Skip to content

MultiDiffusion

MultiDiffusion: Fusing Diffusion Paths for Controlled Image Generation is by Omer Bar-Tal, Lior Yariv, Yaron Lipman, and Tali Dekel.

The abstract from the paper is:

Recent advances in text-to-image generation with diffusion models present transformative capabilities in image quality. However, user controllability of the generated image, and fast adaptation to new tasks still remains an open challenge, currently mostly addressed by costly and long re-training and fine-tuning or ad-hoc adaptations to specific image generation tasks. In this work, we present MultiDiffusion, a unified framework that enables versatile and controllable image generation, using a pre-trained text-to-image diffusion model, without any further training or finetuning. At the center of our approach is a new generation process, based on an optimization task that binds together multiple diffusion generation processes with a shared set of parameters or constraints. We show that MultiDiffusion can be readily applied to generate high quality and diverse images that adhere to user-provided controls, such as desired aspect ratio (e.g., panorama), and spatial guiding signals, ranging from tight segmentation masks to bounding boxes.

You can find additional information about MultiDiffusion on the project page, original codebase, and try it out in a demo.

Tips

While calling StableDiffusionPanoramaPipeline, it's possible to specify the view_batch_size parameter to be > 1 to speedup the generation process and increase VRAM usage.

To generate panorama-like images make sure you pass the width parameter accordingly. We recommend a width value of 2048 which is the default.

Circular padding is applied to ensure there are no stitching artifacts when working with panoramas to ensure a seamless transition from the rightmost part to the leftmost part. By enabling circular padding (set circular_padding=True), the operation applies additional crops after the rightmost point of the image, allowing the model to "see” the transition from the rightmost part to the leftmost part. This helps maintain visual consistency in a 360-degree sense and creates a proper “panorama” that can be viewed using 360-degree panorama viewers. When decoding latents in Stable Diffusion, circular padding is applied to ensure that the decoded latents match in the RGB space.

For example, without circular padding, there is a stitching artifact (default): img

But with circular padding, the right and the left parts are matching (circular_padding=True): img

Tip

Make sure to check out the Schedulers guide to learn how to explore the tradeoff between scheduler speed and quality.

mindone.diffusers.StableDiffusionPanoramaPipeline

Bases: DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin, IPAdapterMixin

Pipeline for text-to-image generation using MultiDiffusion.

This model inherits from [DiffusionPipeline]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).

The pipeline also inherits the following loading methods
  • [~loaders.TextualInversionLoaderMixin.load_textual_inversion] for loading textual inversion embeddings
  • [~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights] for loading LoRA weights
  • [~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights] for saving LoRA weights
  • [~loaders.IPAdapterMixin.load_ip_adapter] for loading IP Adapters
PARAMETER DESCRIPTION
vae

Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.

TYPE: [`AutoencoderKL`]

text_encoder

Frozen text-encoder (clip-vit-large-patch14).

TYPE: [`~transformers.CLIPTextModel`]

tokenizer

A CLIPTokenizer to tokenize text.

TYPE: [`~transformers.CLIPTokenizer`]

unet

A UNet2DConditionModel to denoise the encoded image latents.

TYPE: [`UNet2DConditionModel`]

scheduler

A scheduler to be used in combination with unet to denoise the encoded image latents. Can be one of [DDIMScheduler], [LMSDiscreteScheduler], or [PNDMScheduler].

TYPE: [`SchedulerMixin`]

safety_checker

Classification module that estimates whether generated images could be considered offensive or harmful. Please refer to the model card for more details about a model's potential harms.

TYPE: [`StableDiffusionSafetyChecker`]

feature_extractor

A CLIPImageProcessor to extract features from generated images; used as inputs to the safety_checker.

TYPE: [`~transformers.CLIPImageProcessor`]

Source code in mindone/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
class StableDiffusionPanoramaPipeline(
    DiffusionPipeline,
    StableDiffusionMixin,
    TextualInversionLoaderMixin,
    StableDiffusionLoraLoaderMixin,
    IPAdapterMixin,
):
    r"""
    Pipeline for text-to-image generation using MultiDiffusion.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).

    The pipeline also inherits the following loading methods:
        - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
        - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
        - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
        - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
        text_encoder ([`~transformers.CLIPTextModel`]):
            Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
        tokenizer ([`~transformers.CLIPTokenizer`]):
            A `CLIPTokenizer` to tokenize text.
        unet ([`UNet2DConditionModel`]):
            A `UNet2DConditionModel` to denoise the encoded image latents.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        safety_checker ([`StableDiffusionSafetyChecker`]):
            Classification module that estimates whether generated images could be considered offensive or harmful.
            Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
            about a model's potential harms.
        feature_extractor ([`~transformers.CLIPImageProcessor`]):
            A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
    """

    model_cpu_offload_seq = "text_encoder->unet->vae"
    _optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
    _exclude_from_cpu_offload = ["safety_checker"]
    _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
        scheduler: DDIMScheduler,
        safety_checker: StableDiffusionSafetyChecker,
        feature_extractor: CLIPImageProcessor,
        image_encoder: Optional[CLIPVisionModelWithProjection] = None,
        requires_safety_checker: bool = True,
    ):
        super().__init__()

        if safety_checker is None and requires_safety_checker:
            logger.warning(
                f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
                " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
                " results in services or applications open to the public. Both the diffusers team and Hugging Face"
                " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
                " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
                " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
            )

        if safety_checker is not None and feature_extractor is None:
            raise ValueError(
                "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
                " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
            )

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
            image_encoder=image_encoder,
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
        self.register_to_config(requires_safety_checker=requires_safety_checker)

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
    def _encode_prompt(
        self,
        prompt,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[ms.Tensor] = None,
        negative_prompt_embeds: Optional[ms.Tensor] = None,
        lora_scale: Optional[float] = None,
        **kwargs,
    ):
        deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."  # noqa: E501
        deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)

        prompt_embeds_tuple = self.encode_prompt(
            prompt=prompt,
            num_images_per_prompt=num_images_per_prompt,
            do_classifier_free_guidance=do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=lora_scale,
            **kwargs,
        )

        # concatenate for backwards comp
        prompt_embeds = ops.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])

        return prompt_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
    def encode_prompt(
        self,
        prompt,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[ms.Tensor] = None,
        negative_prompt_embeds: Optional[ms.Tensor] = None,
        lora_scale: Optional[float] = None,
        clip_skip: Optional[int] = None,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            lora_scale (`float`, *optional*):
                A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
        """
        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
        if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
            self._lora_scale = lora_scale

            # dynamically adjust the LoRA scale
            scale_lora_layers(self.text_encoder, lora_scale)

        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if prompt_embeds is None:
            # textual inversion: process multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                prompt = self.maybe_convert_prompt(prompt, self.tokenizer)

            text_inputs = self.tokenizer(
                prompt,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="np",
            )
            text_input_ids = text_inputs.input_ids
            untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="np").input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not np.array_equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {self.tokenizer.model_max_length} tokens: {removed_text}"
                )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = ms.Tensor(text_inputs.attention_mask)
            else:
                attention_mask = None

            if clip_skip is None:
                prompt_embeds = self.text_encoder(ms.Tensor(text_input_ids), attention_mask=attention_mask)
                prompt_embeds = prompt_embeds[0]
            else:
                prompt_embeds = self.text_encoder(
                    ms.Tensor(text_input_ids), attention_mask=attention_mask, output_hidden_states=True
                )
                # Access the `hidden_states` first, that contains a tuple of
                # all the hidden states from the encoder layers. Then index into
                # the tuple to access the hidden states from the desired layer.
                prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
                # We also need to apply the final LayerNorm here to not mess with the
                # representations. The `last_hidden_states` that we typically use for
                # obtaining the final prompt representations passes through the LayerNorm
                # layer.
                prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)

        if self.text_encoder is not None:
            prompt_embeds_dtype = self.text_encoder.dtype
        elif self.unet is not None:
            prompt_embeds_dtype = self.unet.dtype
        else:
            prompt_embeds_dtype = prompt_embeds.dtype

        prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype)

