Skip to content

InstructPix2Pix

InstructPix2Pix: Learning to Follow Image Editing Instructions is by Tim Brooks, Aleksander Holynski and Alexei A. Efros.

The abstract from the paper is:

We propose a method for editing images from human instructions: given an input image and a written instruction that tells the model what to do, our model follows these instructions to edit the image. To obtain training data for this problem, we combine the knowledge of two large pretrained models -- a language model (GPT-3) and a text-to-image model (Stable Diffusion) -- to generate a large dataset of image editing examples. Our conditional diffusion model, InstructPix2Pix, is trained on our generated data, and generalizes to real images and user-written instructions at inference time. Since it performs edits in the forward pass and does not require per example fine-tuning or inversion, our model edits images quickly, in a matter of seconds. We show compelling editing results for a diverse collection of input images and written instructions.

You can find additional information about InstructPix2Pix on the project page, original codebase, and try it out in a demo.

Tip

Make sure to check out the Schedulers guide to learn how to explore the tradeoff between scheduler speed and quality, and see the reuse components across pipelines section to learn how to efficiently load the same components into multiple pipelines.

mindone.diffusers.StableDiffusionInstructPix2PixPipeline

Bases: DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, LoraLoaderMixin, IPAdapterMixin

Pipeline for pixel-level image editing by following text instructions (based on Stable Diffusion).

This model inherits from [DiffusionPipeline]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).

The pipeline also inherits the following loading methods
  • [~loaders.TextualInversionLoaderMixin.load_textual_inversion] for loading textual inversion embeddings
  • [~loaders.LoraLoaderMixin.load_lora_weights] for loading LoRA weights
  • [~loaders.LoraLoaderMixin.save_lora_weights] for saving LoRA weights
  • [~loaders.IPAdapterMixin.load_ip_adapter] for loading IP Adapters
PARAMETER DESCRIPTION
vae

Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.

TYPE: [`AutoencoderKL`]

text_encoder

Frozen text-encoder (clip-vit-large-patch14).

TYPE: [`~transformers.CLIPTextModel`]

tokenizer

A CLIPTokenizer to tokenize text.

TYPE: [`~transformers.CLIPTokenizer`]

unet

A UNet2DConditionModel to denoise the encoded image latents.

TYPE: [`UNet2DConditionModel`]

scheduler

A scheduler to be used in combination with unet to denoise the encoded image latents. Can be one of [DDIMScheduler], [LMSDiscreteScheduler], or [PNDMScheduler].

TYPE: [`SchedulerMixin`]

safety_checker

Classification module that estimates whether generated images could be considered offensive or harmful. Please refer to the model card for more details about a model's potential harms.

TYPE: [`StableDiffusionSafetyChecker`]

feature_extractor

A CLIPImageProcessor to extract features from generated images; used as inputs to the safety_checker.

TYPE: [`~transformers.CLIPImageProcessor`]

Source code in mindone/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
class StableDiffusionInstructPix2PixPipeline(
    DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, LoraLoaderMixin, IPAdapterMixin
):
    r"""
    Pipeline for pixel-level image editing by following text instructions (based on Stable Diffusion).

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).

    The pipeline also inherits the following loading methods:
        - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
        - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
        - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
        - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
        text_encoder ([`~transformers.CLIPTextModel`]):
            Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
        tokenizer ([`~transformers.CLIPTokenizer`]):
            A `CLIPTokenizer` to tokenize text.
        unet ([`UNet2DConditionModel`]):
            A `UNet2DConditionModel` to denoise the encoded image latents.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        safety_checker ([`StableDiffusionSafetyChecker`]):
            Classification module that estimates whether generated images could be considered offensive or harmful.
            Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
            about a model's potential harms.
        feature_extractor ([`~transformers.CLIPImageProcessor`]):
            A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
    """

    model_cpu_offload_seq = "text_encoder->unet->vae"
    _optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
    _exclude_from_cpu_offload = ["safety_checker"]
    _callback_tensor_inputs = ["latents", "prompt_embeds", "image_latents"]

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
        scheduler: KarrasDiffusionSchedulers,
        safety_checker: StableDiffusionSafetyChecker,
        feature_extractor: CLIPImageProcessor,
        image_encoder: Optional[CLIPVisionModelWithProjection] = None,
        requires_safety_checker: bool = True,
    ):
        super().__init__()

        if safety_checker is None and requires_safety_checker:
            logger.warning(
                f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
                " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
                " results in services or applications open to the public. Both the diffusers team and Hugging Face"
                " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
                " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
                " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
            )

        if safety_checker is not None and feature_extractor is None:
            raise ValueError(
                "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
                " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
            )

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
            image_encoder=image_encoder,
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
        self.register_to_config(requires_safety_checker=requires_safety_checker)

    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        image: PipelineImageInput = None,
        num_inference_steps: int = 100,
        guidance_scale: float = 7.5,
        image_guidance_scale: float = 1.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
        latents: Optional[ms.Tensor] = None,
        prompt_embeds: Optional[ms.Tensor] = None,
        negative_prompt_embeds: Optional[ms.Tensor] = None,
        ip_adapter_image: Optional[PipelineImageInput] = None,
        ip_adapter_image_embeds: Optional[List[ms.Tensor]] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = False,
        callback_on_step_end: Optional[
            Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
        ] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        **kwargs,
    ):
        r"""
        The call function to the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
            image (`ms.Tensor` `np.ndarray`, `PIL.Image.Image`, `List[ms.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
                `Image` or tensor representing an image batch to be repainted according to `prompt`. Can also accept
                image latents as `image`, but if passing latents directly it is not encoded again.
            num_inference_steps (`int`, *optional*, defaults to 100):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
            image_guidance_scale (`float`, *optional*, defaults to 1.5):
                Push the generated image towards the initial `image`. Image guidance scale is enabled by setting
                `image_guidance_scale > 1`. Higher image guidance scale encourages generated images that are closely
                linked to the source `image`, usually at the expense of lower image quality. This pipeline requires a
                value of at least `1`.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
            generator (`np.random.Generator` or `List[np.random.Generator]`, *optional*):
                A [`np.random.Generator`](https://numpy.org/doc/stable/reference/random/generator.html) to make
                generation deterministic.
            latents (`ms.Tensor`, *optional*):
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor is generated by sampling using the supplied random `generator`.
            prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument.
            negative_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
            ip_adapter_image: (`PipelineImageInput`, *optional*):
                Optional image input to work with IP Adapters.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
                A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
                each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
                DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
                list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
                `._callback_tensor_inputs` attribute of your pipeline class.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).

        Examples:

        ```py
        >>> import PIL
        >>> import requests
        >>> import mindspore as ms
        >>> from io import BytesIO

        >>> from mindone.diffusers import StableDiffusionInstructPix2PixPipeline


        >>> def download_image(url):
        ...     response = requests.get(url)
        ...     return PIL.Image.open(BytesIO(response.content)).convert("RGB")


        >>> img_url = "https://huggingface.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png"

        >>> image = download_image(img_url).resize((512, 512))

        >>> pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(
        ...     "timbrooks/instruct-pix2pix", mindspore_dtype=ms.float16
        ... )

        >>> prompt = "make the mountains snowy"
        >>> image = pipe(prompt=prompt, image=image)[0][0]
        ```

        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
                otherwise a `tuple` is returned where the first element is a list with the generated images and the
                second element is a list of `bool`s indicating whether the corresponding generated image contains
                "not-safe-for-work" (nsfw) content.
        """

        callback = kwargs.pop("callback", None)
        callback_steps = kwargs.pop("callback_steps", None)

        if callback is not None:
            deprecate(
                "callback",
                "1.0.0",
                "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
            )
        if callback_steps is not None:
            deprecate(
                "callback_steps",
                "1.0.0",
                "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
            )

        if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
            callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs

        # 0. Check inputs
        self.check_inputs(
            prompt,
            callback_steps,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
            ip_adapter_image,
            ip_adapter_image_embeds,
            callback_on_step_end_tensor_inputs,
        )
        self._guidance_scale = guidance_scale
        self._image_guidance_scale = image_guidance_scale

        if image is None:
            raise ValueError("`image` input cannot be undefined.")

        # 1. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        # 2. Encode input prompt
        prompt_embeds = self._encode_prompt(
            prompt,
            num_images_per_prompt,
            self.do_classifier_free_guidance,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
        )

        if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
            image_embeds = self.prepare_ip_adapter_image_embeds(
                ip_adapter_image,
                ip_adapter_image_embeds,
                batch_size * num_images_per_prompt,
                self.do_classifier_free_guidance,
            )
        # 3. Preprocess image
        image = self.image_processor.preprocess(image)

        # 4. set timesteps
        self.scheduler.set_timesteps(num_inference_steps)
        timesteps = self.scheduler.timesteps

        # 5. Prepare Image latents
        image_latents = self.prepare_image_latents(
            image,
            batch_size,
            num_images_per_prompt,
            prompt_embeds.dtype,
            self.do_classifier_free_guidance,
        )

        height, width = image_latents.shape[-2:]
        height = height * self.vae_scale_factor
        width = width * self.vae_scale_factor

        # 6. Prepare latent variables
        num_channels_latents = self.vae.config.latent_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            generator,
            latents,
        )

        # 7. Check that shapes of latents and image match the UNet channels
        num_channels_image = image_latents.shape[1]
        if num_channels_latents + num_channels_image != self.unet.config.in_channels:
            raise ValueError(
                f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
                f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
                f" `num_channels_image`: {num_channels_image} "
                f" = {num_channels_latents+num_channels_image}. Please verify the config of"
                " `pipeline.unet` or your `image` input."
            )

        # 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 8.1 Add image embeds for IP-Adapter
        added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None

        # 9. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        self._num_timesteps = len(timesteps)
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # Expand the latents if we are doing classifier free guidance.
                # The latents are expanded 3 times because for pix2pix the guidance\
                # is applied for both the text and the input image.
                latent_model_input = ops.cat([latents] * 3) if self.do_classifier_free_guidance else latents

                # concat latents, image_latents in the channel dimension
                scaled_latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
                scaled_latent_model_input = ops.cat([scaled_latent_model_input, image_latents], axis=1)

