaderMixin

Pipeline for text-to-image generation using SANA-Sprint.

Source code in mindone/diffusers/pipelines/sana/pipeline_sana_sprint.py
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
class SanaSprintPipeline(DiffusionPipeline, SanaLoraLoaderMixin):
    r"""
    Pipeline for text-to-image generation using [SANA-Sprint](https://huggingface.co/papers/2503.09641).
    """

    # fmt: off
    bad_punct_regex = re.compile(r"[" + "#®•©™&@·º½¾¿¡§~" + r"\)" + r"\(" + r"\]" + r"\[" + r"\}" + r"\{" + r"\|" + "\\" + r"\/" + r"\*" + r"]{1,}")
    # fmt: on

    model_cpu_offload_seq = "text_encoder->transformer->vae"
    _callback_tensor_inputs = ["latents", "prompt_embeds"]

    def __init__(
        self,
        tokenizer: Union[GemmaTokenizer, GemmaTokenizerFast],
        text_encoder: Gemma2PreTrainedModel,
        vae: AutoencoderDC,
        transformer: SanaTransformer2DModel,
        scheduler: DPMSolverMultistepScheduler,
    ):
        super().__init__()

        self.register_modules(
            tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
        )

        self.vae_scale_factor = (
            2 ** (len(self.vae.config.encoder_block_out_channels) - 1)
            if hasattr(self, "vae") and self.vae is not None
            else 32
        )
        self.image_processor = PixArtImageProcessor(vae_scale_factor=self.vae_scale_factor)

    def enable_vae_slicing(self):
        r"""
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
        """
        self.vae.enable_slicing()

    def disable_vae_slicing(self):
        r"""
        Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
        computing decoding in one step.
        """
        self.vae.disable_slicing()

    def enable_vae_tiling(self):
        r"""
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
        processing larger images.
        """
        self.vae.enable_tiling()

    def disable_vae_tiling(self):
        r"""
        Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
        computing decoding in one step.
        """
        self.vae.disable_tiling()

    # Copied from diffusers.pipelines.sana.pipeline_sana.SanaPipeline._get_gemma_prompt_embeds
    def _get_gemma_prompt_embeds(
        self,
        prompt: Union[str, List[str]],
        dtype: ms.Type,
        clean_caption: bool = False,
        max_sequence_length: int = 300,
        complex_human_instruction: Optional[List[str]] = None,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            clean_caption (`bool`, defaults to `False`):
                If `True`, the function will preprocess and clean the provided caption before encoding.
            max_sequence_length (`int`, defaults to 300): Maximum sequence length to use for the prompt.
            complex_human_instruction (`list[str]`, defaults to `complex_human_instruction`):
                If `complex_human_instruction` is not empty, the function will use the complex Human instruction for
                the prompt.
        """
        prompt = [prompt] if isinstance(prompt, str) else prompt

        if getattr(self, "tokenizer", None) is not None:
            self.tokenizer.padding_side = "right"

        prompt = self._text_preprocessing(prompt, clean_caption=clean_caption)

        # prepare complex human instruction
        if not complex_human_instruction:
            max_length_all = max_sequence_length
        else:
            chi_prompt = "\n".join(complex_human_instruction)
            prompt = [chi_prompt + p for p in prompt]
            num_chi_prompt_tokens = len(self.tokenizer.encode(chi_prompt))
            max_length_all = num_chi_prompt_tokens + max_sequence_length - 2

        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=max_length_all,
            truncation=True,
            add_special_tokens=True,
            return_tensors="np",
        )
        text_input_ids = ms.tensor(text_inputs.input_ids)

        prompt_attention_mask = ms.tensor(text_inputs.attention_mask)

        prompt_embeds = self.text_encoder(text_input_ids, attention_mask=prompt_attention_mask)
        prompt_embeds = prompt_embeds[0].to(dtype=dtype)

        return prompt_embeds, prompt_attention_mask

    def encode_prompt(
        self,
        prompt: Union[str, List[str]],
        num_images_per_prompt: int = 1,
        prompt_embeds: Optional[ms.Tensor] = None,
        prompt_attention_mask: Optional[ms.Tensor] = None,
        clean_caption: bool = False,
        max_sequence_length: int = 300,
        complex_human_instruction: Optional[List[str]] = None,
        lora_scale: Optional[float] = None,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded

            num_images_per_prompt (`int`, *optional*, defaults to 1):
                number of images that should be generated per prompt
            prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            clean_caption (`bool`, defaults to `False`):
                If `True`, the function will preprocess and clean the provided caption before encoding.
            max_sequence_length (`int`, defaults to 300): Maximum sequence length to use for the prompt.
            complex_human_instruction (`list[str]`, defaults to `complex_human_instruction`):
                If `complex_human_instruction` is not empty, the function will use the complex Human instruction for
                the prompt.
        """

        if self.transformer is not None:
            dtype = self.transformer.dtype
        elif self.text_encoder is not None:
            dtype = self.text_encoder.dtype
        else:
            dtype = None

        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
        if lora_scale is not None and isinstance(self, SanaLoraLoaderMixin):
            self._lora_scale = lora_scale

            # dynamically adjust the LoRA scale
            if self.text_encoder is not None:
                scale_lora_layers(self.text_encoder, lora_scale)

        if getattr(self, "tokenizer", None) is not None:
            self.tokenizer.padding_side = "right"