        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.tile((1, num_images_per_prompt, 1))
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif prompt is not None and type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

            # textual inversion: process multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)

            max_length = prompt_embeds.shape[1]
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="np",
            )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = ms.Tensor(uncond_input.attention_mask)
            else:
                attention_mask = None

            negative_prompt_embeds = self.text_encoder(
                ms.Tensor(uncond_input.input_ids),
                attention_mask=attention_mask,
            )
            negative_prompt_embeds = negative_prompt_embeds[0]

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

            negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype)

            negative_prompt_embeds = negative_prompt_embeds.tile((1, num_images_per_prompt, 1))
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

        if self.text_encoder is not None:
            if isinstance(self, StableDiffusionLoraLoaderMixin):
                # Retrieve the original scale by scaling back the LoRA layers
                unscale_lora_layers(self.text_encoder, lora_scale)

        return prompt_embeds, negative_prompt_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
    def encode_image(self, image, num_images_per_prompt, output_hidden_states=None):
        dtype = next(self.image_encoder.get_parameters()).dtype

        if not isinstance(image, ms.Tensor):
            image = self.feature_extractor(image, return_tensors="np").pixel_values
            image = ms.Tensor(image)

        image = image.to(dtype=dtype)
        if output_hidden_states:
            image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True)[2][-2]
            image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_enc_hidden_states = self.image_encoder(ops.zeros_like(image), output_hidden_states=True)[2][-2]
            uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
                num_images_per_prompt, dim=0
            )
            return image_enc_hidden_states, uncond_image_enc_hidden_states
        else:
            image_embeds = self.image_encoder(image)[0]
            image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_embeds = ops.zeros_like(image_embeds)

            return image_embeds, uncond_image_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
    def prepare_ip_adapter_image_embeds(
        self, ip_adapter_image, ip_adapter_image_embeds, num_images_per_prompt, do_classifier_free_guidance
    ):
        image_embeds = []
        if do_classifier_free_guidance:
            negative_image_embeds = []
        if ip_adapter_image_embeds is None:
            if not isinstance(ip_adapter_image, list):
                ip_adapter_image = [ip_adapter_image]

            if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
                raise ValueError(
                    f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."  # noqa: E501
                )

            for single_ip_adapter_image, image_proj_layer in zip(
                ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
            ):
                output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
                single_image_embeds, single_negative_image_embeds = self.encode_image(
                    single_ip_adapter_image, 1, output_hidden_state
                )

                image_embeds.append(single_image_embeds[None, :])
                if do_classifier_free_guidance:
                    negative_image_embeds.append(single_negative_image_embeds[None, :])
        else:
            for single_image_embeds in ip_adapter_image_embeds:
                if do_classifier_free_guidance:
                    single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
                    negative_image_embeds.append(single_negative_image_embeds)
                image_embeds.append(single_image_embeds)

        ip_adapter_image_embeds = []
        for i, single_image_embeds in enumerate(image_embeds):
            single_image_embeds = ops.cat([single_image_embeds] * num_images_per_prompt, axis=0)
            if do_classifier_free_guidance:
                single_negative_image_embeds = ops.cat([negative_image_embeds[i]] * num_images_per_prompt, axis=0)
                single_image_embeds = ops.cat([single_negative_image_embeds, single_image_embeds], axis=0)

            ip_adapter_image_embeds.append(single_image_embeds)

        return ip_adapter_image_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
    def run_safety_checker(self, image, dtype):
        if self.safety_checker is None:
            has_nsfw_concept = None
        else:
            if ops.is_tensor(image):
                feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
            else:
                feature_extractor_input = self.image_processor.numpy_to_pil(image)
            safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="np")
            image, has_nsfw_concept = self.safety_checker(
                images=image, clip_input=ms.Tensor(safety_checker_input.pixel_values).to(dtype)
            )

            # Warning for safety checker operations here as it couldn't been done in construct()
            if ops.any(has_nsfw_concept):
                logger.warning(
                    "Potential NSFW content was detected in one or more images. A black image will be returned instead."
                    " Try again with a different prompt and/or seed."
                )
        return image, has_nsfw_concept

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
    def decode_latents(self, latents):
        deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
        deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)

        latents = 1 / self.vae.config.scaling_factor * latents
        image = self.vae.decode(latents, return_dict=False)[0]
        image = (image / 2 + 0.5).clamp(0, 1)
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
        image = image.permute(0, 2, 3, 1).float().numpy()
        return image

    def decode_latents_with_padding(self, latents: ms.Tensor, padding: int = 8) -> ms.Tensor:
        """
        Decode the given latents with padding for circular inference.

        Args:
            latents (ms.Tensor): The input latents to decode.
            padding (int, optional): The number of latents to add on each side for padding. Defaults to 8.

        Returns:
            ms.Tensor: The decoded image with padding removed.

        Notes:
            - The padding is added to remove boundary artifacts and improve the output quality.
            - This would slightly increase the memory usage.
            - The padding pixels are then removed from the decoded image.

        """
        latents = 1 / self.vae.config.scaling_factor * latents
        latents_left = latents[..., :padding]
        latents_right = latents[..., -padding:]
        latents = ops.cat((latents_right, latents, latents_left), axis=-1)
        image = self.vae.decode(latents, return_dict=False)[0]
        padding_pix = self.vae_scale_factor * padding
        image = image[..., padding_pix:-padding_pix]
        return image

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.check_inputs
    def check_inputs(
        self,
        prompt,
        height,
        width,
        callback_steps,
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
        ip_adapter_image=None,
        ip_adapter_image_embeds=None,
        callback_on_step_end_tensor_inputs=None,
    ):
        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

        if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )
        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"  # noqa: E501
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

        if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
            raise ValueError(
                "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
            )

        if ip_adapter_image_embeds is not None:
            if not isinstance(ip_adapter_image_embeds, list):
                raise ValueError(
                    f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
                )
            elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
                raise ValueError(
                    f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
                )

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
    def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, generator, latents=None):
        shape = (
            batch_size,
            num_channels_latents,
            int(height) // self.vae_scale_factor,
            int(width) // self.vae_scale_factor,
        )
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(shape, generator=generator, dtype=dtype)
        else:
            latents = latents.to(dtype)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        # wtf? The above line changes the dtype of latents from fp16 to fp32, so we need a casting.
        latents = latents.to(dtype=dtype)
        return latents

    # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
    def get_guidance_scale_embedding(
        self, w: ms.Tensor, embedding_dim: int = 512, dtype: ms.Type = ms.float32
    ) -> ms.Tensor:
        """
        See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298

        Args:
            w (`ms.Tensor`):
                Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
            embedding_dim (`int`, *optional*, defaults to 512):
                Dimension of the embeddings to generate.
            dtype (`ms.dtype`, *optional*, defaults to `ms.float32`):
                Data type of the generated embeddings.