                # predict the noise residual
                noise_pred = self.unet(
                    scaled_latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    added_cond_kwargs=ms.mutable(added_cond_kwargs) if added_cond_kwargs else added_cond_kwargs,
                    cross_attention_kwargs=cross_attention_kwargs,
                    return_dict=False,
                )[0]

                # perform guidance
                if self.do_classifier_free_guidance:
                    noise_pred_text, noise_pred_image, noise_pred_uncond = noise_pred.chunk(3)
                    noise_pred = (
                        noise_pred_uncond
                        + self.guidance_scale * (noise_pred_text - noise_pred_image)
                        + self.image_guidance_scale * (noise_pred_image - noise_pred_uncond)
                    )

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
                    image_latents = callback_outputs.pop("image_latents", image_latents)

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)

        if not output_type == "latent":
            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
            image, has_nsfw_concept = self.run_safety_checker(image, prompt_embeds.dtype)
        else:
            image = latents
            has_nsfw_concept = None

        if has_nsfw_concept is None:
            do_denormalize = [True] * image.shape[0]
        else:
            do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]

        image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)

        if not return_dict:
            return (image, has_nsfw_concept)

        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)

    def _encode_prompt(
        self,
        prompt,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[ms.Tensor] = None,
        negative_prompt_embeds: Optional[ms.Tensor] = None,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
             prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_ prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
        """
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if prompt_embeds is None:
            # textual inversion: process multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                prompt = self.maybe_convert_prompt(prompt, self.tokenizer)

            text_inputs = self.tokenizer(
                prompt,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="np",
            )
            text_input_ids = text_inputs.input_ids
            untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="np").input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not np.array_equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {self.tokenizer.model_max_length} tokens: {removed_text}"
                )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = ms.Tensor(text_inputs.attention_mask)
            else:
                attention_mask = None

            prompt_embeds = self.text_encoder(ms.Tensor(text_input_ids), attention_mask=attention_mask)
            prompt_embeds = prompt_embeds[0]

        if self.text_encoder is not None:
            prompt_embeds_dtype = self.text_encoder.dtype
        else:
            prompt_embeds_dtype = self.unet.dtype

        prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype)

        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.tile((1, num_images_per_prompt, 1))
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

            # textual inversion: process multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)

            max_length = prompt_embeds.shape[1]
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="np",
            )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = ms.Tensor(uncond_input.attention_mask)
            else:
                attention_mask = None

            negative_prompt_embeds = self.text_encoder(
                ms.Tensor(uncond_input.input_ids),
                attention_mask=attention_mask,
            )
            negative_prompt_embeds = negative_prompt_embeds[0]

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

            negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype)

            negative_prompt_embeds = negative_prompt_embeds.tile((1, num_images_per_prompt, 1))
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            # pix2pix has two negative embeddings, and unlike in other pipelines latents are ordered [prompt_embeds,
            # negative_prompt_embeds, negative_prompt_embeds]
            prompt_embeds = ops.cat([prompt_embeds, negative_prompt_embeds, negative_prompt_embeds])

        return prompt_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
    def encode_image(self, image, num_images_per_prompt, output_hidden_states=None):
        dtype = next(self.image_encoder.get_parameters()).dtype

        if not isinstance(image, ms.Tensor):
            image = self.feature_extractor(image, return_tensors="np").pixel_values
            image = ms.Tensor(image)

        image = image.to(dtype=dtype)
        if output_hidden_states:
            image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True)[-1][-2]
            image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_enc_hidden_states = self.image_encoder(ops.zeros_like(image), output_hidden_states=True)[-1][
                -2
            ]
            uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
                num_images_per_prompt, dim=0
            )
            return image_enc_hidden_states, uncond_image_enc_hidden_states
        else:
            image_embeds = self.image_encoder(image)[0]
            image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_embeds = ops.zeros_like(image_embeds)

            return image_embeds, uncond_image_embeds

    def prepare_ip_adapter_image_embeds(
        self, ip_adapter_image, ip_adapter_image_embeds, num_images_per_prompt, do_classifier_free_guidance
    ):
        if ip_adapter_image_embeds is None:
            if not isinstance(ip_adapter_image, list):
                ip_adapter_image = [ip_adapter_image]

            if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
                raise ValueError(
                    f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."  # noqa: E501
                )

            image_embeds = []
            for single_ip_adapter_image, image_proj_layer in zip(
                ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
            ):
                output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
                single_image_embeds, single_negative_image_embeds = self.encode_image(
                    single_ip_adapter_image, 1, output_hidden_state
                )
                single_image_embeds = ops.stack([single_image_embeds] * num_images_per_prompt, axis=0)
                single_negative_image_embeds = ops.stack([single_negative_image_embeds] * num_images_per_prompt, axis=0)

                if do_classifier_free_guidance:
                    single_image_embeds = ops.cat(
                        [single_image_embeds, single_negative_image_embeds, single_negative_image_embeds]
                    )
                    single_image_embeds = single_image_embeds

                image_embeds.append(single_image_embeds)
        else:
            repeat_dims = [1]
            image_embeds = []
            for single_image_embeds in ip_adapter_image_embeds:
                if do_classifier_free_guidance:
                    (
                        single_image_embeds,
                        single_negative_image_embeds,
                        single_negative_image_embeds,
                    ) = single_image_embeds.chunk(3)
                    single_image_embeds = single_image_embeds.repeat(
                        num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
                    )
                    single_negative_image_embeds = single_negative_image_embeds.repeat(
                        num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
                    )
                    single_image_embeds = ops.cat(
                        [single_image_embeds, single_negative_image_embeds, single_negative_image_embeds]
                    )
                else:
                    single_image_embeds = single_image_embeds.repeat(
                        num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
                    )
                image_embeds.append(single_image_embeds)

        return image_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
    def run_safety_checker(self, image, dtype):
        if self.safety_checker is None:
            has_nsfw_concept = None
        else:
            if ops.is_tensor(image):
                feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
            else:
                feature_extractor_input = self.image_processor.numpy_to_pil(image)
            safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="np")
            image, has_nsfw_concept = self.safety_checker(
                images=image, clip_input=ms.Tensor(safety_checker_input.pixel_values).to(dtype)
            )
        return image, has_nsfw_concept

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
    def decode_latents(self, latents):
        deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
        deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)

        latents = 1 / self.vae.config.scaling_factor * latents
        image = self.vae.decode(latents, return_dict=False)[0]
        image = (image / 2 + 0.5).clamp(0, 1)
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
        image = image.permute(0, 2, 3, 1).float().numpy()
        return image

    def check_inputs(
        self,
        prompt,
        callback_steps,
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
        ip_adapter_image=None,
        ip_adapter_image_embeds=None,
        callback_on_step_end_tensor_inputs=None,
    ):
        if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found"
                f"{[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

        if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
            raise ValueError(
                "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
            )

        if ip_adapter_image_embeds is not None:
            if not isinstance(ip_adapter_image_embeds, list):
                raise ValueError(
                    f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
                )
            elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
                raise ValueError(
                    f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
                )

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
    def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, generator, latents=None):
        shape = (
            batch_size,
            num_channels_latents,
            int(height) // self.vae_scale_factor,
            int(width) // self.vae_scale_factor,
        )
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(shape, generator=generator, dtype=dtype)
        else:
            latents = latents.to(dtype)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        # wtf? The above line changes the dtype of latents from fp16 to fp32, so we need a casting.
        latents = latents.to(dtype=dtype)
        return latents

    def prepare_image_latents(self, image, batch_size, num_images_per_prompt, dtype, do_classifier_free_guidance):
        if not isinstance(image, (ms.Tensor, PIL.Image.Image, list)):
            raise ValueError(f"`image` has to be of type `ms.Tensor`, `PIL.Image.Image` or list but is {type(image)}")

        image = image.to(dtype=dtype)

        batch_size = batch_size * num_images_per_prompt

        if image.shape[1] == 4:
            image_latents = image
        else:
            image_latents = retrieve_latents(self.vae, self.vae.encode(image)[0], sample_mode="argmax")

        if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
            # expand image_latents for batch_size
            deprecation_message = (
                f"You have passed {batch_size} text prompts (`prompt`), but only {image_latents.shape[0]} initial"
                " images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
                " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
                " your script to pass as many initial images as text prompts to suppress this warning."
            )
            deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
            additional_image_per_prompt = batch_size // image_latents.shape[0]
            image_latents = ops.cat([image_latents] * additional_image_per_prompt, axis=0)
        elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
            raise ValueError(
                f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
            )
        else:
            image_latents = ops.cat([image_latents], axis=0)

        if do_classifier_free_guidance:
            uncond_image_latents = ops.zeros_like(image_latents)
            image_latents = ops.cat([image_latents, image_latents, uncond_image_latents], axis=0)

        return image_latents

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def image_guidance_scale(self):
        return self._image_guidance_scale

    @property
    def num_timesteps(self):
        return self._num_timesteps

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    @property
    def do_classifier_free_guidance(self):
        return self.guidance_scale > 1.0 and self.image_guidance_scale >= 1.0

mindone.diffusers.StableDiffusionInstructPix2PixPipeline.__call__(prompt=None, image=None, num_inference_steps=100, guidance_scale=7.5, image_guidance_scale=1.5, negative_prompt=None, num_images_per_prompt=1, eta=0.0, generator=None, latents=None, prompt_embeds=None, negative_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, output_type='pil', return_dict=False, callback_on_step_end=None, callback_on_step_end_tensor_inputs=['latents'], cross_attention_kwargs=None, **kwargs)

The call function to the pipeline for generation.

PARAMETER DESCRIPTION
prompt

The prompt or prompts to guide image generation. If not defined, you need to pass prompt_embeds.

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

image

Image or tensor representing an image batch to be repainted according to prompt. Can also accept image latents as image, but if passing latents directly it is not encoded again.

TYPE: `ms.Tensor` `np.ndarray`, `PIL.Image.Image`, `List[ms.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]` DEFAULT: None

num_inference_steps

The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.

TYPE: `int`, *optional*, defaults to 100 DEFAULT: 100

guidance_scale

A higher guidance scale value encourages the model to generate images closely linked to the text prompt at the expense of lower image quality. Guidance scale is enabled when guidance_scale > 1.