        # See Section 3.1. of the paper.
        max_length = max_sequence_length
        select_index = [0] + list(range(-max_length + 1, 0))

        if prompt_embeds is None:
            prompt_embeds, prompt_attention_mask = self._get_gemma_prompt_embeds(
                prompt=prompt,
                dtype=dtype,
                clean_caption=clean_caption,
                max_sequence_length=max_sequence_length,
                complex_human_instruction=complex_human_instruction,
            )

            prompt_embeds = prompt_embeds[:, select_index]
            prompt_attention_mask = prompt_attention_mask[:, select_index]

        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.tile((1, num_images_per_prompt, 1))
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
        prompt_attention_mask = prompt_attention_mask.view(bs_embed, -1)
        prompt_attention_mask = prompt_attention_mask.tile((num_images_per_prompt, 1))

        if self.text_encoder is not None:
            if isinstance(self, SanaLoraLoaderMixin):
                # Retrieve the original scale by scaling back the LoRA layers
                unscale_lora_layers(self.text_encoder, lora_scale)

        return prompt_embeds, prompt_attention_mask

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def check_inputs(
        self,
        prompt,
        height,
        width,
        num_inference_steps,
        timesteps,
        max_timesteps,
        intermediate_timesteps,
        callback_on_step_end_tensor_inputs=None,
        prompt_embeds=None,
        prompt_attention_mask=None,
    ):
        if height % 32 != 0 or width % 32 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 32 but are {height} and {width}.")

        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"  # noqa
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if prompt_embeds is not None and prompt_attention_mask is None:
            raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")

        if timesteps is not None and len(timesteps) != num_inference_steps + 1:
            raise ValueError("If providing custom timesteps, `timesteps` must be of length `num_inference_steps + 1`.")

        if timesteps is not None and max_timesteps is not None:
            raise ValueError("If providing custom timesteps, `max_timesteps` should not be provided.")

        if timesteps is None and max_timesteps is None:
            raise ValueError("Should provide either `timesteps` or `max_timesteps`.")

        if intermediate_timesteps is not None and num_inference_steps != 2:
            raise ValueError("Intermediate timesteps for SCM is not supported when num_inference_steps != 2.")

    # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
    def _text_preprocessing(self, text, clean_caption=False):
        if clean_caption and not is_bs4_available():
            logger.warning(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`"))
            logger.warning("Setting `clean_caption` to False...")
            clean_caption = False

        if clean_caption and not is_ftfy_available():
            logger.warning(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`"))
            logger.warning("Setting `clean_caption` to False...")
            clean_caption = False

        if not isinstance(text, (tuple, list)):
            text = [text]

        def process(text: str):
            if clean_caption:
                text = self._clean_caption(text)
                text = self._clean_caption(text)
            else:
                text = text.lower().strip()
            return text

        return [process(t) for t in text]

    # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption
    def _clean_caption(self, caption):
        caption = str(caption)
        caption = ul.unquote_plus(caption)
        caption = caption.strip().lower()
        caption = re.sub("<person>", "person", caption)
        # urls:
        caption = re.sub(
            r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))",  # noqa
            "",
            caption,
        )  # regex for urls
        caption = re.sub(
            r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))",  # noqa
            "",
            caption,
        )  # regex for urls
        # html:
        caption = BeautifulSoup(caption, features="html.parser").text

        # @<nickname>
        caption = re.sub(r"@[\w\d]+\b", "", caption)

        # 31C0—31EF CJK Strokes
        # 31F0—31FF Katakana Phonetic Extensions
        # 3200—32FF Enclosed CJK Letters and Months
        # 3300—33FF CJK Compatibility
        # 3400—4DBF CJK Unified Ideographs Extension A
        # 4DC0—4DFF Yijing Hexagram Symbols
        # 4E00—9FFF CJK Unified Ideographs
        caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
        caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
        caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
        caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
        caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
        caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
        caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
        #######################################################

        # все виды тире / all types of dash --> "-"
        caption = re.sub(
            r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+",  # noqa
            "-",
            caption,
        )

        # кавычки к одному стандарту
        caption = re.sub(r"[`´«»“”¨]", '"', caption)
        caption = re.sub(r"[‘’]", "'", caption)

        # &quot;
        caption = re.sub(r"&quot;?", "", caption)
        # &amp
        caption = re.sub(r"&amp", "", caption)

        # ip adresses:
        caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)

        # article ids:
        caption = re.sub(r"\d:\d\d\s+$", "", caption)

        # \n
        caption = re.sub(r"\\n", " ", caption)

        # "#123"
        caption = re.sub(r"#\d{1,3}\b", "", caption)
        # "#12345.."
        caption = re.sub(r"#\d{5,}\b", "", caption)
        # "123456.."
        caption = re.sub(r"\b\d{6,}\b", "", caption)
        # filenames:
        caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)

        #
        caption = re.sub(r"[\"\']{2,}", r'"', caption)  # """AUSVERKAUFT"""
        caption = re.sub(r"[\.]{2,}", r" ", caption)  # """AUSVERKAUFT"""

        caption = re.sub(self.bad_punct_regex, r" ", caption)  # ***AUSVERKAUFT***, #AUSVERKAUFT
        caption = re.sub(r"\s+\.\s+", r" ", caption)  # " . "

        # this-is-my-cute-cat / this_is_my_cute_cat
        regex2 = re.compile(r"(?:\-|\_)")
        if len(re.findall(regex2, caption)) > 3:
            caption = re.sub(regex2, " ", caption)

        caption = ftfy.fix_text(caption)
        caption = html.unescape(html.unescape(caption))

        caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption)  # jc6640
        caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption)  # jc6640vc
        caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption)  # 6640vc231

        caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
        caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
        caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
        caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
        caption = re.sub(r"\bpage\s+\d+\b", "", caption)

        caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption)  # j2d1a2a...

        caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)

        caption = re.sub(r"\b\s+\:\s+", r": ", caption)
        caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
        caption = re.sub(r"\s+", " ", caption)

        caption.strip()

        caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
        caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
        caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
        caption = re.sub(r"^\.\S+$", "", caption)

        return caption.strip()

    # Copied from diffusers.pipelines.sana.pipeline_sana.SanaPipeline.prepare_latents
    def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, generator, latents=None):
        if latents is not None:
            return latents.to(dtype=dtype)

        shape = (
            batch_size,
            num_channels_latents,
            int(height) // self.vae_scale_factor,
            int(width) // self.vae_scale_factor,
        )
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        latents = randn_tensor(shape, generator=generator, dtype=dtype)
        return latents

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def attention_kwargs(self):
        return self._attention_kwargs

    @property
    def num_timesteps(self):
        return self._num_timesteps

    @property
    def interrupt(self):
        return self._interrupt

    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        num_inference_steps: int = 2,
        timesteps: List[int] = None,
        max_timesteps: float = 1.57080,
        intermediate_timesteps: float = 1.3,
        guidance_scale: float = 4.5,
        num_images_per_prompt: Optional[int] = 1,
        height: int = 1024,
        width: int = 1024,
        eta: float = 0.0,
        generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
        latents: Optional[ms.Tensor] = None,
        prompt_embeds: Optional[ms.Tensor] = None,
        prompt_attention_mask: Optional[ms.Tensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = False,
        clean_caption: bool = False,
        use_resolution_binning: bool = True,
        attention_kwargs: Optional[Dict[str, Any]] = None,
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        max_sequence_length: int = 300,
        complex_human_instruction: List[str] = [
            "Given a user prompt, generate an 'Enhanced prompt' that provides detailed visual descriptions suitable for image generation. Evaluate the level of detail in the user prompt:",  # noqa
            "- If the prompt is simple, focus on adding specifics about colors, shapes, sizes, textures, and spatial relationships to create vivid and concrete scenes.",  # noqa
            "- If the prompt is already detailed, refine and enhance the existing details slightly without overcomplicating.",
            "Here are examples of how to transform or refine prompts:",
            "- User Prompt: A cat sleeping -> Enhanced: A small, fluffy white cat curled up in a round shape, sleeping peacefully on a warm sunny windowsill, surrounded by pots of blooming red flowers.",  # noqa
            "- User Prompt: A busy city street -> Enhanced: A bustling city street scene at dusk, featuring glowing street lamps, a diverse crowd of people in colorful clothing, and a double-decker bus passing by towering glass skyscrapers.",  # noqa
            "Please generate only the enhanced description for the prompt below and avoid including any additional commentary or evaluations:",
            "User Prompt: ",
        ],
    ) -> Union[SanaPipelineOutput, Tuple]:
        """
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
                instead.
            num_inference_steps (`int`, *optional*, defaults to 20):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            max_timesteps (`float`, *optional*, defaults to 1.57080):
                The maximum timestep value used in the SCM scheduler.
            intermediate_timesteps (`float`, *optional*, defaults to 1.3):
                The intermediate timestep value used in SCM scheduler (only used when num_inference_steps=2).
            timesteps (`List[int]`, *optional*):
                Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
                in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
                passed will be used. Must be in descending order.
            guidance_scale (`float`, *optional*, defaults to 4.5):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            height (`int`, *optional*, defaults to self.unet.config.sample_size):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to self.unet.config.sample_size):
                The width in pixels of the generated image.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [`schedulers.DDIMScheduler`], will be ignored for others.
            generator (`np.random.Generator` or `List[np.random.Generator]`, *optional*):
                One or a list of [np.random.Generator(s)](https://numpy.org/doc/stable/reference/random/generator.html)
                to make generation deterministic.
            latents (`ms.Tensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            prompt_attention_mask (`ms.Tensor`, *optional*): Pre-generated attention mask for text embeddings.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
            attention_kwargs:
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            clean_caption (`bool`, *optional*, defaults to `True`):
                Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
                be installed. If the dependencies are not installed, the embeddings will be created from the raw
                prompt.
            use_resolution_binning (`bool` defaults to `True`):
                If set to `True`, the requested height and width are first mapped to the closest resolutions using
                `ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to
                the requested resolution. Useful for generating non-square images.
            callback_on_step_end (`Callable`, *optional*):
                A function that calls at the end of each denoising steps during the inference. The function is called
                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
                `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
                `._callback_tensor_inputs` attribute of your pipeline class.
            max_sequence_length (`int` defaults to `300`):
                Maximum sequence length to use with the `prompt`.
            complex_human_instruction (`List[str]`, *optional*):
                Instructions for complex human attention:
                https://github.com/NVlabs/Sana/blob/main/configs/sana_app_config/Sana_1600M_app.yaml#L55.