        Returns:
            `ms.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
        """
        assert len(w.shape) == 1
        w = w * 1000.0

        half_dim = embedding_dim // 2
        emb = ops.log(ms.tensor(10000.0)) / (half_dim - 1)
        emb = ops.exp(ops.arange(half_dim, dtype=dtype) * -emb)
        emb = w.to(dtype)[:, None] * emb[None, :]
        emb = ops.cat([ops.sin(emb), ops.cos(emb)], axis=1)
        if embedding_dim % 2 == 1:  # zero pad
            emb = ops.pad(emb, (0, 1))
        assert emb.shape == (w.shape[0], embedding_dim)
        return emb

    def get_views(
        self,
        panorama_height: int,
        panorama_width: int,
        window_size: int = 64,
        stride: int = 8,
        circular_padding: bool = False,
    ) -> List[Tuple[int, int, int, int]]:
        """
        Generates a list of views based on the given parameters. Here, we define the mappings F_i (see Eq. 7 in the
        MultiDiffusion paper https://arxiv.org/abs/2302.08113). If panorama's height/width < window_size, num_blocks of
        height/width should return 1.

        Args:
            panorama_height (int): The height of the panorama.
            panorama_width (int): The width of the panorama.
            window_size (int, optional): The size of the window. Defaults to 64.
            stride (int, optional): The stride value. Defaults to 8.
            circular_padding (bool, optional): Whether to apply circular padding. Defaults to False.

        Returns:
            List[Tuple[int, int, int, int]]: A list of tuples representing the views. Each tuple contains four integers
            representing the start and end coordinates of the window in the panorama.

        """
        panorama_height /= 8
        panorama_width /= 8
        num_blocks_height = (panorama_height - window_size) // stride + 1 if panorama_height > window_size else 1
        if circular_padding:
            num_blocks_width = panorama_width // stride if panorama_width > window_size else 1
        else:
            num_blocks_width = (panorama_width - window_size) // stride + 1 if panorama_width > window_size else 1
        total_num_blocks = int(num_blocks_height * num_blocks_width)
        views = []
        for i in range(total_num_blocks):
            h_start = int((i // num_blocks_width) * stride)
            h_end = h_start + window_size
            w_start = int((i % num_blocks_width) * stride)
            w_end = w_start + window_size
            views.append((h_start, h_end, w_start, w_end))
        return views

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def guidance_rescale(self):
        return self._guidance_rescale

    @property
    def cross_attention_kwargs(self):
        return self._cross_attention_kwargs

    @property
    def clip_skip(self):
        return self._clip_skip

    @property
    def do_classifier_free_guidance(self):
        return False

    @property
    def num_timesteps(self):
        return self._num_timesteps

    @property
    def interrupt(self):
        return self._interrupt

    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        height: Optional[int] = 512,
        width: Optional[int] = 2048,
        num_inference_steps: int = 50,
        timesteps: List[int] = None,
        guidance_scale: float = 7.5,
        view_batch_size: int = 1,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
        latents: Optional[ms.Tensor] = None,
        prompt_embeds: Optional[ms.Tensor] = None,
        negative_prompt_embeds: Optional[ms.Tensor] = None,
        ip_adapter_image: Optional[PipelineImageInput] = None,
        ip_adapter_image_embeds: Optional[List[ms.Tensor]] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = False,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        guidance_rescale: float = 0.0,
        circular_padding: bool = False,
        clip_skip: Optional[int] = None,
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        **kwargs: Any,
    ):
        r"""
        The call function to the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
            height (`int`, *optional*, defaults to 512):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to 2048):
                The width in pixels of the generated image. The width is kept high because the pipeline is supposed
                generate panorama-like images.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            timesteps (`List[int]`, *optional*):
                The timesteps at which to generate the images. If not specified, then the default timestep spacing
                strategy of the scheduler is used.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
            view_batch_size (`int`, *optional*, defaults to 1):
                The batch size to denoise split views. For some GPUs with high performance, higher view batch size can
                speedup the generation and increase the VRAM usage.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
            generator (`np.random.Generator` or `List[np.random.Generator]`, *optional*):
                A [`np.random.Generator`](https://numpy.org/doc/stable/reference/random/generator.html) to make
                generation deterministic.
            latents (`ms.Tensor`, *optional*):
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor is generated by sampling using the supplied random `generator`.
            prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument.
            negative_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
            ip_adapter_image: (`PipelineImageInput`, *optional*):
                Optional image input to work with IP Adapters.
            ip_adapter_image_embeds (`List[ms.Tensor]`, *optional*):
                Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
                IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
                contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
                provided, embeddings are computed from the `ip_adapter_image` input argument.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            guidance_rescale (`float`, *optional*, defaults to 0.0):
                A rescaling factor for the guidance embeddings. A value of 0.0 means no rescaling is applied.
            circular_padding (`bool`, *optional*, defaults to `False`):
                If set to `True`, circular padding is applied to ensure there are no stitching artifacts. Circular
                padding allows the model to seamlessly generate a transition from the rightmost part of the image to
                the leftmost part, maintaining consistency in a 360-degree sense.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
            callback_on_step_end (`Callable`, *optional*):
                A function that calls at the end of each denoising steps during the inference. The function is called
                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
                `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List[str]`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
                `._callback_tensor_inputs` attribute of your pipeline class.
        Examples:

        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
                otherwise a `tuple` is returned where the first element is a list with the generated images and the
                second element is a list of `bool`s indicating whether the corresponding generated image contains
                "not-safe-for-work" (nsfw) content.
        """
        callback = kwargs.pop("callback", None)
        callback_steps = kwargs.pop("callback_steps", None)

        if callback is not None:
            deprecate(
                "callback",
                "1.0.0",
                "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
            )
        if callback_steps is not None:
            deprecate(
                "callback_steps",
                "1.0.0",
                "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
            )

        # 0. Default height and width to unet
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            height,
            width,
            callback_steps,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
            ip_adapter_image,
            ip_adapter_image_embeds,
            callback_on_step_end_tensor_inputs,
        )

        self._guidance_scale = guidance_scale
        self._guidance_rescale = guidance_rescale
        self._clip_skip = clip_skip
        self._cross_attention_kwargs = cross_attention_kwargs
        self._interrupt = False

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
            image_embeds = self.prepare_ip_adapter_image_embeds(
                ip_adapter_image,
                ip_adapter_image_embeds,
                batch_size * num_images_per_prompt,
                self.do_classifier_free_guidance,
            )

        # 3. Encode input prompt
        text_encoder_lora_scale = (
            cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
        )
        prompt_embeds, negative_prompt_embeds = self.encode_prompt(
            prompt,
            num_images_per_prompt,
            do_classifier_free_guidance,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=text_encoder_lora_scale,
            clip_skip=clip_skip,
        )
        # For classifier free guidance, we need to do two forward passes.
        # Here we concatenate the unconditional and text embeddings into a single batch
        # to avoid doing two forward passes
        if do_classifier_free_guidance:
            prompt_embeds = ops.cat([negative_prompt_embeds, prompt_embeds])