TYPE: `float`, *optional*, defaults to 7.5 DEFAULT: 7.5

image_guidance_scale

Push the generated image towards the initial image. Image guidance scale is enabled by setting image_guidance_scale > 1. Higher image guidance scale encourages generated images that are closely linked to the source image, usually at the expense of lower image quality. This pipeline requires a value of at least 1.

TYPE: `float`, *optional*, defaults to 1.5 DEFAULT: 1.5

negative_prompt

The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass negative_prompt_embeds instead. Ignored when not using guidance (guidance_scale < 1).

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

num_images_per_prompt

The number of images to generate per prompt.

TYPE: `int`, *optional*, defaults to 1 DEFAULT: 1

eta

Corresponds to parameter eta (η) from the DDIM paper. Only applies to the [~schedulers.DDIMScheduler], and is ignored in other schedulers.

TYPE: `float`, *optional*, defaults to 0.0 DEFAULT: 0.0

generator

A np.random.Generator to make generation deterministic.

TYPE: `np.random.Generator` or `List[np.random.Generator]`, *optional* DEFAULT: None

latents

Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random generator.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

prompt_embeds

Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_prompt_embeds

Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, negative_prompt_embeds are generated from the negative_prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

ip_adapter_image

(PipelineImageInput, optional): Optional image input to work with IP Adapters.

TYPE: Optional[PipelineImageInput] DEFAULT: None

output_type

The output format of the generated image. Choose between PIL.Image or np.array.

TYPE: `str`, *optional*, defaults to `"pil"` DEFAULT: 'pil'

return_dict

Whether or not to return a [~pipelines.stable_diffusion.StableDiffusionPipelineOutput] instead of a plain tuple.

TYPE: `bool`, *optional*, defaults to `True` DEFAULT: False

callback_on_step_end

A function or a subclass of PipelineCallback or MultiPipelineCallbacks that is called at the end of each denoising step during the inference. with the following arguments: callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict). callback_kwargs will include a list of all tensors as specified by callback_on_step_end_tensor_inputs.

TYPE: `Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional* DEFAULT: None

callback_on_step_end_tensor_inputs

The list of tensor inputs for the callback_on_step_end function. The tensors specified in the list will be passed as callback_kwargs argument. You will only be able to include variables listed in the ._callback_tensor_inputs attribute of your pipeline class.

TYPE: `List`, *optional* DEFAULT: ['latents']

cross_attention_kwargs

A kwargs dictionary that if specified is passed along to the [AttentionProcessor] as defined in self.processor.

TYPE: `dict`, *optional* DEFAULT: None

>>> import PIL
>>> import requests
>>> import mindspore as ms
>>> from io import BytesIO

>>> from mindone.diffusers import StableDiffusionInstructPix2PixPipeline


>>> def download_image(url):
...     response = requests.get(url)
...     return PIL.Image.open(BytesIO(response.content)).convert("RGB")


>>> img_url = "https://huggingface.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png"

>>> image = download_image(img_url).resize((512, 512))

>>> pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(
...     "timbrooks/instruct-pix2pix", mindspore_dtype=ms.float16
... )

>>> prompt = "make the mountains snowy"
>>> image = pipe(prompt=prompt, image=image)[0][0]
RETURNS DESCRIPTION

[~pipelines.stable_diffusion.StableDiffusionPipelineOutput] or tuple: If return_dict is True, [~pipelines.stable_diffusion.StableDiffusionPipelineOutput] is returned, otherwise a tuple is returned where the first element is a list with the generated images and the second element is a list of bools indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content.

Source code in mindone/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
def __call__(
    self,
    prompt: Union[str, List[str]] = None,
    image: PipelineImageInput = None,
    num_inference_steps: int = 100,
    guidance_scale: float = 7.5,
    image_guidance_scale: float = 1.5,
    negative_prompt: Optional[Union[str, List[str]]] = None,
    num_images_per_prompt: Optional[int] = 1,
    eta: float = 0.0,
    generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
    latents: Optional[ms.Tensor] = None,
    prompt_embeds: Optional[ms.Tensor] = None,
    negative_prompt_embeds: Optional[ms.Tensor] = None,
    ip_adapter_image: Optional[PipelineImageInput] = None,
    ip_adapter_image_embeds: Optional[List[ms.Tensor]] = None,
    output_type: Optional[str] = "pil",
    return_dict: bool = False,
    callback_on_step_end: Optional[
        Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
    ] = None,
    callback_on_step_end_tensor_inputs: List[str] = ["latents"],
    cross_attention_kwargs: Optional[Dict[str, Any]] = None,
    **kwargs,
):
    r"""
    The call function to the pipeline for generation.

    Args:
        prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
        image (`ms.Tensor` `np.ndarray`, `PIL.Image.Image`, `List[ms.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
            `Image` or tensor representing an image batch to be repainted according to `prompt`. Can also accept
            image latents as `image`, but if passing latents directly it is not encoded again.
        num_inference_steps (`int`, *optional*, defaults to 100):
            The number of denoising steps. More denoising steps usually lead to a higher quality image at the
            expense of slower inference.
        guidance_scale (`float`, *optional*, defaults to 7.5):
            A higher guidance scale value encourages the model to generate images closely linked to the text
            `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
        image_guidance_scale (`float`, *optional*, defaults to 1.5):
            Push the generated image towards the initial `image`. Image guidance scale is enabled by setting
            `image_guidance_scale > 1`. Higher image guidance scale encourages generated images that are closely
            linked to the source `image`, usually at the expense of lower image quality. This pipeline requires a
            value of at least `1`.
        negative_prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts to guide what to not include in image generation. If not defined, you need to
            pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
        num_images_per_prompt (`int`, *optional*, defaults to 1):
            The number of images to generate per prompt.
        eta (`float`, *optional*, defaults to 0.0):
            Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
            to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
        generator (`np.random.Generator` or `List[np.random.Generator]`, *optional*):
            A [`np.random.Generator`](https://numpy.org/doc/stable/reference/random/generator.html) to make
            generation deterministic.
        latents (`ms.Tensor`, *optional*):
            Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
            generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
            tensor is generated by sampling using the supplied random `generator`.
        prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
            provided, text embeddings are generated from the `prompt` input argument.
        negative_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
            not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
        ip_adapter_image: (`PipelineImageInput`, *optional*):
            Optional image input to work with IP Adapters.
        output_type (`str`, *optional*, defaults to `"pil"`):
            The output format of the generated image. Choose between `PIL.Image` or `np.array`.
        return_dict (`bool`, *optional*, defaults to `True`):
            Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
            plain tuple.
        callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
            A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
            each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
            DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
            list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
        callback_on_step_end_tensor_inputs (`List`, *optional*):
            The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
            will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
            `._callback_tensor_inputs` attribute of your pipeline class.
        cross_attention_kwargs (`dict`, *optional*):
            A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
            [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).

    Examples:

    ```py
    >>> import PIL
    >>> import requests
    >>> import mindspore as ms
    >>> from io import BytesIO

    >>> from mindone.diffusers import StableDiffusionInstructPix2PixPipeline


    >>> def download_image(url):
    ...     response = requests.get(url)
    ...     return PIL.Image.open(BytesIO(response.content)).convert("RGB")


    >>> img_url = "https://huggingface.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png"

    >>> image = download_image(img_url).resize((512, 512))

    >>> pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(
    ...     "timbrooks/instruct-pix2pix", mindspore_dtype=ms.float16
    ... )

    >>> prompt = "make the mountains snowy"
    >>> image = pipe(prompt=prompt, image=image)[0][0]
    ```

    Returns:
        [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
            If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
            otherwise a `tuple` is returned where the first element is a list with the generated images and the
            second element is a list of `bool`s indicating whether the corresponding generated image contains
            "not-safe-for-work" (nsfw) content.
    """

    callback = kwargs.pop("callback", None)
    callback_steps = kwargs.pop("callback_steps", None)

    if callback is not None:
        deprecate(
            "callback",
            "1.0.0",
            "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
        )
    if callback_steps is not None:
        deprecate(
            "callback_steps",
            "1.0.0",
            "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
        )

    if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
        callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs

    # 0. Check inputs
    self.check_inputs(
        prompt,
        callback_steps,
        negative_prompt,
        prompt_embeds,
        negative_prompt_embeds,
        ip_adapter_image,
        ip_adapter_image_embeds,
        callback_on_step_end_tensor_inputs,
    )
    self._guidance_scale = guidance_scale
    self._image_guidance_scale = image_guidance_scale

    if image is None:
        raise ValueError("`image` input cannot be undefined.")

    # 1. Define call parameters
    if prompt is not None and isinstance(prompt, str):
        batch_size = 1
    elif prompt is not None and isinstance(prompt, list):
        batch_size = len(prompt)
    else:
        batch_size = prompt_embeds.shape[0]

    # 2. Encode input prompt
    prompt_embeds = self._encode_prompt(
        prompt,
        num_images_per_prompt,
        self.do_classifier_free_guidance,
        negative_prompt,
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=negative_prompt_embeds,
    )

    if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
        image_embeds = self.prepare_ip_adapter_image_embeds(
            ip_adapter_image,
            ip_adapter_image_embeds,
            batch_size * num_images_per_prompt,
            self.do_classifier_free_guidance,
        )
    # 3. Preprocess image
    image = self.image_processor.preprocess(image)

    # 4. set timesteps
    self.scheduler.set_timesteps(num_inference_steps)
    timesteps = self.scheduler.timesteps

    # 5. Prepare Image latents
    image_latents = self.prepare_image_latents(
        image,
        batch_size,
        num_images_per_prompt,
        prompt_embeds.dtype,
        self.do_classifier_free_guidance,
    )

    height, width = image_latents.shape[-2:]
    height = height * self.vae_scale_factor
    width = width * self.vae_scale_factor

    # 6. Prepare latent variables
    num_channels_latents = self.vae.config.latent_channels
    latents = self.prepare_latents(
        batch_size * num_images_per_prompt,
        num_channels_latents,
        height,
        width,
        prompt_embeds.dtype,
        generator,
        latents,
    )