        Examples:

        Returns:
            [`~pipelines.sana.pipeline_output.SanaPipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.sana.pipeline_output.SanaPipelineOutput`] is returned,
                otherwise a `tuple` is returned where the first element is a list with the generated images
        """

        if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
            callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs

        # 1. Check inputs. Raise error if not correct
        if use_resolution_binning:
            if self.transformer.config.sample_size == 32:
                aspect_ratio_bin = ASPECT_RATIO_1024_BIN
            else:
                raise ValueError("Invalid sample size")
            orig_height, orig_width = height, width
            height, width = self.image_processor.classify_height_width_bin(height, width, ratios=aspect_ratio_bin)

        self.check_inputs(
            prompt=prompt,
            height=height,
            width=width,
            num_inference_steps=num_inference_steps,
            timesteps=timesteps,
            max_timesteps=max_timesteps,
            intermediate_timesteps=intermediate_timesteps,
            callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
            prompt_embeds=prompt_embeds,
            prompt_attention_mask=prompt_attention_mask,
        )

        self._guidance_scale = guidance_scale
        self._attention_kwargs = attention_kwargs
        self._interrupt = False

        # 2. Default height and width to transformer
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        lora_scale = self.attention_kwargs.get("scale", None) if self.attention_kwargs is not None else None

        # 3. Encode input prompt
        (
            prompt_embeds,
            prompt_attention_mask,
        ) = self.encode_prompt(
            prompt,
            num_images_per_prompt=num_images_per_prompt,
            prompt_embeds=prompt_embeds,
            prompt_attention_mask=prompt_attention_mask,
            clean_caption=clean_caption,
            max_sequence_length=max_sequence_length,
            complex_human_instruction=complex_human_instruction,
            lora_scale=lora_scale,
        )

        # 4. Prepare timesteps
        timesteps, num_inference_steps = retrieve_timesteps(
            self.scheduler,
            num_inference_steps,
            timesteps,
            sigmas=None,
            max_timesteps=max_timesteps,
            intermediate_timesteps=intermediate_timesteps,
        )
        if hasattr(self.scheduler, "set_begin_index"):
            self.scheduler.set_begin_index(0)

        # 5. Prepare latents.
        latent_channels = self.transformer.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            latent_channels,
            height,
            width,
            ms.float32,
            generator,
            latents,
        )

        latents = latents * self.scheduler.config.sigma_data

        guidance = mint.full([1], guidance_scale, dtype=ms.float32)
        guidance = guidance.expand((latents.shape[0],)).to(prompt_embeds.dtype)
        guidance = guidance * self.transformer.config.guidance_embeds_scale

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 7. Denoising loop
        timesteps = timesteps[:-1]
        num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
        self._num_timesteps = len(timesteps)

        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                if self.interrupt:
                    continue

                # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
                timestep = t.expand((latents.shape[0],)).to(prompt_embeds.dtype)
                latents_model_input = latents / self.scheduler.config.sigma_data

                scm_timestep = mint.sin(timestep) / (mint.cos(timestep) + mint.sin(timestep))

                scm_timestep_expanded = scm_timestep.view(-1, 1, 1, 1)
                latent_model_input = latents_model_input * mint.sqrt(
                    scm_timestep_expanded**2 + (1 - scm_timestep_expanded) ** 2
                )
                latent_model_input = latent_model_input.to(prompt_embeds.dtype)

                # predict noise model_output
                noise_pred = self.transformer(
                    latent_model_input,
                    encoder_hidden_states=prompt_embeds,
                    encoder_attention_mask=prompt_attention_mask,
                    guidance=guidance,
                    timestep=scm_timestep,
                    return_dict=False,
                    attention_kwargs=self.attention_kwargs,
                )[0]

                noise_pred = (
                    (1 - 2 * scm_timestep_expanded) * latent_model_input
                    + (1 - 2 * scm_timestep_expanded + 2 * scm_timestep_expanded**2) * noise_pred
                ) / mint.sqrt(scm_timestep_expanded**2 + (1 - scm_timestep_expanded) ** 2)
                noise_pred = noise_pred.float() * self.scheduler.config.sigma_data

                # compute previous image: x_t -> x_t-1
                latents, denoised = self.scheduler.step(
                    noise_pred, timestep, latents, **extra_step_kwargs, return_dict=False
                )

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()

        latents = denoised / self.scheduler.config.sigma_data
        if output_type == "latent":
            image = latents
        else:
            latents = latents.to(self.vae.dtype)
            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
            if use_resolution_binning:
                image = self.image_processor.resize_and_crop_tensor(image, orig_width, orig_height)

        if not output_type == "latent":
            image = self.image_processor.postprocess(image, output_type=output_type)

        if not return_dict:
            return (image,)

        return SanaPipelineOutput(images=image)

mindone.diffusers.SanaSprintPipeline.__call__(prompt=None, num_inference_steps=2, timesteps=None, max_timesteps=1.5708, intermediate_timesteps=1.3, guidance_scale=4.5, num_images_per_prompt=1, height=1024, width=1024, eta=0.0, generator=None, latents=None, prompt_embeds=None, prompt_attention_mask=None, output_type='pil', return_dict=False, clean_caption=False, use_resolution_binning=True, attention_kwargs=None, callback_on_step_end=None, callback_on_step_end_tensor_inputs=['latents'], max_sequence_length=300, complex_human_instruction=["Given a user prompt, generate an 'Enhanced prompt' that provides detailed visual descriptions suitable for image generation. Evaluate the level of detail in the user prompt:", '- If the prompt is simple, focus on adding specifics about colors, shapes, sizes, textures, and spatial relationships to create vivid and concrete scenes.', '- If the prompt is already detailed, refine and enhance the existing details slightly without overcomplicating.', 'Here are examples of how to transform or refine prompts:', '- User Prompt: A cat sleeping -> Enhanced: A small, fluffy white cat curled up in a round shape, sleeping peacefully on a warm sunny windowsill, surrounded by pots of blooming red flowers.', '- User Prompt: A busy city street -> Enhanced: A bustling city street scene at dusk, featuring glowing street lamps, a diverse crowd of people in colorful clothing, and a double-decker bus passing by towering glass skyscrapers.', 'Please generate only the enhanced description for the prompt below and avoid including any additional commentary or evaluations:', 'User Prompt: '])

Function invoked when calling the pipeline for generation.

PARAMETER DESCRIPTION
prompt

The prompt or prompts to guide the image generation. If not defined, one has to pass prompt_embeds. instead.

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

num_inference_steps

The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.

TYPE: `int`, *optional*, defaults to 20 DEFAULT: 2

max_timesteps

The maximum timestep value used in the SCM scheduler.

TYPE: `float`, *optional*, defaults to 1.57080 DEFAULT: 1.5708

intermediate_timesteps

The intermediate timestep value used in SCM scheduler (only used when num_inference_steps=2).

TYPE: `float`, *optional*, defaults to 1.3 DEFAULT: 1.3

timesteps

Custom timesteps to use for the denoising process with schedulers which support a timesteps argument in their set_timesteps method. If not defined, the default behavior when num_inference_steps is passed will be used. Must be in descending order.

TYPE: `List[int]`, *optional* DEFAULT: None

guidance_scale

Guidance scale as defined in Classifier-Free Diffusion Guidance. guidance_scale is defined as w of equation 2. of Imagen Paper. Guidance scale is enabled by setting guidance_scale > 1. Higher guidance scale encourages to generate images that are closely linked to the text prompt, usually at the expense of lower image quality.

TYPE: `float`, *optional*, defaults to 4.5 DEFAULT: 4.5

num_images_per_prompt

The number of images to generate per prompt.

TYPE: `int`, *optional*, defaults to 1 DEFAULT: 1

height

The height in pixels of the generated image.

TYPE: `int`, *optional*, defaults to self.unet.config.sample_size DEFAULT: 1024

width

The width in pixels of the generated image.

TYPE: `int`, *optional*, defaults to self.unet.config.sample_size DEFAULT: 1024

eta

Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [schedulers.DDIMScheduler], will be ignored for others.

TYPE: `float`, *optional*, defaults to 0.0 DEFAULT: 0.0

generator

One or a list of np.random.Generator(s) to make generation deterministic.

TYPE: `np.random.Generator` or `List[np.random.Generator]`, *optional* DEFAULT: None

latents

Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random generator.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

prompt_embeds

Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

prompt_attention_mask

Pre-generated attention mask for text embeddings.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

output_type

The output format of the generate image. Choose between PIL: PIL.Image.Image or np.array.

TYPE: `str`, *optional*, defaults to `"pil"` DEFAULT: 'pil'

return_dict

Whether or not to return a [~pipelines.stable_diffusion.IFPipelineOutput] instead of a plain tuple.

TYPE: `bool`, *optional*, defaults to `False` DEFAULT: False

attention_kwargs

A kwargs dictionary that if specified is passed along to the AttentionProcessor as defined under self.processor in diffusers.models.attention_processor.

TYPE: Optional[Dict[str, Any]] DEFAULT: None

clean_caption

Whether or not to clean the caption before creating embeddings. Requires beautifulsoup4 and ftfy to be installed. If the dependencies are not installed, the embeddings will be created from the raw prompt.

TYPE: `bool`, *optional*, defaults to `True` DEFAULT: False

use_resolution_binning

If set to True, the requested height and width are first mapped to the closest resolutions using ASPECT_RATIO_1024_BIN. After the produced latents are decoded into images, they are resized back to the requested resolution. Useful for generating non-square images.

TYPE: `bool` defaults to `True` DEFAULT: True

callback_on_step_end

A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict). callback_kwargs will include a list of all tensors as specified by callback_on_step_end_tensor_inputs.

TYPE: `Callable`, *optional* DEFAULT: None

callback_on_step_end_tensor_inputs

The list of tensor inputs for the callback_on_step_end function. The tensors specified in the list will be passed as callback_kwargs argument. You will only be able to include variables listed in the ._callback_tensor_inputs attribute of your pipeline class.

TYPE: `List`, *optional* DEFAULT: ['latents']

max_sequence_length

Maximum sequence length to use with the prompt.

TYPE: `int` defaults to `300` DEFAULT: 300

complex_human_instruction

Instructions for complex human attention: https://github.com/NVlabs/Sana/blob/main/configs/sana_app_config/Sana_1600M_app.yaml#L55.

TYPE: `List[str]`, *optional* DEFAULT: ["Given a user prompt, generate an 'Enhanced prompt' that provides detailed visual descriptions suitable for image generation. Evaluate the level of detail in the user prompt:", '- If the prompt is simple, focus on adding specifics about colors, shapes, sizes, textures, and spatial relationships to create vivid and concrete scenes.', '- If the prompt is already detailed, refine and enhance the existing details slightly without overcomplicating.', 'Here are examples of how to transform or refine prompts:', '- User Prompt: A cat sleeping -> Enhanced: A small, fluffy white cat curled up in a round shape, sleeping peacefully on a warm sunny windowsill, surrounded by pots of blooming red flowers.', '- User Prompt: A busy city street -> Enhanced: A bustling city street scene at dusk, featuring glowing street lamps, a diverse crowd of people in colorful clothing, and a double-decker bus passing by towering glass skyscrapers.', 'Please generate only the enhanced description for the prompt below and avoid including any additional commentary or evaluations:', 'User Prompt: ']

RETURNS DESCRIPTION
Union[SanaPipelineOutput, Tuple]

[~pipelines.sana.pipeline_output.SanaPipelineOutput] or tuple: If return_dict is True, [~pipelines.sana.pipeline_output.SanaPipelineOutput] is returned, otherwise a tuple is returned where the first element is a list with the generated images

Source code in mindone/diffusers/pipelines/sana/pipeline_sana_sprint.py
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
def __call__(
    self,
    prompt: Union[str, List[str]] = None,
    num_inference_steps: int = 2,
    timesteps: List[int] = None,
    max_timesteps: float = 1.57080,
    intermediate_timesteps: float = 1.3,
    guidance_scale: float = 4.5,
    num_images_per_prompt: Optional[int] = 1,
    height: int = 1024,
    width: int = 1024,
    eta: float = 0.0,
    generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
    latents: Optional[ms.Tensor] = None,
    prompt_embeds: Optional[ms.Tensor] = None,
    prompt_attention_mask: Optional[ms.Tensor] = None,
    output_type: Optional[str] = "pil",
    return_dict: bool = False,
    clean_caption: bool = False,
    use_resolution_binning: bool = True,
    attention_kwargs: Optional[Dict[str, Any]] = None,
    callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
    callback_on_step_end_tensor_inputs: List[str] = ["latents"],
    max_sequence_length: int = 300,
    complex_human_instruction: List[str] = [
        "Given a user prompt, generate an 'Enhanced prompt' that provides detailed visual descriptions suitable for image generation. Evaluate the level of detail in the user prompt:",  # noqa
        "- If the prompt is simple, focus on adding specifics about colors, shapes, sizes, textures, and spatial relationships to create vivid and concrete scenes.",  # noqa
        "- If the prompt is already detailed, refine and enhance the existing details slightly without overcomplicating.",
        "Here are examples of how to transform or refine prompts:",
        "- User Prompt: A cat sleeping -> Enhanced: A small, fluffy white cat curled up in a round shape, sleeping peacefully on a warm sunny windowsill, surrounded by pots of blooming red flowers.",  # noqa
        "- User Prompt: A busy city street -> Enhanced: A bustling city street scene at dusk, featuring glowing street lamps, a diverse crowd of people in colorful clothing, and a double-decker bus passing by towering glass skyscrapers.",  # noqa
        "Please generate only the enhanced description for the prompt below and avoid including any additional commentary or evaluations:",
        "User Prompt: ",
    ],
) -> Union[SanaPipelineOutput, Tuple]:
    """
    Function invoked when calling the pipeline for generation.

    Args:
        prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
            instead.
        num_inference_steps (`int`, *optional*, defaults to 20):
            The number of denoising steps. More denoising steps usually lead to a higher quality image at the
            expense of slower inference.
        max_timesteps (`float`, *optional*, defaults to 1.57080):
            The maximum timestep value used in the SCM scheduler.
        intermediate_timesteps (`float`, *optional*, defaults to 1.3):
            The intermediate timestep value used in SCM scheduler (only used when num_inference_steps=2).
        timesteps (`List[int]`, *optional*):
            Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
            in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
            passed will be used. Must be in descending order.
        guidance_scale (`float`, *optional*, defaults to 4.5):
            Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
            `guidance_scale` is defined as `w` of equation 2. of [Imagen
            Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
            1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
            usually at the expense of lower image quality.
        num_images_per_prompt (`int`, *optional*, defaults to 1):
            The number of images to generate per prompt.
        height (`int`, *optional*, defaults to self.unet.config.sample_size):
            The height in pixels of the generated image.
        width (`int`, *optional*, defaults to self.unet.config.sample_size):
            The width in pixels of the generated image.
        eta (`float`, *optional*, defaults to 0.0):
            Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
            [`schedulers.DDIMScheduler`], will be ignored for others.
        generator (`np.random.Generator` or `List[np.random.Generator]`, *optional*):
            One or a list of [np.random.Generator(s)](https://numpy.org/doc/stable/reference/random/generator.html)
            to make generation deterministic.
        latents (`ms.Tensor`, *optional*):
            Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
            generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
            tensor will ge generated by sampling using the supplied random `generator`.
        prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
            provided, text embeddings will be generated from `prompt` input argument.
        prompt_attention_mask (`ms.Tensor`, *optional*): Pre-generated attention mask for text embeddings.
        output_type (`str`, *optional*, defaults to `"pil"`):
            The output format of the generate image. Choose between
            [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
        return_dict (`bool`, *optional*, defaults to `False`):
            Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
        attention_kwargs:
            A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
            `self.processor` in
            [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
        clean_caption (`bool`, *optional*, defaults to `True`):
            Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
            be installed. If the dependencies are not installed, the embeddings will be created from the raw
            prompt.
        use_resolution_binning (`bool` defaults to `True`):
            If set to `True`, the requested height and width are first mapped to the closest resolutions using
            `ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to
            the requested resolution. Useful for generating non-square images.
        callback_on_step_end (`Callable`, *optional*):
            A function that calls at the end of each denoising steps during the inference. The function is called
            with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
            callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
            `callback_on_step_end_tensor_inputs`.
        callback_on_step_end_tensor_inputs (`List`, *optional*):
            The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
            will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
            `._callback_tensor_inputs` attribute of your pipeline class.
        max_sequence_length (`int` defaults to `300`):
            Maximum sequence length to use with the `prompt`.
        complex_human_instruction (`List[str]`, *optional*):
            Instructions for complex human attention:
            https://github.com/NVlabs/Sana/blob/main/configs/sana_app_config/Sana_1600M_app.yaml#L55.