        # 4. Prepare timesteps
        timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, timesteps)

        # 5. Prepare latent variables
        num_channels_latents = self.unet.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            generator,
            latents,
        )

        # 6. Define panorama grid and initialize views for synthesis.
        # prepare batch grid
        views = self.get_views(height, width, circular_padding=circular_padding)
        views_batch = [views[i : i + view_batch_size] for i in range(0, len(views), view_batch_size)]
        views_scheduler_status = [copy.deepcopy(self.scheduler.__dict__)] * len(views_batch)
        count = ops.zeros_like(latents)
        value = ops.zeros_like(latents)

        # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 7.1 Add image embeds for IP-Adapter
        added_cond_kwargs = (
            {"image_embeds": image_embeds}
            if ip_adapter_image is not None or ip_adapter_image_embeds is not None
            else None
        )

        # 7.2 Optionally get Guidance Scale Embedding
        timestep_cond = None
        if self.unet.config.time_cond_proj_dim is not None:
            guidance_scale_tensor = ms.tensor(self.guidance_scale - 1).tile((batch_size * num_images_per_prompt))
            timestep_cond = self.get_guidance_scale_embedding(
                guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
            ).to(dtype=latents.dtype)

        # 8. Denoising loop
        # Each denoising step also includes refinement of the latents with respect to the
        # views.
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        self._num_timesteps = len(timesteps)
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                if self.interrupt:
                    continue
                count.zero_()
                value.zero_()

                # generate views
                # Here, we iterate through different spatial crops of the latents and denoise them. These
                # denoised (latent) crops are then averaged to produce the final latent
                # for the current timestep via MultiDiffusion. Please see Sec. 4.1 in the
                # MultiDiffusion paper for more details: https://arxiv.org/abs/2302.08113
                # Batch views denoise
                for j, batch_view in enumerate(views_batch):
                    vb_size = len(batch_view)
                    # get the latents corresponding to the current view coordinates
                    if circular_padding:
                        latents_for_view = []
                        for h_start, h_end, w_start, w_end in batch_view:
                            if w_end > latents.shape[3]:
                                # Add circular horizontal padding
                                latent_view = ops.cat(
                                    (
                                        latents[:, :, h_start:h_end, w_start:],
                                        latents[:, :, h_start:h_end, : w_end - latents.shape[3]],
                                    ),
                                    axis=-1,
                                )
                            else:
                                latent_view = latents[:, :, h_start:h_end, w_start:w_end]
                            latents_for_view.append(latent_view)
                        latents_for_view = ops.cat(latents_for_view)
                    else:
                        latents_for_view = ops.cat(
                            [
                                latents[:, :, h_start:h_end, w_start:w_end]
                                for h_start, h_end, w_start, w_end in batch_view
                            ]
                        )

                    # rematch block's scheduler status
                    self.scheduler.__dict__.update(views_scheduler_status[j])

                    # expand the latents if we are doing classifier free guidance
                    latent_model_input = (
                        latents_for_view.repeat_interleave(2, dim=0)
                        if do_classifier_free_guidance
                        else latents_for_view
                    )
                    latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                    # repeat prompt_embeds for batch
                    prompt_embeds_input = ops.cat([prompt_embeds] * vb_size)

                    # predict the noise residual
                    noise_pred = self.unet(
                        latent_model_input,
                        t,
                        encoder_hidden_states=prompt_embeds_input,
                        timestep_cond=timestep_cond,
                        cross_attention_kwargs=cross_attention_kwargs,
                        added_cond_kwargs=added_cond_kwargs,
                    )[0]

                    # perform guidance
                    if do_classifier_free_guidance:
                        noise_pred_uncond, noise_pred_text = noise_pred[::2], noise_pred[1::2]
                        noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                    if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
                        # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
                        noise_pred = rescale_noise_cfg(
                            noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale
                        )

                    # compute the previous noisy sample x_t -> x_t-1
                    latents_denoised_batch = self.scheduler.step(noise_pred, t, latents_for_view, **extra_step_kwargs)[
                        0
                    ]

                    # save views scheduler status after sample
                    views_scheduler_status[j] = copy.deepcopy(self.scheduler.__dict__)

                    # extract value from batch
                    for latents_view_denoised, (h_start, h_end, w_start, w_end) in zip(
                        latents_denoised_batch.chunk(vb_size), batch_view
                    ):
                        if circular_padding and w_end > latents.shape[3]:
                            # Case for circular padding
                            value[:, :, h_start:h_end, w_start:] += latents_view_denoised[
                                :, :, h_start:h_end, : latents.shape[3] - w_start
                            ]
                            value[:, :, h_start:h_end, : w_end - latents.shape[3]] += latents_view_denoised[
                                :, :, h_start:h_end, latents.shape[3] - w_start :
                            ]
                            count[:, :, h_start:h_end, w_start:] += 1
                            count[:, :, h_start:h_end, : w_end - latents.shape[3]] += 1
                        else:
                            value[:, :, h_start:h_end, w_start:w_end] += latents_view_denoised
                            count[:, :, h_start:h_end, w_start:w_end] += 1

                # take the MultiDiffusion step. Eq. 5 in MultiDiffusion paper: https://arxiv.org/abs/2302.08113
                latents = ops.where(count > 0, value / count, value)

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)

        if output_type != "latent":
            if circular_padding:
                image = self.decode_latents_with_padding(latents)
            else:
                image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
            image, has_nsfw_concept = self.run_safety_checker(image, prompt_embeds.dtype)
        else:
            image = latents
            has_nsfw_concept = None

        if has_nsfw_concept is None:
            do_denormalize = [True] * image.shape[0]
        else:
            do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]

        image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)

        if not return_dict:
            return (image, has_nsfw_concept)

        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)

mindone.diffusers.StableDiffusionPanoramaPipeline.__call__(prompt=None, height=512, width=2048, num_inference_steps=50, timesteps=None, guidance_scale=7.5, view_batch_size=1, negative_prompt=None, num_images_per_prompt=1, eta=0.0, generator=None, latents=None, prompt_embeds=None, negative_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, output_type='pil', return_dict=False, cross_attention_kwargs=None, guidance_rescale=0.0, circular_padding=False, clip_skip=None, callback_on_step_end=None, callback_on_step_end_tensor_inputs=['latents'], **kwargs)

The call function to the pipeline for generation.

PARAMETER DESCRIPTION
prompt

The prompt or prompts to guide image generation. If not defined, you need to pass prompt_embeds.

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

height

The height in pixels of the generated image.

TYPE: `int`, *optional*, defaults to 512 DEFAULT: 512

width

The width in pixels of the generated image. The width is kept high because the pipeline is supposed generate panorama-like images.

TYPE: `int`, *optional*, defaults to 2048 DEFAULT: 2048

num_inference_steps

The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.

TYPE: `int`, *optional*, defaults to 50 DEFAULT: 50

timesteps

The timesteps at which to generate the images. If not specified, then the default timestep spacing strategy of the scheduler is used.

TYPE: `List[int]`, *optional* DEFAULT: None

guidance_scale

A higher guidance scale value encourages the model to generate images closely linked to the text prompt at the expense of lower image quality. Guidance scale is enabled when guidance_scale > 1.

TYPE: `float`, *optional*, defaults to 7.5 DEFAULT: 7.5

view_batch_size

The batch size to denoise split views. For some GPUs with high performance, higher view batch size can speedup the generation and increase the VRAM usage.