    # 7. Check that shapes of latents and image match the UNet channels
    num_channels_image = image_latents.shape[1]
    if num_channels_latents + num_channels_image != self.unet.config.in_channels:
        raise ValueError(
            f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
            f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
            f" `num_channels_image`: {num_channels_image} "
            f" = {num_channels_latents+num_channels_image}. Please verify the config of"
            " `pipeline.unet` or your `image` input."
        )

    # 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
    extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

    # 8.1 Add image embeds for IP-Adapter
    added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None

    # 9. Denoising loop
    num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
    self._num_timesteps = len(timesteps)
    with self.progress_bar(total=num_inference_steps) as progress_bar:
        for i, t in enumerate(timesteps):
            # Expand the latents if we are doing classifier free guidance.
            # The latents are expanded 3 times because for pix2pix the guidance\
            # is applied for both the text and the input image.
            latent_model_input = ops.cat([latents] * 3) if self.do_classifier_free_guidance else latents

            # concat latents, image_latents in the channel dimension
            scaled_latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
            scaled_latent_model_input = ops.cat([scaled_latent_model_input, image_latents], axis=1)

            # predict the noise residual
            noise_pred = self.unet(
                scaled_latent_model_input,
                t,
                encoder_hidden_states=prompt_embeds,
                added_cond_kwargs=ms.mutable(added_cond_kwargs) if added_cond_kwargs else added_cond_kwargs,
                cross_attention_kwargs=cross_attention_kwargs,
                return_dict=False,
            )[0]

            # perform guidance
            if self.do_classifier_free_guidance:
                noise_pred_text, noise_pred_image, noise_pred_uncond = noise_pred.chunk(3)
                noise_pred = (
                    noise_pred_uncond
                    + self.guidance_scale * (noise_pred_text - noise_pred_image)
                    + self.image_guidance_scale * (noise_pred_image - noise_pred_uncond)
                )

            # compute the previous noisy sample x_t -> x_t-1
            latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

            if callback_on_step_end is not None:
                callback_kwargs = {}
                for k in callback_on_step_end_tensor_inputs:
                    callback_kwargs[k] = locals()[k]
                callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                latents = callback_outputs.pop("latents", latents)
                prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
                image_latents = callback_outputs.pop("image_latents", image_latents)

            # call the callback, if provided
            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                progress_bar.update()
                if callback is not None and i % callback_steps == 0:
                    step_idx = i // getattr(self.scheduler, "order", 1)
                    callback(step_idx, t, latents)

    if not output_type == "latent":
        image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
        image, has_nsfw_concept = self.run_safety_checker(image, prompt_embeds.dtype)
    else:
        image = latents
        has_nsfw_concept = None

    if has_nsfw_concept is None:
        do_denormalize = [True] * image.shape[0]
    else:
        do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]

    image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)

    if not return_dict:
        return (image, has_nsfw_concept)

    return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)

mindone.diffusers.StableDiffusionXLInstructPix2PixPipeline

Bases: DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin

Pipeline for pixel-level image editing by following text instructions. Based on Stable Diffusion XL.

This model inherits from [DiffusionPipeline]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

The pipeline also inherits the following loading methods
  • [~loaders.TextualInversionLoaderMixin.load_textual_inversion] for loading textual inversion embeddings
  • [~loaders.FromSingleFileMixin.from_single_file] for loading .ckpt files
  • [~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights] for loading LoRA weights
  • [~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights] for saving LoRA weights
PARAMETER DESCRIPTION
vae

Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.

TYPE: [`AutoencoderKL`]

text_encoder

Frozen text-encoder. Stable Diffusion XL uses the text portion of CLIP, specifically the clip-vit-large-patch14 variant.

TYPE: [`CLIPTextModel`]

text_encoder_2

Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of CLIP, specifically the laion/CLIP-ViT-bigG-14-laion2B-39B-b160k variant.

TYPE: [` CLIPTextModelWithProjection`]

tokenizer

Tokenizer of class CLIPTokenizer.

TYPE: `CLIPTokenizer`

tokenizer_2

Second Tokenizer of class CLIPTokenizer.

TYPE: `CLIPTokenizer`

unet

Conditional U-Net architecture to denoise the encoded image latents.

TYPE: [`UNet2DConditionModel`]

scheduler

A scheduler to be used in combination with unet to denoise the encoded image latents. Can be one of [DDIMScheduler], [LMSDiscreteScheduler], or [PNDMScheduler].

TYPE: [`SchedulerMixin`]

requires_aesthetics_score

Whether the unet requires a aesthetic_score condition to be passed during inference. Also see the config of stabilityai/stable-diffusion-xl-refiner-1-0.

TYPE: `bool`, *optional*, defaults to `"False"`

force_zeros_for_empty_prompt

Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of stabilityai/stable-diffusion-xl-base-1-0.

TYPE: `bool`, *optional*, defaults to `"True"` DEFAULT: True

add_watermarker

Whether to use the invisible_watermark library to watermark output images. If not defined, it will default to True if the package is installed, otherwise no watermarker will be used.

TYPE: `bool`, *optional* DEFAULT: None

is_cosxl_edit

When set the image latents are scaled.

TYPE: `bool`, *optional* DEFAULT: False

Source code in mindone/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
class StableDiffusionXLInstructPix2PixPipeline(
    DiffusionPipeline,
    StableDiffusionMixin,
    TextualInversionLoaderMixin,
    FromSingleFileMixin,
    StableDiffusionXLLoraLoaderMixin,
):
    r"""
    Pipeline for pixel-level image editing by following text instructions. Based on Stable Diffusion XL.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    The pipeline also inherits the following loading methods:
        - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
        - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
        - [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
        - [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        text_encoder ([`CLIPTextModel`]):
            Frozen text-encoder. Stable Diffusion XL uses the text portion of
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
            the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
        text_encoder_2 ([` CLIPTextModelWithProjection`]):
            Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
            specifically the
            [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
            variant.
        tokenizer (`CLIPTokenizer`):
            Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
        tokenizer_2 (`CLIPTokenizer`):
            Second Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
        unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        requires_aesthetics_score (`bool`, *optional*, defaults to `"False"`):
            Whether the `unet` requires a aesthetic_score condition to be passed during inference. Also see the config
            of `stabilityai/stable-diffusion-xl-refiner-1-0`.
        force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
            Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
            `stabilityai/stable-diffusion-xl-base-1-0`.
        add_watermarker (`bool`, *optional*):
            Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to
            watermark output images. If not defined, it will default to True if the package is installed, otherwise no
            watermarker will be used.
        is_cosxl_edit (`bool`, *optional*):
            When set the image latents are scaled.
    """

    model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
    _optional_components = ["tokenizer", "tokenizer_2", "text_encoder", "text_encoder_2"]

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        text_encoder_2: CLIPTextModelWithProjection,
        tokenizer: CLIPTokenizer,
        tokenizer_2: CLIPTokenizer,
        unet: UNet2DConditionModel,
        scheduler: KarrasDiffusionSchedulers,
        force_zeros_for_empty_prompt: bool = True,
        add_watermarker: Optional[bool] = None,
        is_cosxl_edit: Optional[bool] = False,
    ):
        super().__init__()

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            text_encoder_2=text_encoder_2,
            tokenizer=tokenizer,
            tokenizer_2=tokenizer_2,
            unet=unet,
            scheduler=scheduler,
        )
        self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
        self.default_sample_size = self.unet.config.sample_size
        self.is_cosxl_edit = is_cosxl_edit

        add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()

        if add_watermarker:
            self.watermark = StableDiffusionXLWatermarker()
        else:
            self.watermark = None

    def encode_prompt(
        self,
        prompt: str,
        prompt_2: Optional[str] = None,
        num_images_per_prompt: int = 1,
        do_classifier_free_guidance: bool = True,
        negative_prompt: Optional[str] = None,
        negative_prompt_2: Optional[str] = None,
        prompt_embeds: Optional[ms.Tensor] = None,
        negative_prompt_embeds: Optional[ms.Tensor] = None,
        pooled_prompt_embeds: Optional[ms.Tensor] = None,
        negative_pooled_prompt_embeds: Optional[ms.Tensor] = None,
        lora_scale: Optional[float] = None,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
                used in both text-encoders
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            negative_prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
                `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
            prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            pooled_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
                If not provided, pooled text embeddings will be generated from `prompt` input argument.
            negative_pooled_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
                input argument.
            lora_scale (`float`, *optional*):
                A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
        """

        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
        if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
            self._lora_scale = lora_scale

            # dynamically adjust the LoRA scale
            if self.text_encoder is not None:
                scale_lora_layers(self.text_encoder, lora_scale)

            if self.text_encoder_2 is not None:
                scale_lora_layers(self.text_encoder_2, lora_scale)

        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        # Define tokenizers and text encoders
        tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
        text_encoders = (
            [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
        )

        if prompt_embeds is None:
            prompt_2 = prompt_2 or prompt
            # textual inversion: process multi-vector tokens if necessary
            prompt_embeds_list = []
            prompts = [prompt, prompt_2]
            for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
                if isinstance(self, TextualInversionLoaderMixin):
                    prompt = self.maybe_convert_prompt(prompt, tokenizer)

                text_inputs = tokenizer(
                    prompt,
                    padding="max_length",
                    max_length=tokenizer.model_max_length,
                    truncation=True,
                    return_tensors="np",
                )

                text_input_ids = text_inputs.input_ids
                untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="np").input_ids

                if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not np.array_equal(
                    text_input_ids, untruncated_ids
                ):
                    removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
                    logger.warning(
                        "The following part of your input was truncated because CLIP can only handle sequences up to"
                        f" {tokenizer.model_max_length} tokens: {removed_text}"
                    )

                prompt_embeds = text_encoder(ms.Tensor(text_input_ids), output_hidden_states=True)

                # We are only ALWAYS interested in the pooled output of the final text encoder
                pooled_prompt_embeds = prompt_embeds[0]
                prompt_embeds = prompt_embeds[-1][-2]

                prompt_embeds_list.append(prompt_embeds)

            prompt_embeds = ops.concat(prompt_embeds_list, axis=-1)