    Examples:

    Returns:
        [`~pipelines.sana.pipeline_output.SanaPipelineOutput`] or `tuple`:
            If `return_dict` is `True`, [`~pipelines.sana.pipeline_output.SanaPipelineOutput`] is returned,
            otherwise a `tuple` is returned where the first element is a list with the generated images
    """

    if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
        callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs

    # 1. Check inputs. Raise error if not correct
    if use_resolution_binning:
        if self.transformer.config.sample_size == 32:
            aspect_ratio_bin = ASPECT_RATIO_1024_BIN
        else:
            raise ValueError("Invalid sample size")
        orig_height, orig_width = height, width
        height, width = self.image_processor.classify_height_width_bin(height, width, ratios=aspect_ratio_bin)

    self.check_inputs(
        prompt=prompt,
        height=height,
        width=width,
        num_inference_steps=num_inference_steps,
        timesteps=timesteps,
        max_timesteps=max_timesteps,
        intermediate_timesteps=intermediate_timesteps,
        callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
        prompt_embeds=prompt_embeds,
        prompt_attention_mask=prompt_attention_mask,
    )

    self._guidance_scale = guidance_scale
    self._attention_kwargs = attention_kwargs
    self._interrupt = False

    # 2. Default height and width to transformer
    if prompt is not None and isinstance(prompt, str):
        batch_size = 1
    elif prompt is not None and isinstance(prompt, list):
        batch_size = len(prompt)
    else:
        batch_size = prompt_embeds.shape[0]

    lora_scale = self.attention_kwargs.get("scale", None) if self.attention_kwargs is not None else None

    # 3. Encode input prompt
    (
        prompt_embeds,
        prompt_attention_mask,
    ) = self.encode_prompt(
        prompt,
        num_images_per_prompt=num_images_per_prompt,
        prompt_embeds=prompt_embeds,
        prompt_attention_mask=prompt_attention_mask,
        clean_caption=clean_caption,
        max_sequence_length=max_sequence_length,
        complex_human_instruction=complex_human_instruction,
        lora_scale=lora_scale,
    )

    # 4. Prepare timesteps
    timesteps, num_inference_steps = retrieve_timesteps(
        self.scheduler,
        num_inference_steps,
        timesteps,
        sigmas=None,
        max_timesteps=max_timesteps,
        intermediate_timesteps=intermediate_timesteps,
    )
    if hasattr(self.scheduler, "set_begin_index"):
        self.scheduler.set_begin_index(0)

    # 5. Prepare latents.
    latent_channels = self.transformer.config.in_channels
    latents = self.prepare_latents(
        batch_size * num_images_per_prompt,
        latent_channels,
        height,
        width,
        ms.float32,
        generator,
        latents,
    )

    latents = latents * self.scheduler.config.sigma_data

    guidance = mint.full([1], guidance_scale, dtype=ms.float32)
    guidance = guidance.expand((latents.shape[0],)).to(prompt_embeds.dtype)
    guidance = guidance * self.transformer.config.guidance_embeds_scale

    # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
    extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

    # 7. Denoising loop
    timesteps = timesteps[:-1]
    num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
    self._num_timesteps = len(timesteps)

    with self.progress_bar(total=num_inference_steps) as progress_bar:
        for i, t in enumerate(timesteps):
            if self.interrupt:
                continue

            # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
            timestep = t.expand((latents.shape[0],)).to(prompt_embeds.dtype)
            latents_model_input = latents / self.scheduler.config.sigma_data

            scm_timestep = mint.sin(timestep) / (mint.cos(timestep) + mint.sin(timestep))

            scm_timestep_expanded = scm_timestep.view(-1, 1, 1, 1)
            latent_model_input = latents_model_input * mint.sqrt(
                scm_timestep_expanded**2 + (1 - scm_timestep_expanded) ** 2
            )
            latent_model_input = latent_model_input.to(prompt_embeds.dtype)

            # predict noise model_output
            noise_pred = self.transformer(
                latent_model_input,
                encoder_hidden_states=prompt_embeds,
                encoder_attention_mask=prompt_attention_mask,
                guidance=guidance,
                timestep=scm_timestep,
                return_dict=False,
                attention_kwargs=self.attention_kwargs,
            )[0]

            noise_pred = (
                (1 - 2 * scm_timestep_expanded) * latent_model_input
                + (1 - 2 * scm_timestep_expanded + 2 * scm_timestep_expanded**2) * noise_pred
            ) / mint.sqrt(scm_timestep_expanded**2 + (1 - scm_timestep_expanded) ** 2)
            noise_pred = noise_pred.float() * self.scheduler.config.sigma_data

            # compute previous image: x_t -> x_t-1
            latents, denoised = self.scheduler.step(
                noise_pred, timestep, latents, **extra_step_kwargs, return_dict=False
            )

            if callback_on_step_end is not None:
                callback_kwargs = {}
                for k in callback_on_step_end_tensor_inputs:
                    callback_kwargs[k] = locals()[k]
                callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                latents = callback_outputs.pop("latents", latents)
                prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)

            # call the callback, if provided
            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                progress_bar.update()

    latents = denoised / self.scheduler.config.sigma_data
    if output_type == "latent":
        image = latents
    else:
        latents = latents.to(self.vae.dtype)
        image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
        if use_resolution_binning:
            image = self.image_processor.resize_and_crop_tensor(image, orig_width, orig_height)

    if not output_type == "latent":
        image = self.image_processor.postprocess(image, output_type=output_type)

    if not return_dict:
        return (image,)

    return SanaPipelineOutput(images=image)

mindone.diffusers.SanaSprintPipeline.disable_vae_slicing()

Disable sliced VAE decoding. If enable_vae_slicing was previously enabled, this method will go back to computing decoding in one step.

Source code in mindone/diffusers/pipelines/sana/pipeline_sana_sprint.py
171
172
173
174
175
176
def disable_vae_slicing(self):
    r"""
    Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
    computing decoding in one step.
    """
    self.vae.disable_slicing()

mindone.diffusers.SanaSprintPipeline.disable_vae_tiling()

Disable tiled VAE decoding. If enable_vae_tiling was previously enabled, this method will go back to computing decoding in one step.

Source code in mindone/diffusers/pipelines/sana/pipeline_sana_sprint.py
186
187
188
189
190
191
def disable_vae_tiling(self):
    r"""
    Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
    computing decoding in one step.
    """
    self.vae.disable_tiling()

mindone.diffusers.SanaSprintPipeline.enable_vae_slicing()

Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.

Source code in mindone/diffusers/pipelines/sana/pipeline_sana_sprint.py
164
165
166
167
168
169
def enable_vae_slicing(self):
    r"""
    Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
    compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
    """
    self.vae.enable_slicing()

mindone.diffusers.SanaSprintPipeline.enable_vae_tiling()

Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images.

Source code in mindone/diffusers/pipelines/sana/pipeline_sana_sprint.py
178
179
180
181
182
183
184
def enable_vae_tiling(self):
    r"""
    Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
    compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
    processing larger images.
    """
    self.vae.enable_tiling()

mindone.diffusers.SanaSprintPipeline.encode_prompt(prompt, num_images_per_prompt=1, prompt_embeds=None, prompt_attention_mask=None, clean_caption=False, max_sequence_length=300, complex_human_instruction=None, lora_scale=None)

Encodes the prompt into text encoder hidden states.

PARAMETER DESCRIPTION
prompt

prompt to be encoded

TYPE: `str` or `List[str]`, *optional*

num_images_per_prompt

number of images that should be generated per prompt

TYPE: `int`, *optional*, defaults to 1 DEFAULT: 1

prompt_embeds

Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

clean_caption

If True, the function will preprocess and clean the provided caption before encoding.

TYPE: `bool`, defaults to `False` DEFAULT: False

max_sequence_length

Maximum sequence length to use for the prompt.

TYPE: `int`, defaults to 300 DEFAULT: 300

complex_human_instruction

If complex_human_instruction is not empty, the function will use the complex Human instruction for the prompt.

TYPE: `list[str]`, defaults to `complex_human_instruction` DEFAULT: None

Source code in mindone/diffusers/pipelines/sana/pipeline_sana_sprint.py
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
def encode_prompt(
    self,
    prompt: Union[str, List[str]],
    num_images_per_prompt: int = 1,
    prompt_embeds: Optional[ms.Tensor] = None,
    prompt_attention_mask: Optional[ms.Tensor] = None,
    clean_caption: bool = False,
    max_sequence_length: int = 300,
    complex_human_instruction: Optional[List[str]] = None,
    lora_scale: Optional[float] = None,
):
    r"""
    Encodes the prompt into text encoder hidden states.

    Args:
        prompt (`str` or `List[str]`, *optional*):
            prompt to be encoded

        num_images_per_prompt (`int`, *optional*, defaults to 1):
            number of images that should be generated per prompt
        prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
            provided, text embeddings will be generated from `prompt` input argument.
        clean_caption (`bool`, defaults to `False`):
            If `True`, the function will preprocess and clean the provided caption before encoding.
        max_sequence_length (`int`, defaults to 300): Maximum sequence length to use for the prompt.
        complex_human_instruction (`list[str]`, defaults to `complex_human_instruction`):
            If `complex_human_instruction` is not empty, the function will use the complex Human instruction for
            the prompt.
    """

    if self.transformer is not None:
        dtype = self.transformer.dtype
    elif self.text_encoder is not None:
        dtype = self.text_encoder.dtype
    else:
        dtype = None

    # set lora scale so that monkey patched LoRA
    # function of text encoder can correctly access it
    if lora_scale is not None and isinstance(self, SanaLoraLoaderMixin):
        self._lora_scale = lora_scale

        # dynamically adjust the LoRA scale
        if self.text_encoder is not None:
            scale_lora_layers(self.text_encoder, lora_scale)

    if getattr(self, "tokenizer", None) is not None:
        self.tokenizer.padding_side = "right"

    # See Section 3.1. of the paper.
    max_length = max_sequence_length
    select_index = [0] + list(range(-max_length + 1, 0))

    if prompt_embeds is None:
        prompt_embeds, prompt_attention_mask = self._get_gemma_prompt_embeds(
            prompt=prompt,
            dtype=dtype,
            clean_caption=clean_caption,
            max_sequence_length=max_sequence_length,
            complex_human_instruction=complex_human_instruction,
        )

        prompt_embeds = prompt_embeds[:, select_index]
        prompt_attention_mask = prompt_attention_mask[:, select_index]

    bs_embed, seq_len, _ = prompt_embeds.shape
    # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
    prompt_embeds = prompt_embeds.tile((1, num_images_per_prompt, 1))
    prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
    prompt_attention_mask = prompt_attention_mask.view(bs_embed, -1)
    prompt_attention_mask = prompt_attention_mask.tile((num_images_per_prompt, 1))

    if self.text_encoder is not None:
        if isinstance(self, SanaLoraLoaderMixin):
            # Retrieve the original scale by scaling back the LoRA layers
            unscale_lora_layers(self.text_encoder, lora_scale)

    return prompt_embeds, prompt_attention_mask

mindone.diffusers.pipelines.sana.pipeline_output.SanaPipelineOutput dataclass

Bases: BaseOutput

Output class for Sana pipelines.

Source code in mindone/diffusers/pipelines/sana/pipeline_output.py
10
11
12
13
14
15
16
17
18
19
20
21
@dataclass
class SanaPipelineOutput(BaseOutput):
    """
    Output class for Sana pipelines.

    Args:
        images (`List[PIL.Image.Image]` or `np.ndarray`)
            List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
            num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
    """

    images: Union[List[PIL.Image.Image], np.ndarray]