TYPE: `int`, *optional*, defaults to 1 DEFAULT: 1

negative_prompt

The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass negative_prompt_embeds instead. Ignored when not using guidance (guidance_scale < 1).

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

num_images_per_prompt

The number of images to generate per prompt.

TYPE: `int`, *optional*, defaults to 1 DEFAULT: 1

eta

Corresponds to parameter eta (η) from the DDIM paper. Only applies to the [~schedulers.DDIMScheduler], and is ignored in other schedulers.

TYPE: `float`, *optional*, defaults to 0.0 DEFAULT: 0.0

generator

A np.random.Generator to make generation deterministic.

TYPE: `np.random.Generator` or `List[np.random.Generator]`, *optional* DEFAULT: None

latents

Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random generator.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

prompt_embeds

Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_prompt_embeds

Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, negative_prompt_embeds are generated from the negative_prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

ip_adapter_image

(PipelineImageInput, optional): Optional image input to work with IP Adapters.

TYPE: Optional[PipelineImageInput] DEFAULT: None

ip_adapter_image_embeds

Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters. Each element should be a tensor of shape (batch_size, num_images, emb_dim). It should contain the negative image embedding if do_classifier_free_guidance is set to True. If not provided, embeddings are computed from the ip_adapter_image input argument.

TYPE: `List[ms.Tensor]`, *optional* DEFAULT: None

output_type

The output format of the generated image. Choose between PIL.Image or np.array.

TYPE: `str`, *optional*, defaults to `"pil"` DEFAULT: 'pil'

return_dict

Whether or not to return a [~pipelines.stable_diffusion.StableDiffusionPipelineOutput] instead of a plain tuple.

TYPE: `bool`, *optional*, defaults to `False` DEFAULT: False

cross_attention_kwargs

A kwargs dictionary that if specified is passed along to the AttentionProcessor as defined under self.processor in diffusers.models.attention_processor.

TYPE: `dict`, *optional* DEFAULT: None

guidance_rescale

A rescaling factor for the guidance embeddings. A value of 0.0 means no rescaling is applied.

TYPE: `float`, *optional*, defaults to 0.0 DEFAULT: 0.0

circular_padding

If set to True, circular padding is applied to ensure there are no stitching artifacts. Circular padding allows the model to seamlessly generate a transition from the rightmost part of the image to the leftmost part, maintaining consistency in a 360-degree sense.

TYPE: `bool`, *optional*, defaults to `False` DEFAULT: False

clip_skip

Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings.

TYPE: `int`, *optional* DEFAULT: None

callback_on_step_end

A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict). callback_kwargs will include a list of all tensors as specified by callback_on_step_end_tensor_inputs.

TYPE: `Callable`, *optional* DEFAULT: None

callback_on_step_end_tensor_inputs

The list of tensor inputs for the callback_on_step_end function. The tensors specified in the list will be passed as callback_kwargs argument. You will only be able to include variables listed in the ._callback_tensor_inputs attribute of your pipeline class.

TYPE: `List[str]`, *optional* DEFAULT: ['latents']

RETURNS DESCRIPTION

[~pipelines.stable_diffusion.StableDiffusionPipelineOutput] or tuple: If return_dict is True, [~pipelines.stable_diffusion.StableDiffusionPipelineOutput] is returned, otherwise a tuple is returned where the first element is a list with the generated images and the second element is a list of bools indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content.

Source code in mindone/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
def __call__(
    self,
    prompt: Union[str, List[str]] = None,
    height: Optional[int] = 512,
    width: Optional[int] = 2048,
    num_inference_steps: int = 50,
    timesteps: List[int] = None,
    guidance_scale: float = 7.5,
    view_batch_size: int = 1,
    negative_prompt: Optional[Union[str, List[str]]] = None,
    num_images_per_prompt: Optional[int] = 1,
    eta: float = 0.0,
    generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
    latents: Optional[ms.Tensor] = None,
    prompt_embeds: Optional[ms.Tensor] = None,
    negative_prompt_embeds: Optional[ms.Tensor] = None,
    ip_adapter_image: Optional[PipelineImageInput] = None,
    ip_adapter_image_embeds: Optional[List[ms.Tensor]] = None,
    output_type: Optional[str] = "pil",
    return_dict: bool = False,
    cross_attention_kwargs: Optional[Dict[str, Any]] = None,
    guidance_rescale: float = 0.0,
    circular_padding: bool = False,
    clip_skip: Optional[int] = None,
    callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
    callback_on_step_end_tensor_inputs: List[str] = ["latents"],
    **kwargs: Any,
):
    r"""
    The call function to the pipeline for generation.

    Args:
        prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
        height (`int`, *optional*, defaults to 512):
            The height in pixels of the generated image.
        width (`int`, *optional*, defaults to 2048):
            The width in pixels of the generated image. The width is kept high because the pipeline is supposed
            generate panorama-like images.
        num_inference_steps (`int`, *optional*, defaults to 50):
            The number of denoising steps. More denoising steps usually lead to a higher quality image at the
            expense of slower inference.
        timesteps (`List[int]`, *optional*):
            The timesteps at which to generate the images. If not specified, then the default timestep spacing
            strategy of the scheduler is used.
        guidance_scale (`float`, *optional*, defaults to 7.5):
            A higher guidance scale value encourages the model to generate images closely linked to the text
            `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
        view_batch_size (`int`, *optional*, defaults to 1):
            The batch size to denoise split views. For some GPUs with high performance, higher view batch size can
            speedup the generation and increase the VRAM usage.
        negative_prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts to guide what to not include in image generation. If not defined, you need to
            pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
        num_images_per_prompt (`int`, *optional*, defaults to 1):
            The number of images to generate per prompt.
        eta (`float`, *optional*, defaults to 0.0):
            Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
            to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
        generator (`np.random.Generator` or `List[np.random.Generator]`, *optional*):
            A [`np.random.Generator`](https://numpy.org/doc/stable/reference/random/generator.html) to make
            generation deterministic.
        latents (`ms.Tensor`, *optional*):
            Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
            generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
            tensor is generated by sampling using the supplied random `generator`.
        prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
            provided, text embeddings are generated from the `prompt` input argument.
        negative_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
            not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
        ip_adapter_image: (`PipelineImageInput`, *optional*):
            Optional image input to work with IP Adapters.
        ip_adapter_image_embeds (`List[ms.Tensor]`, *optional*):
            Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
            IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
            contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
            provided, embeddings are computed from the `ip_adapter_image` input argument.
        output_type (`str`, *optional*, defaults to `"pil"`):
            The output format of the generated image. Choose between `PIL.Image` or `np.array`.
        return_dict (`bool`, *optional*, defaults to `False`):
            Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
            plain tuple.
        cross_attention_kwargs (`dict`, *optional*):
            A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
            `self.processor` in
            [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
        guidance_rescale (`float`, *optional*, defaults to 0.0):
            A rescaling factor for the guidance embeddings. A value of 0.0 means no rescaling is applied.
        circular_padding (`bool`, *optional*, defaults to `False`):
            If set to `True`, circular padding is applied to ensure there are no stitching artifacts. Circular
            padding allows the model to seamlessly generate a transition from the rightmost part of the image to
            the leftmost part, maintaining consistency in a 360-degree sense.
        clip_skip (`int`, *optional*):
            Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
            the output of the pre-final layer will be used for computing the prompt embeddings.
        callback_on_step_end (`Callable`, *optional*):
            A function that calls at the end of each denoising steps during the inference. The function is called
            with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
            callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
            `callback_on_step_end_tensor_inputs`.
        callback_on_step_end_tensor_inputs (`List[str]`, *optional*):
            The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
            will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
            `._callback_tensor_inputs` attribute of your pipeline class.
    Examples:

    Returns:
        [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
            If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
            otherwise a `tuple` is returned where the first element is a list with the generated images and the
            second element is a list of `bool`s indicating whether the corresponding generated image contains
            "not-safe-for-work" (nsfw) content.
    """
    callback = kwargs.pop("callback", None)
    callback_steps = kwargs.pop("callback_steps", None)

    if callback is not None:
        deprecate(
            "callback",
            "1.0.0",
            "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
        )
    if callback_steps is not None:
        deprecate(
            "callback_steps",
            "1.0.0",
            "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
        )

    # 0. Default height and width to unet
    height = height or self.unet.config.sample_size * self.vae_scale_factor
    width = width or self.unet.config.sample_size * self.vae_scale_factor

    # 1. Check inputs. Raise error if not correct
    self.check_inputs(
        prompt,
        height,
        width,
        callback_steps,
        negative_prompt,
        prompt_embeds,
        negative_prompt_embeds,
        ip_adapter_image,
        ip_adapter_image_embeds,
        callback_on_step_end_tensor_inputs,
    )

    self._guidance_scale = guidance_scale
    self._guidance_rescale = guidance_rescale
    self._clip_skip = clip_skip
    self._cross_attention_kwargs = cross_attention_kwargs
    self._interrupt = False

    # 2. Define call parameters
    if prompt is not None and isinstance(prompt, str):
        batch_size = 1
    elif prompt is not None and isinstance(prompt, list):
        batch_size = len(prompt)
    else:
        batch_size = prompt_embeds.shape[0]

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    do_classifier_free_guidance = guidance_scale > 1.0

    if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
        image_embeds = self.prepare_ip_adapter_image_embeds(
            ip_adapter_image,
            ip_adapter_image_embeds,
            batch_size * num_images_per_prompt,
            self.do_classifier_free_guidance,
        )

    # 3. Encode input prompt
    text_encoder_lora_scale = (
        cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
    )
    prompt_embeds, negative_prompt_embeds = self.encode_prompt(
        prompt,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt,
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=negative_prompt_embeds,
        lora_scale=text_encoder_lora_scale,
        clip_skip=clip_skip,
    )
    # For classifier free guidance, we need to do two forward passes.
    # Here we concatenate the unconditional and text embeddings into a single batch
    # to avoid doing two forward passes
    if do_classifier_free_guidance:
        prompt_embeds = ops.cat([negative_prompt_embeds, prompt_embeds])

    # 4. Prepare timesteps
    timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, timesteps)

    # 5. Prepare latent variables
    num_channels_latents = self.unet.config.in_channels
    latents = self.prepare_latents(
        batch_size * num_images_per_prompt,
        num_channels_latents,
        height,
        width,
        prompt_embeds.dtype,
        generator,
        latents,
    )

    # 6. Define panorama grid and initialize views for synthesis.
    # prepare batch grid
    views = self.get_views(height, width, circular_padding=circular_padding)
    views_batch = [views[i : i + view_batch_size] for i in range(0, len(views), view_batch_size)]
    views_scheduler_status = [copy.deepcopy(self.scheduler.__dict__)] * len(views_batch)
    count = ops.zeros_like(latents)
    value = ops.zeros_like(latents)

    # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
    extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

    # 7.1 Add image embeds for IP-Adapter
    added_cond_kwargs = (
        {"image_embeds": image_embeds}
        if ip_adapter_image is not None or ip_adapter_image_embeds is not None
        else None
    )

    # 7.2 Optionally get Guidance Scale Embedding
    timestep_cond = None
    if self.unet.config.time_cond_proj_dim is not None:
        guidance_scale_tensor = ms.tensor(self.guidance_scale - 1).tile((batch_size * num_images_per_prompt))
        timestep_cond = self.get_guidance_scale_embedding(
            guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
        ).to(dtype=latents.dtype)

    # 8. Denoising loop
    # Each denoising step also includes refinement of the latents with respect to the
    # views.
    num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
    self._num_timesteps = len(timesteps)
    with self.progress_bar(total=num_inference_steps) as progress_bar:
        for i, t in enumerate(timesteps):
            if self.interrupt:
                continue
            count.zero_()
            value.zero_()

            # generate views
            # Here, we iterate through different spatial crops of the latents and denoise them. These
            # denoised (latent) crops are then averaged to produce the final latent
            # for the current timestep via MultiDiffusion. Please see Sec. 4.1 in the
            # MultiDiffusion paper for more details: https://arxiv.org/abs/2302.08113
            # Batch views denoise
            for j, batch_view in enumerate(views_batch):
                vb_size = len(batch_view)
                # get the latents corresponding to the current view coordinates
                if circular_padding:
                    latents_for_view = []
                    for h_start, h_end, w_start, w_end in batch_view:
                        if w_end > latents.shape[3]:
                            # Add circular horizontal padding
                            latent_view = ops.cat(
                                (
                                    latents[:, :, h_start:h_end, w_start:],
                                    latents[:, :, h_start:h_end, : w_end - latents.shape[3]],
                                ),
                                axis=-1,
                            )
                        else:
                            latent_view = latents[:, :, h_start:h_end, w_start:w_end]
                        latents_for_view.append(latent_view)
                    latents_for_view = ops.cat(latents_for_view)
                else:
                    latents_for_view = ops.cat(
                        [
                            latents[:, :, h_start:h_end, w_start:w_end]
                            for h_start, h_end, w_start, w_end in batch_view
                        ]
                    )

                # rematch block's scheduler status
                self.scheduler.__dict__.update(views_scheduler_status[j])

                # expand the latents if we are doing classifier free guidance
                latent_model_input = (
                    latents_for_view.repeat_interleave(2, dim=0)
                    if do_classifier_free_guidance
                    else latents_for_view
                )
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # repeat prompt_embeds for batch
                prompt_embeds_input = ops.cat([prompt_embeds] * vb_size)

                # predict the noise residual
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds_input,
                    timestep_cond=timestep_cond,
                    cross_attention_kwargs=cross_attention_kwargs,
                    added_cond_kwargs=added_cond_kwargs,
                )[0]

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred[::2], noise_pred[1::2]
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
                    # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
                    noise_pred = rescale_noise_cfg(
                        noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale
                    )

                # compute the previous noisy sample x_t -> x_t-1
                latents_denoised_batch = self.scheduler.step(noise_pred, t, latents_for_view, **extra_step_kwargs)[
                    0
                ]

                # save views scheduler status after sample
                views_scheduler_status[j] = copy.deepcopy(self.scheduler.__dict__)