        # get unconditional embeddings for classifier free guidance
        zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
        if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
            negative_prompt_embeds = ops.zeros_like(prompt_embeds)
            negative_pooled_prompt_embeds = ops.zeros_like(pooled_prompt_embeds)
        elif do_classifier_free_guidance and negative_prompt_embeds is None:
            negative_prompt = negative_prompt or ""
            negative_prompt_2 = negative_prompt_2 or negative_prompt

            uncond_tokens: List[str]
            if prompt is not None and type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt, negative_prompt_2]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = [negative_prompt, negative_prompt_2]

            negative_prompt_embeds_list = []
            for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
                if isinstance(self, TextualInversionLoaderMixin):
                    negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)

                max_length = prompt_embeds.shape[1]
                uncond_input = tokenizer(
                    negative_prompt,
                    padding="max_length",
                    max_length=max_length,
                    truncation=True,
                    return_tensors="np",
                )

                negative_prompt_embeds = text_encoder(
                    ms.Tensor(uncond_input.input_ids),
                    output_hidden_states=True,
                )
                # We are only ALWAYS interested in the pooled output of the final text encoder
                negative_pooled_prompt_embeds = negative_prompt_embeds[0]
                negative_prompt_embeds = negative_prompt_embeds[-1][-2]

                negative_prompt_embeds_list.append(negative_prompt_embeds)

            negative_prompt_embeds = ops.concat(negative_prompt_embeds_list, axis=-1)

        prompt_embeds_dtype = self.text_encoder_2.dtype if self.text_encoder_2 is not None else self.unet.dtype
        prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype)
        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.tile((1, num_images_per_prompt, 1))
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]
            negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype)
            negative_prompt_embeds = negative_prompt_embeds.tile((1, num_images_per_prompt, 1))
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

        pooled_prompt_embeds = pooled_prompt_embeds.tile((1, num_images_per_prompt)).view(
            bs_embed * num_images_per_prompt, -1
        )
        if do_classifier_free_guidance:
            negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.tile((1, num_images_per_prompt)).view(
                bs_embed * num_images_per_prompt, -1
            )

        return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_instruct_pix2pix.StableDiffusionInstructPix2PixPipeline.check_inputs
    def check_inputs(
        self,
        prompt,
        callback_steps,
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
        callback_on_step_end_tensor_inputs=None,
    ):
        if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found "
                f"{[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
    def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, generator, latents=None):
        shape = (
            batch_size,
            num_channels_latents,
            int(height) // self.vae_scale_factor,
            int(width) // self.vae_scale_factor,
        )
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(shape, generator=generator, dtype=dtype)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        # wtf? The above line changes the dtype of latents from fp16 to fp32, so we need a casting.
        latents = latents.to(dtype=dtype)
        return latents

    def prepare_image_latents(self, image, batch_size, num_images_per_prompt, dtype, do_classifier_free_guidance):
        if not isinstance(image, (ms.Tensor, PIL.Image.Image, list)):
            raise ValueError(
                f"`image` has to be of type `mindspore.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
            )

        image = image.to(dtype=dtype)

        batch_size = batch_size * num_images_per_prompt

        if image.shape[1] == 4:
            image_latents = image
        else:
            # make sure the VAE is in float32 mode, as it overflows in float16
            needs_upcasting = self.vae.dtype == ms.float16 and self.vae.config.force_upcast
            if needs_upcasting:
                image = image.float()
                self.upcast_vae()

            image_latents = retrieve_latents(self.vae, self.vae.encode(image)[0], sample_mode="argmax")

            # cast back to fp16 if needed
            if needs_upcasting:
                self.vae.to(dtype=ms.float16)

        if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
            # expand image_latents for batch_size
            deprecation_message = (
                f"You have passed {batch_size} text prompts (`prompt`), but only {image_latents.shape[0]} initial"
                " images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
                " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
                " your script to pass as many initial images as text prompts to suppress this warning."
            )
            deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
            additional_image_per_prompt = batch_size // image_latents.shape[0]
            image_latents = ops.cat([image_latents] * additional_image_per_prompt, axis=0)
        elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
            raise ValueError(
                f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
            )
        else:
            image_latents = ops.cat([image_latents], axis=0)

        if do_classifier_free_guidance:
            uncond_image_latents = ops.zeros_like(image_latents)
            image_latents = ops.cat([image_latents, image_latents, uncond_image_latents], axis=0)

        if image_latents.dtype != self.vae.dtype:
            image_latents = image_latents.to(dtype=self.vae.dtype)

        if self.is_cosxl_edit:
            image_latents = image_latents * self.vae.config.scaling_factor

        return image_latents

    # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._get_add_time_ids
    def _get_add_time_ids(
        self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None
    ):
        add_time_ids = list(original_size + crops_coords_top_left + target_size)

        passed_add_embed_dim = (
            self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
        )
        expected_add_embed_dim = self.unet.add_embedding.linear_1.in_channels

        if expected_add_embed_dim != passed_add_embed_dim:
            raise ValueError(
                f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."  # noqa: E501
            )

        add_time_ids = ms.Tensor([add_time_ids], dtype=dtype)
        return add_time_ids

    # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.upcast_vae
    def upcast_vae(self):
        self.vae.to(dtype=ms.float32)

    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        prompt_2: Optional[Union[str, List[str]]] = None,
        image: PipelineImageInput = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 100,
        denoising_end: Optional[float] = None,
        guidance_scale: float = 5.0,
        image_guidance_scale: float = 1.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        negative_prompt_2: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
        latents: Optional[ms.Tensor] = None,
        prompt_embeds: Optional[ms.Tensor] = None,
        negative_prompt_embeds: Optional[ms.Tensor] = None,
        pooled_prompt_embeds: Optional[ms.Tensor] = None,
        negative_pooled_prompt_embeds: Optional[ms.Tensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = False,
        callback: Optional[Callable[[int, int, ms.Tensor], None]] = None,
        callback_steps: int = 1,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        guidance_rescale: float = 0.0,
        original_size: Tuple[int, int] = None,
        crops_coords_top_left: Tuple[int, int] = (0, 0),
        target_size: Tuple[int, int] = None,
    ):
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
                instead.
            prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
                used in both text-encoders
            image (`ms.Tensor` or `PIL.Image.Image` or `np.ndarray` or `List[ms.Tensor]` or `List[PIL.Image.Image]` or `List[np.ndarray]`):
                The image(s) to modify with the pipeline.
            height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            denoising_end (`float`, *optional*):
                When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
                completed before it is intentionally prematurely terminated. As a result, the returned sample will
                still retain a substantial amount of noise as determined by the discrete timesteps selected by the
                scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
                "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
                Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
            guidance_scale (`float`, *optional*, defaults to 5.0):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            image_guidance_scale (`float`, *optional*, defaults to 1.5):
                Image guidance scale is to push the generated image towards the inital image `image`. Image guidance
                scale is enabled by setting `image_guidance_scale > 1`. Higher image guidance scale encourages to
                generate images that are closely linked to the source image `image`, usually at the expense of lower
                image quality. This pipeline requires a value of at least `1`.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            negative_prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
                `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders.
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [`schedulers.DDIMScheduler`], will be ignored for others.
            generator (`np.random.Generator` or `List[np.random.Generator]`, *optional*):
                One or a list of [numpy generator(s)](https://numpy.org/doc/stable/reference/random/generator.html)
                to make generation deterministic.
            latents (`ms.Tensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            pooled_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
                If not provided, pooled text embeddings will be generated from `prompt` input argument.
            negative_pooled_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
                input argument.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. The function will be
                called with the following arguments: `callback(step: int, timestep: int, latents: mindspore.Tensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function will be called. If not specified, the callback will be
                called at every step.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            guidance_rescale (`float`, *optional*, defaults to 0.0):
                Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
                Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
                [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
                Guidance rescale factor should fix overexposure when using zero terminal SNR.
            original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
                If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
                `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
                explained in section 2.2 of
                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
            crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
                `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
                `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
                `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
            target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
                For most cases, `target_size` should be set to the desired height and width of the generated image. If
                not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
                section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
            aesthetic_score (`float`, *optional*, defaults to 6.0):
                Used to simulate an aesthetic score of the generated image by influencing the positive text condition.
                Part of SDXL's micro-conditioning as explained in section 2.2 of
                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
            negative_aesthetic_score (`float`, *optional*, defaults to 2.5):
                Part of SDXL's micro-conditioning as explained in section 2.2 of
                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). Can be used to
                simulate an aesthetic score of the generated image by influencing the negative text condition.

        Examples:

        Returns:
            [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
            [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
            `tuple`. When returning a tuple, the first element is a list with the generated images.
        """
        # 0. Default height and width to unet
        height = height or self.default_sample_size * self.vae_scale_factor
        width = width or self.default_sample_size * self.vae_scale_factor

        original_size = original_size or (height, width)
        target_size = target_size or (height, width)

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(prompt, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds)

        if image is None:
            raise ValueError("`image` input cannot be undefined.")

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0 and image_guidance_scale >= 1.0

        # 3. Encode input prompt
        text_encoder_lora_scale = (
            cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
        )
        (
            prompt_embeds,
            negative_prompt_embeds,
            pooled_prompt_embeds,
            negative_pooled_prompt_embeds,
        ) = self.encode_prompt(
            prompt=prompt,
            prompt_2=prompt_2,
            num_images_per_prompt=num_images_per_prompt,
            do_classifier_free_guidance=do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            negative_prompt_2=negative_prompt_2,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
            lora_scale=text_encoder_lora_scale,
        )

        # 4. Preprocess image
        image = self.image_processor.preprocess(image, height=height, width=width)

        # 5. Prepare timesteps
        # to-do 如果scheduler不支持set timesteps方法呢?
        self.scheduler.set_timesteps(num_inference_steps)
        timesteps = self.scheduler.timesteps

        # 6. Prepare Image latents
        image_latents = self.prepare_image_latents(
            image,
            batch_size,
            num_images_per_prompt,
            prompt_embeds.dtype,
            do_classifier_free_guidance,
        )

        # 7. Prepare latent variables
        num_channels_latents = self.vae.config.latent_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            generator,
            latents,
        )

        # 8. Check that shapes of latents and image match the UNet channels
        num_channels_image = image_latents.shape[1]
        if num_channels_latents + num_channels_image != self.unet.config.in_channels:
            raise ValueError(
                f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
                f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
                f" `num_channels_image`: {num_channels_image} "
                f" = {num_channels_latents + num_channels_image}. Please verify the config of"
                " `pipeline.unet` or your `image` input."
            )

        # 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 10. Prepare added time ids & embeddings
        add_text_embeds = pooled_prompt_embeds
        if self.text_encoder_2 is None:
            text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
        else:
            text_encoder_projection_dim = self.text_encoder_2.config.projection_dim

        add_time_ids = self._get_add_time_ids(
            original_size,
            crops_coords_top_left,
            target_size,
            dtype=prompt_embeds.dtype,
            text_encoder_projection_dim=text_encoder_projection_dim,
        )

        if do_classifier_free_guidance:
            # The extra concat similar to how it's done in SD InstructPix2Pix.
            prompt_embeds = ops.cat([prompt_embeds, negative_prompt_embeds, negative_prompt_embeds], axis=0)
            add_text_embeds = ops.cat(
                [add_text_embeds, negative_pooled_prompt_embeds, negative_pooled_prompt_embeds], axis=0
            )
            add_time_ids = ops.cat([add_time_ids, add_time_ids, add_time_ids], axis=0)

        prompt_embeds = prompt_embeds
        add_text_embeds = add_text_embeds
        add_time_ids = add_time_ids.tile((batch_size * num_images_per_prompt, 1))

        # 11. Denoising loop
        num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
        if denoising_end is not None and isinstance(denoising_end, float) and denoising_end > 0 and denoising_end < 1:
            discrete_timestep_cutoff = int(
                round(
                    self.scheduler.config.num_train_timesteps
                    - (denoising_end * self.scheduler.config.num_train_timesteps)
                )
            )
            num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
            timesteps = timesteps[:num_inference_steps]

        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # Expand the latents if we are doing classifier free guidance.
                # The latents are expanded 3 times because for pix2pix the guidance
                # is applied for both the text and the input image.
                latent_model_input = ops.cat([latents] * 3) if do_classifier_free_guidance else latents

                # concat latents, image_latents in the channel dimension
                scaled_latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
                scaled_latent_model_input = ops.cat([scaled_latent_model_input, image_latents], axis=1)

                # predict the noise residual
                added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
                noise_pred = self.unet(
                    scaled_latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    cross_attention_kwargs=cross_attention_kwargs,
                    added_cond_kwargs=ms.mutable(added_cond_kwargs),
                    return_dict=False,
                )[0]

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_text, noise_pred_image, noise_pred_uncond = noise_pred.chunk(3)
                    noise_pred = (
                        noise_pred_uncond
                        + guidance_scale * (noise_pred_text - noise_pred_image)
                        + image_guidance_scale * (noise_pred_image - noise_pred_uncond)
                    )

                if do_classifier_free_guidance and guidance_rescale > 0.0:
                    # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
                    noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)

        if not output_type == "latent":
            # make sure the VAE is in float32 mode, as it overflows in float16
            needs_upcasting = self.vae.dtype == ms.float16 and self.vae.config.force_upcast

            if needs_upcasting:
                self.upcast_vae()
                latents = latents.to(next(iter(self.vae.post_quant_conv.get_parameters())).dtype)

            # unscale/denormalize the latents
            # denormalize with the mean and std if available and not None
            has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
            has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
            if has_latents_mean and has_latents_std:
                latents_mean = ms.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.dtype)
                latents_std = ms.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.dtype)
                latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
            else:
                latents = latents / self.vae.config.scaling_factor

            image = self.vae.decode(latents, return_dict=False)[0]

            # cast back to fp16 if needed
            if needs_upcasting:
                self.vae.to(dtype=ms.float16)
        else:
            return StableDiffusionXLPipelineOutput(images=latents)

        # apply watermark if available
        if self.watermark is not None:
            image = self.watermark.apply_watermark(image)

        image = self.image_processor.postprocess(image, output_type=output_type)

        if not return_dict:
            return (image,)

        return StableDiffusionXLPipelineOutput(images=image)

mindone.diffusers.StableDiffusionXLInstructPix2PixPipeline.__call__(prompt=None, prompt_2=None, image=None, height=None, width=None, num_inference_steps=100, denoising_end=None, guidance_scale=5.0, image_guidance_scale=1.5, negative_prompt=None, negative_prompt_2=None, num_images_per_prompt=1, eta=0.0, generator=None, latents=None, prompt_embeds=None, negative_prompt_embeds=None, pooled_prompt_embeds=None, negative_pooled_prompt_embeds=None, output_type='pil', return_dict=False, callback=None, callback_steps=1, cross_attention_kwargs=None, guidance_rescale=0.0, original_size=None, crops_coords_top_left=(0, 0), target_size=None)

Function invoked when calling the pipeline for generation.

PARAMETER DESCRIPTION
prompt

The prompt or prompts to guide the image generation. If not defined, one has to pass prompt_embeds. instead.

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

prompt_2

The prompt or prompts to be sent to the tokenizer_2 and text_encoder_2. If not defined, prompt is used in both text-encoders

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

image

The image(s) to modify with the pipeline.

TYPE: `ms.Tensor` or `PIL.Image.Image` or `np.ndarray` or `List[ms.Tensor]` or `List[PIL.Image.Image]` or `List[np.ndarray]` DEFAULT: None

height

The height in pixels of the generated image.

TYPE: `int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor DEFAULT: None

width

The width in pixels of the generated image.

TYPE: `int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor DEFAULT: None

num_inference_steps

The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.

TYPE: `int`, *optional*, defaults to 50 DEFAULT: 100

denoising_end

When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be completed before it is intentionally prematurely terminated. As a result, the returned sample will still retain a substantial amount of noise as determined by the discrete timesteps selected by the scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a "Mixture of Denoisers" multi-pipeline setup, as elaborated in Refining the Image Output

TYPE: `float`, *optional* DEFAULT: None

guidance_scale

Guidance scale as defined in Classifier-Free Diffusion Guidance. guidance_scale is defined as w of equation 2. of Imagen Paper. Guidance scale is enabled by setting guidance_scale > 1. Higher guidance scale encourages to generate images that are closely linked to the text prompt, usually at the expense of lower image quality.

TYPE: `float`, *optional*, defaults to 5.0 DEFAULT: 5.0

image_guidance_scale

Image guidance scale is to push the generated image towards the inital image image. Image guidance scale is enabled by setting image_guidance_scale > 1. Higher image guidance scale encourages to generate images that are closely linked to the source image image, usually at the expense of lower image quality. This pipeline requires a value of at least 1.

TYPE: `float`, *optional*, defaults to 1.5 DEFAULT: 1.5

negative_prompt

The prompt or prompts not to guide the image generation. If not defined, one has to pass negative_prompt_embeds instead. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1).

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

negative_prompt_2

The prompt or prompts not to guide the image generation to be sent to tokenizer_2 and text_encoder_2. If not defined, negative_prompt is used in both text-encoders.

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

num_images_per_prompt

The number of images to generate per prompt.

TYPE: `int`, *optional*, defaults to 1 DEFAULT: 1

eta

Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [schedulers.DDIMScheduler], will be ignored for others.

TYPE: `float`, *optional*, defaults to 0.0 DEFAULT: 0.0

generator

One or a list of numpy generator(s) to make generation deterministic.

TYPE: `np.random.Generator` or `List[np.random.Generator]`, *optional* DEFAULT: None

latents

Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random generator.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

prompt_embeds

Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_prompt_embeds

Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

pooled_prompt_embeds

Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated from prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_pooled_prompt_embeds

Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled negative_prompt_embeds will be generated from negative_prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

output_type

The output format of the generate image. Choose between PIL: PIL.Image.Image or np.array.

TYPE: `str`, *optional*, defaults to `"pil"` DEFAULT: 'pil'

return_dict

Whether or not to return a [~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput] instead of a plain tuple.

TYPE: `bool`, *optional*, defaults to `True` DEFAULT: False

callback

A function that will be called every callback_steps steps during inference. The function will be called with the following arguments: callback(step: int, timestep: int, latents: mindspore.Tensor).

TYPE: `Callable`, *optional* DEFAULT: None

callback_steps

The frequency at which the callback function will be called. If not specified, the callback will be called at every step.

TYPE: `int`, *optional*, defaults to 1 DEFAULT: 1

cross_attention_kwargs

A kwargs dictionary that if specified is passed along to the AttentionProcessor as defined under self.processor in diffusers.models.attention_processor.

TYPE: `dict`, *optional* DEFAULT: None

guidance_rescale

Guidance rescale factor proposed by Common Diffusion Noise Schedules and Sample Steps are Flawed guidance_scale is defined as φ in equation 16. of Common Diffusion Noise Schedules and Sample Steps are Flawed. Guidance rescale factor should fix overexposure when using zero terminal SNR.

TYPE: `float`, *optional*, defaults to 0.0 DEFAULT: 0.0

original_size

If original_size is not the same as target_size the image will appear to be down- or upsampled. original_size defaults to (height, width) if not specified. Part of SDXL's micro-conditioning as explained in section 2.2 of https://huggingface.co/papers/2307.01952.

TYPE: `Tuple[int]`, *optional*, defaults to (1024, 1024 DEFAULT: None

crops_coords_top_left

crops_coords_top_left can be used to generate an image that appears to be "cropped" from the position crops_coords_top_left downwards. Favorable, well-centered images are usually achieved by setting crops_coords_top_left to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of https://huggingface.co/papers/2307.01952.

TYPE: `Tuple[int]`, *optional*, defaults to (0, 0 DEFAULT: (0, 0)

target_size

For most cases, target_size should be set to the desired height and width of the generated image. If not specified it will default to (height, width). Part of SDXL's micro-conditioning as explained in section 2.2 of https://huggingface.co/papers/2307.01952.

TYPE: `Tuple[int]`, *optional*, defaults to (1024, 1024 DEFAULT: None

aesthetic_score

Used to simulate an aesthetic score of the generated image by influencing the positive text condition. Part of SDXL's micro-conditioning as explained in section 2.2 of https://huggingface.co/papers/2307.01952.