                # extract value from batch
                for latents_view_denoised, (h_start, h_end, w_start, w_end) in zip(
                    latents_denoised_batch.chunk(vb_size), batch_view
                ):
                    if circular_padding and w_end > latents.shape[3]:
                        # Case for circular padding
                        value[:, :, h_start:h_end, w_start:] += latents_view_denoised[
                            :, :, h_start:h_end, : latents.shape[3] - w_start
                        ]
                        value[:, :, h_start:h_end, : w_end - latents.shape[3]] += latents_view_denoised[
                            :, :, h_start:h_end, latents.shape[3] - w_start :
                        ]
                        count[:, :, h_start:h_end, w_start:] += 1
                        count[:, :, h_start:h_end, : w_end - latents.shape[3]] += 1
                    else:
                        value[:, :, h_start:h_end, w_start:w_end] += latents_view_denoised
                        count[:, :, h_start:h_end, w_start:w_end] += 1

            # take the MultiDiffusion step. Eq. 5 in MultiDiffusion paper: https://arxiv.org/abs/2302.08113
            latents = ops.where(count > 0, value / count, value)

            if callback_on_step_end is not None:
                callback_kwargs = {}
                for k in callback_on_step_end_tensor_inputs:
                    callback_kwargs[k] = locals()[k]
                callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                latents = callback_outputs.pop("latents", latents)
                prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

            # call the callback, if provided
            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                progress_bar.update()
                if callback is not None and i % callback_steps == 0:
                    step_idx = i // getattr(self.scheduler, "order", 1)
                    callback(step_idx, t, latents)

    if output_type != "latent":
        if circular_padding:
            image = self.decode_latents_with_padding(latents)
        else:
            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
        image, has_nsfw_concept = self.run_safety_checker(image, prompt_embeds.dtype)
    else:
        image = latents
        has_nsfw_concept = None

    if has_nsfw_concept is None:
        do_denormalize = [True] * image.shape[0]
    else:
        do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]

    image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)

    if not return_dict:
        return (image, has_nsfw_concept)

    return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)

mindone.diffusers.StableDiffusionPanoramaPipeline.decode_latents_with_padding(latents, padding=8)

Decode the given latents with padding for circular inference.

PARAMETER DESCRIPTION
latents

The input latents to decode.

TYPE: Tensor

padding

The number of latents to add on each side for padding. Defaults to 8.

TYPE: int DEFAULT: 8

RETURNS DESCRIPTION
Tensor

ms.Tensor: The decoded image with padding removed.

Notes
  • The padding is added to remove boundary artifacts and improve the output quality.
  • This would slightly increase the memory usage.
  • The padding pixels are then removed from the decoded image.
Source code in mindone/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
def decode_latents_with_padding(self, latents: ms.Tensor, padding: int = 8) -> ms.Tensor:
    """
    Decode the given latents with padding for circular inference.

    Args:
        latents (ms.Tensor): The input latents to decode.
        padding (int, optional): The number of latents to add on each side for padding. Defaults to 8.

    Returns:
        ms.Tensor: The decoded image with padding removed.

    Notes:
        - The padding is added to remove boundary artifacts and improve the output quality.
        - This would slightly increase the memory usage.
        - The padding pixels are then removed from the decoded image.

    """
    latents = 1 / self.vae.config.scaling_factor * latents
    latents_left = latents[..., :padding]
    latents_right = latents[..., -padding:]
    latents = ops.cat((latents_right, latents, latents_left), axis=-1)
    image = self.vae.decode(latents, return_dict=False)[0]
    padding_pix = self.vae_scale_factor * padding
    image = image[..., padding_pix:-padding_pix]
    return image

mindone.diffusers.StableDiffusionPanoramaPipeline.encode_prompt(prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, lora_scale=None, clip_skip=None)

Encodes the prompt into text encoder hidden states.

PARAMETER DESCRIPTION
prompt

prompt to be encoded

TYPE: `str` or `List[str]`, *optional*

num_images_per_prompt

number of images that should be generated per prompt

TYPE: `int`

do_classifier_free_guidance

whether to use classifier free guidance or not

TYPE: `bool`

negative_prompt

The prompt or prompts not to guide the image generation. If not defined, one has to pass negative_prompt_embeds instead. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1).

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

prompt_embeds

Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_prompt_embeds

Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

lora_scale

A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.

TYPE: `float`, *optional* DEFAULT: None

clip_skip

Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings.

TYPE: `int`, *optional* DEFAULT: None

Source code in mindone/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
def encode_prompt(
    self,
    prompt,
    num_images_per_prompt,
    do_classifier_free_guidance,
    negative_prompt=None,
    prompt_embeds: Optional[ms.Tensor] = None,
    negative_prompt_embeds: Optional[ms.Tensor] = None,
    lora_scale: Optional[float] = None,
    clip_skip: Optional[int] = None,
):
    r"""
    Encodes the prompt into text encoder hidden states.

    Args:
        prompt (`str` or `List[str]`, *optional*):
            prompt to be encoded
        num_images_per_prompt (`int`):
            number of images that should be generated per prompt
        do_classifier_free_guidance (`bool`):
            whether to use classifier free guidance or not
        negative_prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts not to guide the image generation. If not defined, one has to pass
            `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
            less than `1`).
        prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
            provided, text embeddings will be generated from `prompt` input argument.
        negative_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
            weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
            argument.
        lora_scale (`float`, *optional*):
            A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
        clip_skip (`int`, *optional*):
            Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
            the output of the pre-final layer will be used for computing the prompt embeddings.
    """
    # set lora scale so that monkey patched LoRA
    # function of text encoder can correctly access it
    if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
        self._lora_scale = lora_scale

        # dynamically adjust the LoRA scale
        scale_lora_layers(self.text_encoder, lora_scale)

    if prompt is not None and isinstance(prompt, str):
        batch_size = 1
    elif prompt is not None and isinstance(prompt, list):
        batch_size = len(prompt)
    else:
        batch_size = prompt_embeds.shape[0]

    if prompt_embeds is None:
        # textual inversion: process multi-vector tokens if necessary
        if isinstance(self, TextualInversionLoaderMixin):
            prompt = self.maybe_convert_prompt(prompt, self.tokenizer)

        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
            truncation=True,
            return_tensors="np",
        )
        text_input_ids = text_inputs.input_ids
        untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="np").input_ids

        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not np.array_equal(
            text_input_ids, untruncated_ids
        ):
            removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
            logger.warning(
                "The following part of your input was truncated because CLIP can only handle sequences up to"
                f" {self.tokenizer.model_max_length} tokens: {removed_text}"
            )

        if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
            attention_mask = ms.Tensor(text_inputs.attention_mask)
        else:
            attention_mask = None

        if clip_skip is None:
            prompt_embeds = self.text_encoder(ms.Tensor(text_input_ids), attention_mask=attention_mask)
            prompt_embeds = prompt_embeds[0]
        else:
            prompt_embeds = self.text_encoder(
                ms.Tensor(text_input_ids), attention_mask=attention_mask, output_hidden_states=True
            )
            # Access the `hidden_states` first, that contains a tuple of
            # all the hidden states from the encoder layers. Then index into
            # the tuple to access the hidden states from the desired layer.
            prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
            # We also need to apply the final LayerNorm here to not mess with the
            # representations. The `last_hidden_states` that we typically use for
            # obtaining the final prompt representations passes through the LayerNorm
            # layer.
            prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)

    if self.text_encoder is not None:
        prompt_embeds_dtype = self.text_encoder.dtype
    elif self.unet is not None:
        prompt_embeds_dtype = self.unet.dtype
    else:
        prompt_embeds_dtype = prompt_embeds.dtype

    prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype)

    bs_embed, seq_len, _ = prompt_embeds.shape
    # duplicate text embeddings for each generation per prompt, using mps friendly method
    prompt_embeds = prompt_embeds.tile((1, num_images_per_prompt, 1))
    prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

    # get unconditional embeddings for classifier free guidance
    if do_classifier_free_guidance and negative_prompt_embeds is None:
        uncond_tokens: List[str]
        if negative_prompt is None:
            uncond_tokens = [""] * batch_size
        elif prompt is not None and type(prompt) is not type(negative_prompt):
            raise TypeError(
                f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                f" {type(prompt)}."
            )
        elif isinstance(negative_prompt, str):
            uncond_tokens = [negative_prompt]
        elif batch_size != len(negative_prompt):
            raise ValueError(
                f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                " the batch size of `prompt`."
            )
        else:
            uncond_tokens = negative_prompt

        # textual inversion: process multi-vector tokens if necessary
        if isinstance(self, TextualInversionLoaderMixin):
            uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)

        max_length = prompt_embeds.shape[1]
        uncond_input = self.tokenizer(
            uncond_tokens,
            padding="max_length",
            max_length=max_length,
            truncation=True,
            return_tensors="np",
        )

        if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
            attention_mask = ms.Tensor(uncond_input.attention_mask)
        else:
            attention_mask = None

        negative_prompt_embeds = self.text_encoder(
            ms.Tensor(uncond_input.input_ids),
            attention_mask=attention_mask,
        )
        negative_prompt_embeds = negative_prompt_embeds[0]

    if do_classifier_free_guidance:
        # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
        seq_len = negative_prompt_embeds.shape[1]

        negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype)

        negative_prompt_embeds = negative_prompt_embeds.tile((1, num_images_per_prompt, 1))
        negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

    if self.text_encoder is not None:
        if isinstance(self, StableDiffusionLoraLoaderMixin):
            # Retrieve the original scale by scaling back the LoRA layers
            unscale_lora_layers(self.text_encoder, lora_scale)

    return prompt_embeds, negative_prompt_embeds

mindone.diffusers.StableDiffusionPanoramaPipeline.get_guidance_scale_embedding(w, embedding_dim=512, dtype=ms.float32)

See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298

PARAMETER DESCRIPTION
w

Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.

TYPE: `ms.Tensor`

embedding_dim

Dimension of the embeddings to generate.

TYPE: `int`, *optional*, defaults to 512 DEFAULT: 512

dtype

Data type of the generated embeddings.

TYPE: `ms.dtype`, *optional*, defaults to `ms.float32` DEFAULT: float32

RETURNS DESCRIPTION
Tensor

ms.Tensor: Embedding vectors with shape (len(w), embedding_dim).

Source code in mindone/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
def get_guidance_scale_embedding(
    self, w: ms.Tensor, embedding_dim: int = 512, dtype: ms.Type = ms.float32
) -> ms.Tensor:
    """
    See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298

    Args:
        w (`ms.Tensor`):
            Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
        embedding_dim (`int`, *optional*, defaults to 512):
            Dimension of the embeddings to generate.
        dtype (`ms.dtype`, *optional*, defaults to `ms.float32`):
            Data type of the generated embeddings.

    Returns:
        `ms.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
    """
    assert len(w.shape) == 1
    w = w * 1000.0

    half_dim = embedding_dim // 2
    emb = ops.log(ms.tensor(10000.0)) / (half_dim - 1)
    emb = ops.exp(ops.arange(half_dim, dtype=dtype) * -emb)
    emb = w.to(dtype)[:, None] * emb[None, :]
    emb = ops.cat([ops.sin(emb), ops.cos(emb)], axis=1)
    if embedding_dim % 2 == 1:  # zero pad
        emb = ops.pad(emb, (0, 1))
    assert emb.shape == (w.shape[0], embedding_dim)
    return emb

mindone.diffusers.StableDiffusionPanoramaPipeline.get_views(panorama_height, panorama_width, window_size=64, stride=8, circular_padding=False)

Generates a list of views based on the given parameters. Here, we define the mappings F_i (see Eq. 7 in the MultiDiffusion paper https://arxiv.org/abs/2302.08113). If panorama's height/width < window_size, num_blocks of height/width should return 1.

PARAMETER DESCRIPTION
panorama_height

The height of the panorama.

TYPE: int

panorama_width

The width of the panorama.

TYPE: int

window_size

The size of the window. Defaults to 64.

TYPE: int DEFAULT: 64

stride

The stride value. Defaults to 8.

TYPE: int DEFAULT: 8

circular_padding

Whether to apply circular padding. Defaults to False.

TYPE: bool DEFAULT: False

RETURNS DESCRIPTION
List[Tuple[int, int, int, int]]

List[Tuple[int, int, int, int]]: A list of tuples representing the views. Each tuple contains four integers

List[Tuple[int, int, int, int]]

representing the start and end coordinates of the window in the panorama.

Source code in mindone/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
def get_views(
    self,
    panorama_height: int,
    panorama_width: int,
    window_size: int = 64,
    stride: int = 8,
    circular_padding: bool = False,
) -> List[Tuple[int, int, int, int]]:
    """
    Generates a list of views based on the given parameters. Here, we define the mappings F_i (see Eq. 7 in the
    MultiDiffusion paper https://arxiv.org/abs/2302.08113). If panorama's height/width < window_size, num_blocks of
    height/width should return 1.

    Args:
        panorama_height (int): The height of the panorama.
        panorama_width (int): The width of the panorama.
        window_size (int, optional): The size of the window. Defaults to 64.
        stride (int, optional): The stride value. Defaults to 8.
        circular_padding (bool, optional): Whether to apply circular padding. Defaults to False.

    Returns:
        List[Tuple[int, int, int, int]]: A list of tuples representing the views. Each tuple contains four integers
        representing the start and end coordinates of the window in the panorama.

    """
    panorama_height /= 8
    panorama_width /= 8
    num_blocks_height = (panorama_height - window_size) // stride + 1 if panorama_height > window_size else 1
    if circular_padding:
        num_blocks_width = panorama_width // stride if panorama_width > window_size else 1
    else:
        num_blocks_width = (panorama_width - window_size) // stride + 1 if panorama_width > window_size else 1
    total_num_blocks = int(num_blocks_height * num_blocks_width)
    views = []
    for i in range(total_num_blocks):
        h_start = int((i // num_blocks_width) * stride)
        h_end = h_start + window_size
        w_start = int((i % num_blocks_width) * stride)
        w_end = w_start + window_size
        views.append((h_start, h_end, w_start, w_end))
    return views

mindone.diffusers.pipelines.stable_diffusion.StableDiffusionPipelineOutput dataclass

Bases: BaseOutput

Output class for Stable Diffusion pipelines.

Source code in mindone/diffusers/pipelines/stable_diffusion/pipeline_output.py
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
@dataclass
class StableDiffusionPipelineOutput(BaseOutput):
    """
    Output class for Stable Diffusion pipelines.

    Args:
        images (`List[PIL.Image.Image]` or `np.ndarray`)
            List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
            num_channels)`.
        nsfw_content_detected (`List[bool]`)
            List indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content or
            `None` if safety checking could not be performed.
    """

    images: Union[List[PIL.Image.Image], np.ndarray]
    nsfw_content_detected: Optional[List[bool]]