TYPE: `float`, *optional*, defaults to 6.0

negative_aesthetic_score

Part of SDXL's micro-conditioning as explained in section 2.2 of https://huggingface.co/papers/2307.01952. Can be used to simulate an aesthetic score of the generated image by influencing the negative text condition.

TYPE: `float`, *optional*, defaults to 2.5

RETURNS DESCRIPTION

[~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput] or tuple:

[~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput] if return_dict is True, otherwise a

tuple. When returning a tuple, the first element is a list with the generated images.

Source code in mindone/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
def __call__(
    self,
    prompt: Union[str, List[str]] = None,
    prompt_2: Optional[Union[str, List[str]]] = None,
    image: PipelineImageInput = None,
    height: Optional[int] = None,
    width: Optional[int] = None,
    num_inference_steps: int = 100,
    denoising_end: Optional[float] = None,
    guidance_scale: float = 5.0,
    image_guidance_scale: float = 1.5,
    negative_prompt: Optional[Union[str, List[str]]] = None,
    negative_prompt_2: Optional[Union[str, List[str]]] = None,
    num_images_per_prompt: Optional[int] = 1,
    eta: float = 0.0,
    generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
    latents: Optional[ms.Tensor] = None,
    prompt_embeds: Optional[ms.Tensor] = None,
    negative_prompt_embeds: Optional[ms.Tensor] = None,
    pooled_prompt_embeds: Optional[ms.Tensor] = None,
    negative_pooled_prompt_embeds: Optional[ms.Tensor] = None,
    output_type: Optional[str] = "pil",
    return_dict: bool = False,
    callback: Optional[Callable[[int, int, ms.Tensor], None]] = None,
    callback_steps: int = 1,
    cross_attention_kwargs: Optional[Dict[str, Any]] = None,
    guidance_rescale: float = 0.0,
    original_size: Tuple[int, int] = None,
    crops_coords_top_left: Tuple[int, int] = (0, 0),
    target_size: Tuple[int, int] = None,
):
    r"""
    Function invoked when calling the pipeline for generation.

    Args:
        prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
            instead.
        prompt_2 (`str` or `List[str]`, *optional*):
            The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
            used in both text-encoders
        image (`ms.Tensor` or `PIL.Image.Image` or `np.ndarray` or `List[ms.Tensor]` or `List[PIL.Image.Image]` or `List[np.ndarray]`):
            The image(s) to modify with the pipeline.
        height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
            The height in pixels of the generated image.
        width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
            The width in pixels of the generated image.
        num_inference_steps (`int`, *optional*, defaults to 50):
            The number of denoising steps. More denoising steps usually lead to a higher quality image at the
            expense of slower inference.
        denoising_end (`float`, *optional*):
            When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
            completed before it is intentionally prematurely terminated. As a result, the returned sample will
            still retain a substantial amount of noise as determined by the discrete timesteps selected by the
            scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
            "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
            Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
        guidance_scale (`float`, *optional*, defaults to 5.0):
            Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
            `guidance_scale` is defined as `w` of equation 2. of [Imagen
            Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
            1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
            usually at the expense of lower image quality.
        image_guidance_scale (`float`, *optional*, defaults to 1.5):
            Image guidance scale is to push the generated image towards the inital image `image`. Image guidance
            scale is enabled by setting `image_guidance_scale > 1`. Higher image guidance scale encourages to
            generate images that are closely linked to the source image `image`, usually at the expense of lower
            image quality. This pipeline requires a value of at least `1`.
        negative_prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts not to guide the image generation. If not defined, one has to pass
            `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
            less than `1`).
        negative_prompt_2 (`str` or `List[str]`, *optional*):
            The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
            `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders.
        num_images_per_prompt (`int`, *optional*, defaults to 1):
            The number of images to generate per prompt.
        eta (`float`, *optional*, defaults to 0.0):
            Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
            [`schedulers.DDIMScheduler`], will be ignored for others.
        generator (`np.random.Generator` or `List[np.random.Generator]`, *optional*):
            One or a list of [numpy generator(s)](https://numpy.org/doc/stable/reference/random/generator.html)
            to make generation deterministic.
        latents (`ms.Tensor`, *optional*):
            Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
            generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
            tensor will ge generated by sampling using the supplied random `generator`.
        prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
            provided, text embeddings will be generated from `prompt` input argument.
        negative_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
            weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
            argument.
        pooled_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
            If not provided, pooled text embeddings will be generated from `prompt` input argument.
        negative_pooled_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
            weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
            input argument.
        output_type (`str`, *optional*, defaults to `"pil"`):
            The output format of the generate image. Choose between
            [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
        return_dict (`bool`, *optional*, defaults to `True`):
            Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] instead of a
            plain tuple.
        callback (`Callable`, *optional*):
            A function that will be called every `callback_steps` steps during inference. The function will be
            called with the following arguments: `callback(step: int, timestep: int, latents: mindspore.Tensor)`.
        callback_steps (`int`, *optional*, defaults to 1):
            The frequency at which the `callback` function will be called. If not specified, the callback will be
            called at every step.
        cross_attention_kwargs (`dict`, *optional*):
            A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
            `self.processor` in
            [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
        guidance_rescale (`float`, *optional*, defaults to 0.0):
            Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
            Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
            [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
            Guidance rescale factor should fix overexposure when using zero terminal SNR.
        original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
            If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
            `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
            explained in section 2.2 of
            [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
        crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
            `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
            `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
            `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
            [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
        target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
            For most cases, `target_size` should be set to the desired height and width of the generated image. If
            not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
            section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
        aesthetic_score (`float`, *optional*, defaults to 6.0):
            Used to simulate an aesthetic score of the generated image by influencing the positive text condition.
            Part of SDXL's micro-conditioning as explained in section 2.2 of
            [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
        negative_aesthetic_score (`float`, *optional*, defaults to 2.5):
            Part of SDXL's micro-conditioning as explained in section 2.2 of
            [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). Can be used to
            simulate an aesthetic score of the generated image by influencing the negative text condition.

    Examples:

    Returns:
        [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
        [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
        `tuple`. When returning a tuple, the first element is a list with the generated images.
    """
    # 0. Default height and width to unet
    height = height or self.default_sample_size * self.vae_scale_factor
    width = width or self.default_sample_size * self.vae_scale_factor

    original_size = original_size or (height, width)
    target_size = target_size or (height, width)

    # 1. Check inputs. Raise error if not correct
    self.check_inputs(prompt, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds)

    if image is None:
        raise ValueError("`image` input cannot be undefined.")

    # 2. Define call parameters
    if prompt is not None and isinstance(prompt, str):
        batch_size = 1
    elif prompt is not None and isinstance(prompt, list):
        batch_size = len(prompt)
    else:
        batch_size = prompt_embeds.shape[0]

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    do_classifier_free_guidance = guidance_scale > 1.0 and image_guidance_scale >= 1.0

    # 3. Encode input prompt
    text_encoder_lora_scale = (
        cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
    )
    (
        prompt_embeds,
        negative_prompt_embeds,
        pooled_prompt_embeds,
        negative_pooled_prompt_embeds,
    ) = self.encode_prompt(
        prompt=prompt,
        prompt_2=prompt_2,
        num_images_per_prompt=num_images_per_prompt,
        do_classifier_free_guidance=do_classifier_free_guidance,
        negative_prompt=negative_prompt,
        negative_prompt_2=negative_prompt_2,
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=negative_prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
        lora_scale=text_encoder_lora_scale,
    )

    # 4. Preprocess image
    image = self.image_processor.preprocess(image, height=height, width=width)

    # 5. Prepare timesteps
    # to-do 如果scheduler不支持set timesteps方法呢?
    self.scheduler.set_timesteps(num_inference_steps)
    timesteps = self.scheduler.timesteps

    # 6. Prepare Image latents
    image_latents = self.prepare_image_latents(
        image,
        batch_size,
        num_images_per_prompt,
        prompt_embeds.dtype,
        do_classifier_free_guidance,
    )

    # 7. Prepare latent variables
    num_channels_latents = self.vae.config.latent_channels
    latents = self.prepare_latents(
        batch_size * num_images_per_prompt,
        num_channels_latents,
        height,
        width,
        prompt_embeds.dtype,
        generator,
        latents,
    )

    # 8. Check that shapes of latents and image match the UNet channels
    num_channels_image = image_latents.shape[1]
    if num_channels_latents + num_channels_image != self.unet.config.in_channels:
        raise ValueError(
            f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
            f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
            f" `num_channels_image`: {num_channels_image} "
            f" = {num_channels_latents + num_channels_image}. Please verify the config of"
            " `pipeline.unet` or your `image` input."
        )

    # 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
    extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

    # 10. Prepare added time ids & embeddings
    add_text_embeds = pooled_prompt_embeds
    if self.text_encoder_2 is None:
        text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
    else:
        text_encoder_projection_dim = self.text_encoder_2.config.projection_dim

    add_time_ids = self._get_add_time_ids(
        original_size,
        crops_coords_top_left,
        target_size,
        dtype=prompt_embeds.dtype,
        text_encoder_projection_dim=text_encoder_projection_dim,
    )

    if do_classifier_free_guidance:
        # The extra concat similar to how it's done in SD InstructPix2Pix.
        prompt_embeds = ops.cat([prompt_embeds, negative_prompt_embeds, negative_prompt_embeds], axis=0)
        add_text_embeds = ops.cat(
            [add_text_embeds, negative_pooled_prompt_embeds, negative_pooled_prompt_embeds], axis=0
        )
        add_time_ids = ops.cat([add_time_ids, add_time_ids, add_time_ids], axis=0)

    prompt_embeds = prompt_embeds
    add_text_embeds = add_text_embeds
    add_time_ids = add_time_ids.tile((batch_size * num_images_per_prompt, 1))

    # 11. Denoising loop
    num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
    if denoising_end is not None and isinstance(denoising_end, float) and denoising_end > 0 and denoising_end < 1:
        discrete_timestep_cutoff = int(
            round(
                self.scheduler.config.num_train_timesteps
                - (denoising_end * self.scheduler.config.num_train_timesteps)
            )
        )
        num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
        timesteps = timesteps[:num_inference_steps]

    with self.progress_bar(total=num_inference_steps) as progress_bar:
        for i, t in enumerate(timesteps):
            # Expand the latents if we are doing classifier free guidance.
            # The latents are expanded 3 times because for pix2pix the guidance
            # is applied for both the text and the input image.
            latent_model_input = ops.cat([latents] * 3) if do_classifier_free_guidance else latents

            # concat latents, image_latents in the channel dimension
            scaled_latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
            scaled_latent_model_input = ops.cat([scaled_latent_model_input, image_latents], axis=1)

            # predict the noise residual
            added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
            noise_pred = self.unet(
                scaled_latent_model_input,
                t,
                encoder_hidden_states=prompt_embeds,
                cross_attention_kwargs=cross_attention_kwargs,
                added_cond_kwargs=ms.mutable(added_cond_kwargs),
                return_dict=False,
            )[0]

            # perform guidance
            if do_classifier_free_guidance:
                noise_pred_text, noise_pred_image, noise_pred_uncond = noise_pred.chunk(3)
                noise_pred = (
                    noise_pred_uncond
                    + guidance_scale * (noise_pred_text - noise_pred_image)
                    + image_guidance_scale * (noise_pred_image - noise_pred_uncond)
                )

            if do_classifier_free_guidance and guidance_rescale > 0.0:
                # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
                noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)

            # compute the previous noisy sample x_t -> x_t-1
            latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

            # call the callback, if provided
            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                progress_bar.update()
                if callback is not None and i % callback_steps == 0:
                    step_idx = i // getattr(self.scheduler, "order", 1)
                    callback(step_idx, t, latents)

    if not output_type == "latent":
        # make sure the VAE is in float32 mode, as it overflows in float16
        needs_upcasting = self.vae.dtype == ms.float16 and self.vae.config.force_upcast

        if needs_upcasting:
            self.upcast_vae()
            latents = latents.to(next(iter(self.vae.post_quant_conv.get_parameters())).dtype)

        # unscale/denormalize the latents
        # denormalize with the mean and std if available and not None
        has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
        has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
        if has_latents_mean and has_latents_std:
            latents_mean = ms.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.dtype)
            latents_std = ms.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.dtype)
            latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
        else:
            latents = latents / self.vae.config.scaling_factor

        image = self.vae.decode(latents, return_dict=False)[0]

        # cast back to fp16 if needed
        if needs_upcasting:
            self.vae.to(dtype=ms.float16)
    else:
        return StableDiffusionXLPipelineOutput(images=latents)

    # apply watermark if available
    if self.watermark is not None:
        image = self.watermark.apply_watermark(image)

    image = self.image_processor.postprocess(image, output_type=output_type)

    if not return_dict:
        return (image,)

    return StableDiffusionXLPipelineOutput(images=image)

mindone.diffusers.StableDiffusionXLInstructPix2PixPipeline.encode_prompt(prompt, prompt_2=None, num_images_per_prompt=1, do_classifier_free_guidance=True, negative_prompt=None, negative_prompt_2=None, prompt_embeds=None, negative_prompt_embeds=None, pooled_prompt_embeds=None, negative_pooled_prompt_embeds=None, lora_scale=None)

Encodes the prompt into text encoder hidden states.

PARAMETER DESCRIPTION
prompt

prompt to be encoded

TYPE: `str` or `List[str]`, *optional*

prompt_2

The prompt or prompts to be sent to the tokenizer_2 and text_encoder_2. If not defined, prompt is used in both text-encoders

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

num_images_per_prompt

number of images that should be generated per prompt

TYPE: `int` DEFAULT: 1

do_classifier_free_guidance

whether to use classifier free guidance or not

TYPE: `bool` DEFAULT: True

negative_prompt

The prompt or prompts not to guide the image generation. If not defined, one has to pass negative_prompt_embeds instead. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1).

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

negative_prompt_2

The prompt or prompts not to guide the image generation to be sent to tokenizer_2 and text_encoder_2. If not defined, negative_prompt is used in both text-encoders

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

prompt_embeds

Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_prompt_embeds

Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

pooled_prompt_embeds

Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated from prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_pooled_prompt_embeds

Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled negative_prompt_embeds will be generated from negative_prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

lora_scale

A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.

TYPE: `float`, *optional* DEFAULT: None

Source code in mindone/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
def encode_prompt(
    self,
    prompt: str,
    prompt_2: Optional[str] = None,
    num_images_per_prompt: int = 1,
    do_classifier_free_guidance: bool = True,
    negative_prompt: Optional[str] = None,
    negative_prompt_2: Optional[str] = None,
    prompt_embeds: Optional[ms.Tensor] = None,
    negative_prompt_embeds: Optional[ms.Tensor] = None,
    pooled_prompt_embeds: Optional[ms.Tensor] = None,
    negative_pooled_prompt_embeds: Optional[ms.Tensor] = None,
    lora_scale: Optional[float] = None,
):
    r"""
    Encodes the prompt into text encoder hidden states.

    Args:
        prompt (`str` or `List[str]`, *optional*):
            prompt to be encoded
        prompt_2 (`str` or `List[str]`, *optional*):
            The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
            used in both text-encoders
        num_images_per_prompt (`int`):
            number of images that should be generated per prompt
        do_classifier_free_guidance (`bool`):
            whether to use classifier free guidance or not
        negative_prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts not to guide the image generation. If not defined, one has to pass
            `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
            less than `1`).
        negative_prompt_2 (`str` or `List[str]`, *optional*):
            The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
            `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
        prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
            provided, text embeddings will be generated from `prompt` input argument.
        negative_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
            weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
            argument.
        pooled_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
            If not provided, pooled text embeddings will be generated from `prompt` input argument.
        negative_pooled_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
            weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
            input argument.
        lora_scale (`float`, *optional*):
            A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
    """

    # set lora scale so that monkey patched LoRA
    # function of text encoder can correctly access it
    if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
        self._lora_scale = lora_scale

        # dynamically adjust the LoRA scale
        if self.text_encoder is not None:
            scale_lora_layers(self.text_encoder, lora_scale)

        if self.text_encoder_2 is not None:
            scale_lora_layers(self.text_encoder_2, lora_scale)

    if prompt is not None and isinstance(prompt, str):
        batch_size = 1
    elif prompt is not None and isinstance(prompt, list):
        batch_size = len(prompt)
    else:
        batch_size = prompt_embeds.shape[0]

    # Define tokenizers and text encoders
    tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
    text_encoders = (
        [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
    )

    if prompt_embeds is None:
        prompt_2 = prompt_2 or prompt
        # textual inversion: process multi-vector tokens if necessary
        prompt_embeds_list = []
        prompts = [prompt, prompt_2]
        for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
            if isinstance(self, TextualInversionLoaderMixin):
                prompt = self.maybe_convert_prompt(prompt, tokenizer)

            text_inputs = tokenizer(
                prompt,
                padding="max_length",
                max_length=tokenizer.model_max_length,
                truncation=True,
                return_tensors="np",
            )

            text_input_ids = text_inputs.input_ids
            untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="np").input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not np.array_equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {tokenizer.model_max_length} tokens: {removed_text}"
                )

            prompt_embeds = text_encoder(ms.Tensor(text_input_ids), output_hidden_states=True)

            # We are only ALWAYS interested in the pooled output of the final text encoder
            pooled_prompt_embeds = prompt_embeds[0]
            prompt_embeds = prompt_embeds[-1][-2]

            prompt_embeds_list.append(prompt_embeds)

        prompt_embeds = ops.concat(prompt_embeds_list, axis=-1)

    # get unconditional embeddings for classifier free guidance
    zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
    if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
        negative_prompt_embeds = ops.zeros_like(prompt_embeds)
        negative_pooled_prompt_embeds = ops.zeros_like(pooled_prompt_embeds)
    elif do_classifier_free_guidance and negative_prompt_embeds is None:
        negative_prompt = negative_prompt or ""
        negative_prompt_2 = negative_prompt_2 or negative_prompt

        uncond_tokens: List[str]
        if prompt is not None and type(prompt) is not type(negative_prompt):
            raise TypeError(
                f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                f" {type(prompt)}."
            )
        elif isinstance(negative_prompt, str):
            uncond_tokens = [negative_prompt, negative_prompt_2]
        elif batch_size != len(negative_prompt):
            raise ValueError(
                f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                " the batch size of `prompt`."
            )
        else:
            uncond_tokens = [negative_prompt, negative_prompt_2]

        negative_prompt_embeds_list = []
        for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
            if isinstance(self, TextualInversionLoaderMixin):
                negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)

            max_length = prompt_embeds.shape[1]
            uncond_input = tokenizer(
                negative_prompt,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="np",
            )

            negative_prompt_embeds = text_encoder(
                ms.Tensor(uncond_input.input_ids),
                output_hidden_states=True,
            )
            # We are only ALWAYS interested in the pooled output of the final text encoder
            negative_pooled_prompt_embeds = negative_prompt_embeds[0]
            negative_prompt_embeds = negative_prompt_embeds[-1][-2]

            negative_prompt_embeds_list.append(negative_prompt_embeds)

        negative_prompt_embeds = ops.concat(negative_prompt_embeds_list, axis=-1)

    prompt_embeds_dtype = self.text_encoder_2.dtype if self.text_encoder_2 is not None else self.unet.dtype
    prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype)
    bs_embed, seq_len, _ = prompt_embeds.shape
    # duplicate text embeddings for each generation per prompt, using mps friendly method
    prompt_embeds = prompt_embeds.tile((1, num_images_per_prompt, 1))
    prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

    if do_classifier_free_guidance:
        # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
        seq_len = negative_prompt_embeds.shape[1]
        negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype)
        negative_prompt_embeds = negative_prompt_embeds.tile((1, num_images_per_prompt, 1))
        negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

    pooled_prompt_embeds = pooled_prompt_embeds.tile((1, num_images_per_prompt)).view(
        bs_embed * num_images_per_prompt, -1
    )
    if do_classifier_free_guidance:
        negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.tile((1, num_images_per_prompt)).view(
            bs_embed * num_images_per_prompt, -1
        )

    return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds