Skip to content

Pipelines

Pipelines provide a simple way to run state-of-the-art diffusion models in inference by bundling all of the necessary components (multiple independently-trained models, schedulers, and processors) into a single end-to-end class. Pipelines are flexible and they can be adapted to use different schedulers or even model components.

All pipelines are built from the base DiffusionPipeline class which provides basic functionality for loading, downloading, and saving all the components. Specific pipeline types (for example StableDiffusionPipeline) loaded with DiffusionPipeline.from_pretrained are automatically detected and the pipeline components are loaded and passed to the __init__ function of the pipeline.

Warning

You shouldn't use the DiffusionPipeline class for training. Individual components (for example, UNet2DModel and UNet2DConditionModel) of diffusion pipelines are usually trained individually, so we suggest directly working with them instead.

Warning

Pipelines do not offer any training functionality. You'll notice MindSpore's autograd is disabled by decorating the DiffusionPipeline.__call__ method with a [mindspore._no_grad] decorator because pipelines should not be used for training. If you're interested in training, please take a look at the Training guides instead!

The table below lists all the pipelines currently available in ๐Ÿค— Diffusers and the tasks they support. Click on a pipeline to view its abstract and published paper.

Pipeline Tasks
AnimateDiff text2video
BLIP Diffusion text2image
Consistency Models unconditional image generation
ControlNet text2image, image2image, inpainting
ControlNet with Stable Diffusion 3 text2image
ControlNet with Stable Diffusion XL text2image
ControlNet-XS text2image
ControlNet-XS with Stable Diffusion XL text2image
Dance Diffusion unconditional audio generation
DDIM unconditional image generation
DDPM unconditional image generation
DeepFloyd IF text2image, image2image, inpainting, super-resolution
DiffEdit inpainting
DiT text2image
Hunyuan-DiT text2image
I2VGen-XL text2video
InstructPix2Pix image editing
Kandinsky 2.1 text2image, image2image, inpainting, interpolation
Kandinsky 2.2 text2image, image2image, inpainting
Kandinsky 3 text2image, image2image
Latent Consistency Models text2image
Latent Diffusion text2image, super-resolution
Marigold depth
PixArt-ฮฑ text2image
PixArt-ฮฃ text2image
Shap-E text-to-3D, image-to-3D
Stable Cascade text2image
unCLIP text2image, image variation
Wuerstchen text2image

mindone.diffusers.DiffusionPipeline

Bases: ConfigMixin, PushToHubMixin

Base class for all pipelines.

[DiffusionPipeline] stores all components (models, schedulers, and processors) for diffusion pipelines and provides methods for loading, downloading and saving models. It also includes methods to:

- move all PyTorch modules to the device of your choice
- enable/disable the progress bar for the denoising iteration

Class attributes:

- **config_name** (`str`) -- The configuration filename that stores the class and module names of all the
  diffusion pipeline's components.
- **_optional_components** (`List[str]`) -- List of all optional components that don't have to be passed to the
  pipeline to function (should be overridden by subclasses).
Source code in mindone/diffusers/pipelines/pipeline_utils.py
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
class DiffusionPipeline(ConfigMixin, PushToHubMixin):
    r"""
    Base class for all pipelines.

    [`DiffusionPipeline`] stores all components (models, schedulers, and processors) for diffusion pipelines and
    provides methods for loading, downloading and saving models. It also includes methods to:

        - move all PyTorch modules to the device of your choice
        - enable/disable the progress bar for the denoising iteration

    Class attributes:

        - **config_name** (`str`) -- The configuration filename that stores the class and module names of all the
          diffusion pipeline's components.
        - **_optional_components** (`List[str]`) -- List of all optional components that don't have to be passed to the
          pipeline to function (should be overridden by subclasses).
    """

    config_name = "model_index.json"
    model_cpu_offload_seq = None
    _optional_components = []
    _exclude_from_cpu_offload = []
    _load_connected_pipes = False
    _is_onnx = False

    def register_modules(self, **kwargs):
        for name, module in kwargs.items():
            # retrieve library
            if module is None or isinstance(module, (tuple, list)) and module[0] is None:
                register_dict = {name: (None, None)}
            else:
                library, class_name = _fetch_class_library_tuple(module)
                register_dict = {name: (library, class_name)}

            # save model index config
            self.register_to_config(**register_dict)

            # set models
            setattr(self, name, module)

    def __setattr__(self, name: str, value: Any):
        if name in self.__dict__ and hasattr(self.config, name):
            # We need to overwrite the config if name exists in config
            if isinstance(getattr(self.config, name), (tuple, list)):
                if value is not None and self.config[name][0] is not None:
                    class_library_tuple = _fetch_class_library_tuple(value)
                else:
                    class_library_tuple = (None, None)

                self.register_to_config(**{name: class_library_tuple})
            else:
                self.register_to_config(**{name: value})

        super().__setattr__(name, value)

    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
        safe_serialization: bool = True,
        variant: Optional[str] = None,
        push_to_hub: bool = False,
        **kwargs,
    ):
        """
        Save all saveable variables of the pipeline to a directory. A pipeline variable can be saved and loaded if its
        class implements both a save and loading method. The pipeline is easily reloaded using the
        [`~DiffusionPipeline.from_pretrained`] class method.

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save a pipeline to. Will be created if it doesn't exist.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
            variant (`str`, *optional*):
                If specified, weights are saved in the format `pytorch_model.<variant>.bin`.
            push_to_hub (`bool`, *optional*, defaults to `False`):
                Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
                repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
                namespace).
            kwargs (`Dict[str, Any]`, *optional*):
                Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
        """
        model_index_dict = dict(self.config)
        model_index_dict.pop("_class_name", None)
        model_index_dict.pop("_diffusers_version", None)
        model_index_dict.pop("_module", None)
        model_index_dict.pop("_name_or_path", None)

        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
            private = kwargs.pop("private", False)
            create_pr = kwargs.pop("create_pr", False)
            token = kwargs.pop("token", None)
            repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
            repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id

        expected_modules, optional_kwargs = self._get_signature_keys(self)

        def is_saveable_module(name, value):
            if name not in expected_modules:
                return False
            if name in self._optional_components and value[0] is None:
                return False
            return True

        model_index_dict = {k: v for k, v in model_index_dict.items() if is_saveable_module(k, v)}
        for pipeline_component_name in model_index_dict.keys():
            sub_model = getattr(self, pipeline_component_name)
            model_cls = sub_model.__class__

            save_method_name = None
            # search for the model's base class in LOADABLE_CLASSES
            for library_name, library_classes in LOADABLE_CLASSES.items():
                # we always have mindone.{library_name} installed, so there is no need to check
                # TODO: what about "onnxruntime.training" in huggingface/diffusers?
                library = maybe_import_module_in_mindone(library_name)
                for base_class, save_load_methods in library_classes.items():
                    class_candidate = getattr(library, base_class, None)
                    if class_candidate is None:
                        # base_class is not implemented in mindone, try get it from huggingface library
                        library_original = maybe_import_module_in_mindone(library_name, force_original=True)
                        class_candidate = getattr(library_original, base_class, None)
                    if class_candidate is not None and issubclass(model_cls, class_candidate):
                        # if we found a suitable base class in LOADABLE_CLASSES then grab its save method
                        save_method_name = save_load_methods[0]
                        break
                if save_method_name is not None:
                    break

            if save_method_name is None:
                logger.warning(f"self.{pipeline_component_name}={sub_model} of type {type(sub_model)} cannot be saved.")
                # make sure that unsaveable components are not tried to be loaded afterward
                self.register_to_config(**{pipeline_component_name: (None, None)})
                continue

            save_method = getattr(sub_model, save_method_name)

            # Call the save method with the argument safe_serialization only if it's supported
            save_method_signature = inspect.signature(save_method)
            save_method_accept_safe = "safe_serialization" in save_method_signature.parameters
            save_method_accept_variant = "variant" in save_method_signature.parameters

            save_kwargs = {}
            if save_method_accept_safe:
                save_kwargs["safe_serialization"] = safe_serialization
            if save_method_accept_variant:
                save_kwargs["variant"] = variant

            save_method(os.path.join(save_directory, pipeline_component_name), **save_kwargs)

        # finally save the config
        self.save_config(save_directory)

        if push_to_hub:
            # Create a new empty model card and eventually tag it
            model_card = load_or_create_model_card(repo_id, token=token, is_pipeline=True)
            model_card = populate_model_card(model_card)
            model_card.save(os.path.join(save_directory, "README.md"))

            self._upload_folder(
                save_directory,
                repo_id,
                token=token,
                commit_message=commit_message,
                create_pr=create_pr,
            )

    def to(self, dtype):
        r"""
        Performs Pipeline dtype conversion. A ms.dtype inferred from the argument of `self.to(dtype).`

        <Tip>

            If the pipeline already has the correct ms.dtype, then it is returned as is. Otherwise,
            the returned pipeline is a copy of self with the desired ms.dtype.

        </Tip>


        Here are the ways to call `to`:

        - `to(dtype) โ†’ DiffusionPipeline` to return a pipeline with the specified `dtype`

        Arguments:
            dtype (`mindspore.dtype`):
                Returns a pipeline with the specified `dtype`

        Returns:
            [`DiffusionPipeline`]: The pipeline converted to specified `dtype` and/or `dtype`.
        """
        module_names, _ = self._get_signature_keys(self)
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, nn.Cell)]
        for module in modules:
            module.to(dtype)
        return self

    @property
    def dtype(self) -> ms.dtype:
        r"""
        Returns:
            `mindspore.dtype`: The mindspore dtype on which the pipeline is located.
        """
        module_names, _ = self._get_signature_keys(self)
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, nn.Cell)]

        for module in modules:
            return module.dtype

        return ms.float32

    @classmethod
    @validate_hf_hub_args
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
        r"""
        Instantiate a PyTorch diffusion pipeline from pretrained pipeline weights.

        The pipeline is set in evaluation mode (`model.eval()`) by default.

        If you get the error message below, you need to finetune the weights for your downstream task:

        ```
        Some weights of UNet2DConditionModel were not initialized from the model checkpoint at
        runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
        - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
        You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
        ```

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

                    - A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
                      hosted on the Hub.
                    - A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights
                      saved using
                    [`~DiffusionPipeline.save_pretrained`].
            mindspore_dtype (`str` or `mindspore.dtype`, *optional*):
                Override the default `mindspore.dtype` and load the model with another dtype. If "auto" is passed, the
                dtype is automatically derived from the model's weights.
            custom_pipeline (`str`, *optional*):

                <Tip warning={true}>

                ๐Ÿงช This is an experimental feature and may change in the future.

                </Tip>

                Can be either:

                    - A string, the *repo id* (for example `hf-internal-testing/diffusers-dummy-pipeline`) of a custom
                      pipeline hosted on the Hub. The repository must contain a file called pipeline.py that defines
                      the custom pipeline.
                    - A string, the *file name* of a community pipeline hosted on GitHub under
                      [Community](https://github.com/huggingface/diffusers/tree/main/examples/community). Valid file
                      names must match the file name and not the pipeline script (`clip_guided_stable_diffusion`
                      instead of `clip_guided_stable_diffusion.py`). Community pipelines are always loaded from the
                      current main branch of GitHub.
                    - A path to a directory (`./my_pipeline_directory/`) containing a custom pipeline. The directory
                      must contain a file called `pipeline.py` that defines the custom pipeline.

                For more information on how to load and create custom pipelines, please have a look at [Loading and
                Adding Custom
                Pipelines](https://huggingface.co/docs/diffusers/using-diffusers/custom_pipeline_overview)
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.

            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            custom_revision (`str`, *optional*):
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
                `revision` when loading a custom pipeline from the Hub. Defaults to the latest stable ๐Ÿค— Diffusers
                version.
            mirror (`str`, *optional*):
                Mirror source to resolve accessibility issues if youโ€™re downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            use_onnx (`bool`, *optional*, defaults to `None`):
                If set to `True`, ONNX weights will always be downloaded if present. If set to `False`, ONNX weights
                will never be downloaded. By default `use_onnx` defaults to the `_is_onnx` class attribute which is
                `False` for non-ONNX pipelines and `True` for ONNX pipelines. ONNX weights include both files ending
                with `.onnx` and `.pb`.
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
                class). The overwritten components are passed directly to the pipelines `__init__` method. See example
                below for more information.
            variant (`str`, *optional*):
                Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.

        <Tip>

        To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with
        `huggingface-cli login`.

        </Tip>

        Examples:

        ```py
        >>> from mindone.diffusers import DiffusionPipeline

        >>> # Download pipeline from huggingface.co and cache.
        >>> pipeline = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256")

        >>> # Download pipeline that requires an authorization token
        >>> # For more information on access tokens, please refer to this section
        >>> # of the documentation](https://huggingface.co/docs/hub/security-tokens)
        >>> pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")

        >>> # Use a different scheduler
        >>> from mindone.diffusers import LMSDiscreteScheduler

        >>> scheduler = LMSDiscreteScheduler.from_config(pipeline.scheduler.config)
        >>> pipeline.scheduler = scheduler
        ```
        """
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        mindspore_dtype = kwargs.pop("mindspore_dtype", None)
        custom_pipeline = kwargs.pop("custom_pipeline", None)
        custom_revision = kwargs.pop("custom_revision", None)
        variant = kwargs.pop("variant", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
        use_onnx = kwargs.pop("use_onnx", None)
        load_connected_pipeline = kwargs.pop("load_connected_pipeline", False)

        # 1. Download the checkpoints and configs
        # use snapshot download here to get it working from from_pretrained
        if not os.path.isdir(pretrained_model_name_or_path):
            if pretrained_model_name_or_path.count("/") > 1:
                raise ValueError(
                    f'The provided pretrained_model_name_or_path "{pretrained_model_name_or_path}"'
                    " is neither a valid local path nor a valid repo id. Please check the parameter."
                )
            cached_folder = cls.download(
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                local_files_only=local_files_only,
                token=token,
                revision=revision,
                use_safetensors=use_safetensors,
                use_onnx=use_onnx,
                custom_pipeline=custom_pipeline,
                custom_revision=custom_revision,
                variant=variant,
                load_connected_pipeline=load_connected_pipeline,
                **kwargs,
            )
        else:
            cached_folder = pretrained_model_name_or_path

        config_dict = cls.load_config(cached_folder)

        # pop out "_ignore_files" as it is only needed for download
        config_dict.pop("_ignore_files", None)

        # 2. Define which model components should load variants
        # We retrieve the information by matching whether variant
        # model checkpoints exist in the subfolders
        model_variants = {}
        if variant is not None:
            for folder in os.listdir(cached_folder):
                folder_path = os.path.join(cached_folder, folder)
                is_folder = os.path.isdir(folder_path) and folder in config_dict
                variant_exists = is_folder and any(p.split(".")[1].startswith(variant) for p in os.listdir(folder_path))
                if variant_exists:
                    model_variants[folder] = variant

        # 3. Load the pipeline class, if using custom module then load it from the hub
        # if we load from explicit class, let's use it
        custom_class_name = None
        if os.path.isfile(os.path.join(cached_folder, f"{custom_pipeline}.py")):
            custom_pipeline = os.path.join(cached_folder, f"{custom_pipeline}.py")
        elif isinstance(config_dict["_class_name"], (list, tuple)) and os.path.isfile(
            os.path.join(cached_folder, f"{config_dict['_class_name'][0]}.py")
        ):
            custom_pipeline = os.path.join(cached_folder, f"{config_dict['_class_name'][0]}.py")
            custom_class_name = config_dict["_class_name"][1]

        pipeline_class = _get_pipeline_class(
            cls,
            config_dict,
            load_connected_pipeline=load_connected_pipeline,
            custom_pipeline=custom_pipeline,
            class_name=custom_class_name,
            cache_dir=cache_dir,
            revision=custom_revision,
        )

        # 4. Define expected modules given pipeline signature
        # and define non-None initialized modules (=`init_kwargs`)

        # some modules can be passed directly to the init
        # in this case they are already instantiated in `kwargs`
        # extract them here
        expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}

        init_dict, unused_kwargs, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)

        # define init kwargs and make sure that optional component modules are filtered out
        init_kwargs = {
            k: init_dict.pop(k)
            for k in optional_kwargs
            if k in init_dict and k not in pipeline_class._optional_components
        }
        init_kwargs = {**init_kwargs, **passed_pipe_kwargs}

        # remove `null` components
        def load_module(name, value):
            if value[0] is None:
                return False
            if name in passed_class_obj and passed_class_obj[name] is None:
                return False
            return True

        init_dict = {k: v for k, v in init_dict.items() if load_module(k, v)}

        # 5. Throw nice warnings / errors for fast accelerate loading
        if len(unused_kwargs) > 0:
            logger.warning(
                f"Keyword arguments {unused_kwargs} are not expected by {pipeline_class.__name__} and will be ignored."
            )

        # import it here to avoid circular import
        from mindone.diffusers import pipelines

        # 6. device map delegation which is not supported in MindSpore
        # 7. Load each module in the pipeline
        for name, (library_name, class_name) in logging.tqdm(init_dict.items(), desc="Loading pipeline components..."):
            # 7.1 - now that JAX/Flax is an official framework of the library, we might load from Flax names
            class_name = class_name[4:] if class_name.startswith("Flax") else class_name

            # 7.2 Define all importable classes
            is_pipeline_module = hasattr(pipelines, library_name)
            importable_classes = ALL_IMPORTABLE_CLASSES
            loaded_sub_model = None

            # 7.3 Use passed sub model or load class_name from library_name
            if name in passed_class_obj:
                # if the model is in a pipeline module, then we load it from the pipeline
                # check that passed_class_obj has correct parent class
                maybe_raise_or_warn(
                    library_name, class_name, importable_classes, passed_class_obj, name, is_pipeline_module
                )

                loaded_sub_model = passed_class_obj[name]
            else:
                # load sub model
                loaded_sub_model = load_sub_model(
                    library_name=library_name,
                    class_name=class_name,
                    importable_classes=importable_classes,
                    pipelines=pipelines,
                    is_pipeline_module=is_pipeline_module,
                    pipeline_class=pipeline_class,
                    mindspore_dtype=mindspore_dtype,
                    model_variants=model_variants,
                    name=name,
                    variant=variant,
                    cached_folder=cached_folder,
                )
                logger.info(
                    f"Loaded {name} as {class_name} from `{name}` subfolder of {pretrained_model_name_or_path}."
                )

            init_kwargs[name] = loaded_sub_model  # UNet(...), # DiffusionSchedule(...)

        if pipeline_class._load_connected_pipes and os.path.isfile(os.path.join(cached_folder, "README.md")):
            modelcard = ModelCard.load(os.path.join(cached_folder, "README.md"))
            connected_pipes = {prefix: getattr(modelcard.data, prefix, [None])[0] for prefix in CONNECTED_PIPES_KEYS}
            load_kwargs = {
                "cache_dir": cache_dir,
                "force_download": force_download,
                "proxies": proxies,
                "local_files_only": local_files_only,
                "token": token,
                "revision": revision,
                "mindspore_dtype": mindspore_dtype,
                "custom_pipeline": custom_pipeline,
                "custom_revision": custom_revision,
                "variant": variant,
                "use_safetensors": use_safetensors,
            }

            def get_connected_passed_kwargs(prefix):
                connected_passed_class_obj = {
                    k.replace(f"{prefix}_", ""): w for k, w in passed_class_obj.items() if k.split("_")[0] == prefix
                }
                connected_passed_pipe_kwargs = {
                    k.replace(f"{prefix}_", ""): w for k, w in passed_pipe_kwargs.items() if k.split("_")[0] == prefix
                }

                connected_passed_kwargs = {**connected_passed_class_obj, **connected_passed_pipe_kwargs}
                return connected_passed_kwargs

            connected_pipes = {
                prefix: DiffusionPipeline.from_pretrained(
                    repo_id, **load_kwargs.copy(), **get_connected_passed_kwargs(prefix)
                )
                for prefix, repo_id in connected_pipes.items()
                if repo_id is not None
            }

            for prefix, connected_pipe in connected_pipes.items():
                # add connected pipes to `init_kwargs` with <prefix>_<component_name>, e.g. "prior_text_encoder"
                init_kwargs.update(
                    {"_".join([prefix, name]): component for name, component in connected_pipe.components.items()}
                )

        # 8. Potentially add passed objects if expected
        missing_modules = set(expected_modules) - set(init_kwargs.keys())
        passed_modules = list(passed_class_obj.keys())
        optional_modules = pipeline_class._optional_components
        if len(missing_modules) > 0 and missing_modules <= set(passed_modules + optional_modules):
            for module in missing_modules:
                init_kwargs[module] = passed_class_obj.get(module, None)
        elif len(missing_modules) > 0:
            passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys())) - optional_kwargs
            raise ValueError(
                f"Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed."
            )

        # 9. Instantiate the pipeline
        model = pipeline_class(**init_kwargs)

        # 10. Save where the model was instantiated from
        model.register_to_config(_name_or_path=pretrained_model_name_or_path)
        return model

    @property
    def name_or_path(self) -> str:
        return getattr(self.config, "_name_or_path", None)

    def remove_all_hooks(self):
        r"""
        Removes all hooks that were added when using `enable_sequential_cpu_offload` or `enable_model_cpu_offload`.
        """
        raise NotImplementedError("`remove_all_hooks` is not implemented.")

    def enable_model_cpu_offload(self, gpu_id: Optional[int] = None, device: str = "cuda"):
        r"""
        Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
        to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
        method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
        `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.

        Arguments:
            gpu_id (`int`, *optional*):
                The ID of the accelerator that shall be used in inference. If not specified, it will default to 0.
            device (`torch.Device` or `str`, *optional*, defaults to "cuda"):
                The PyTorch device type of the accelerator that shall be used in inference. If not specified, it will
                default to "cuda".
        """
        raise NotImplementedError(
            "`enable_model_cpu_offload` is not implemented. If you want to utilize the offload function, you can try the [capabilities provided by the framework itself](https://www.mindspore.cn/docs/zh-CN/master/model_train/parallel/memory_offload.html)."  # noqa: E501
        )

    def maybe_free_model_hooks(self):
        r"""
        Function that offloads all components, removes all model hooks that were added when using
        `enable_model_cpu_offload` and then applies them again. In case the model has not been offloaded this function
        is a no-op. Make sure to add this function to the end of the `__call__` function of your pipeline so that it
        functions correctly when applying enable_model_cpu_offload.
        """
        raise NotImplementedError("`maybe_free_model_hooks` is not implemented.")

    def enable_sequential_cpu_offload(self, gpu_id: Optional[int] = None, device: str = "cuda"):
        r"""
        Offloads all models to CPU using ๐Ÿค— Accelerate, significantly reducing memory usage. When called, the state
        dicts of all `torch.nn.Module` components (except those in `self._exclude_from_cpu_offload`) are saved to CPU
        and then moved to `torch.device('meta')` and loaded to GPU only when their specific submodule has its `forward`
        method called. Offloading happens on a submodule basis. Memory savings are higher than with
        `enable_model_cpu_offload`, but performance is lower.

        Arguments:
            gpu_id (`int`, *optional*):
                The ID of the accelerator that shall be used in inference. If not specified, it will default to 0.
            device (`torch.Device` or `str`, *optional*, defaults to "cuda"):
                The PyTorch device type of the accelerator that shall be used in inference. If not specified, it will
                default to "cuda".
        """
        raise NotImplementedError(
            "`enable_sequential_cpu_offload` is not implemented. If you want to utilize the offload function, you can try the [capabilities provided by the framework itself](https://www.mindspore.cn/docs/zh-CN/master/model_train/parallel/memory_offload.html)."  # noqa: E501
        )

    def reset_device_map(self):
        r"""
        Resets the device maps (if any) to None.
        """
        raise NotImplementedError("`reset_device_map` is not implemented.")

    @classmethod
    @validate_hf_hub_args
    def download(cls, pretrained_model_name, **kwargs) -> Union[str, os.PathLike]:
        r"""
        Download and cache a PyTorch diffusion pipeline from pretrained pipeline weights.

        Parameters:
            pretrained_model_name (`str` or `os.PathLike`, *optional*):
                A string, the *repository id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
                hosted on the Hub.
            custom_pipeline (`str`, *optional*):
                Can be either:

                    - A string, the *repository id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained
                      pipeline hosted on the Hub. The repository must contain a file called `pipeline.py` that defines
                      the custom pipeline.

                    - A string, the *file name* of a community pipeline hosted on GitHub under
                      [Community](https://github.com/huggingface/diffusers/tree/main/examples/community). Valid file
                      names must match the file name and not the pipeline script (`clip_guided_stable_diffusion`
                      instead of `clip_guided_stable_diffusion.py`). Community pipelines are always loaded from the
                      current `main` branch of GitHub.

                    - A path to a *directory* (`./my_pipeline_directory/`) containing a custom pipeline. The directory
                      must contain a file called `pipeline.py` that defines the custom pipeline.

                <Tip warning={true}>

                ๐Ÿงช This is an experimental feature and may change in the future.

                </Tip>

                For more information on how to load and create custom pipelines, take a look at [How to contribute a
                community pipeline](https://huggingface.co/docs/diffusers/main/en/using-diffusers/contribute_pipeline).

            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.

            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            custom_revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
                `revision` when loading a custom pipeline from the Hub. It can be a ๐Ÿค— Diffusers version when loading a
                custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
            mirror (`str`, *optional*):
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
            variant (`str`, *optional*):
                Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            use_onnx (`bool`, *optional*, defaults to `False`):
                If set to `True`, ONNX weights will always be downloaded if present. If set to `False`, ONNX weights
                will never be downloaded. By default `use_onnx` defaults to the `_is_onnx` class attribute which is
                `False` for non-ONNX pipelines and `True` for ONNX pipelines. ONNX weights include both files ending
                with `.onnx` and `.pb`.
            trust_remote_code (`bool`, *optional*, defaults to `False`):
                Whether or not to allow for custom pipelines and components defined on the Hub in their own files. This
                option should only be set to `True` for repositories you trust and in which you have read the code, as
                it will execute code present on the Hub on your local machine.

        Returns:
            `os.PathLike`:
                A path to the downloaded pipeline.

        <Tip>

        To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with
        `huggingface-cli login`.

        </Tip>

        """
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        custom_pipeline = kwargs.pop("custom_pipeline", None)
        custom_revision = kwargs.pop("custom_revision", None)
        variant = kwargs.pop("variant", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
        use_onnx = kwargs.pop("use_onnx", None)
        load_connected_pipeline = kwargs.pop("load_connected_pipeline", False)
        trust_remote_code = kwargs.pop("trust_remote_code", False)

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

        allow_patterns = None
        ignore_patterns = None

        model_info_call_error: Optional[Exception] = None
        if not local_files_only:
            try:
                info = model_info(pretrained_model_name, token=token, revision=revision)
            except (HTTPError, OfflineModeIsEnabled, requests.ConnectionError) as e:
                logger.warning(f"Couldn't connect to the Hub: {e}.\nWill try to load from local cache.")
                local_files_only = True
                model_info_call_error = e  # save error to reraise it if model is not cached locally

        if not local_files_only:
            config_file = hf_hub_download(
                pretrained_model_name,
                cls.config_name,
                cache_dir=cache_dir,
                revision=revision,
                proxies=proxies,
                force_download=force_download,
                token=token,
            )

            config_dict = cls._dict_from_json_file(config_file)
            ignore_filenames = config_dict.pop("_ignore_files", [])

            # retrieve all folder_names that contain relevant files
            folder_names = [k for k, v in config_dict.items() if isinstance(v, list) and k != "_class_name"]

            filenames = {sibling.rfilename for sibling in info.siblings}
            model_filenames, variant_filenames = variant_compatible_siblings(filenames, variant=variant)

            diffusers_module = maybe_import_module_in_mindone(__name__.split(".")[1])
            pipelines = getattr(diffusers_module, "pipelines")

            # optionally create a custom component <> custom file mapping
            custom_components = {}
            for component in folder_names:
                module_candidate = config_dict[component][0]

                if module_candidate is None or not isinstance(module_candidate, str):
                    continue

                # We compute candidate file path on the Hub. Do not use `os.path.join`.
                candidate_file = f"{component}/{module_candidate}.py"

                if candidate_file in filenames:
                    custom_components[component] = module_candidate
                elif module_candidate not in LOADABLE_CLASSES and not hasattr(pipelines, module_candidate):
                    raise ValueError(
                        f"{candidate_file} as defined in `model_index.json` does not exist in {pretrained_model_name} and is not a module in 'diffusers/pipelines'."  # noqa: E501
                    )

            if len(variant_filenames) == 0 and variant is not None:
                deprecation_message = (
                    f"You are trying to load the model files of the `variant={variant}`, but no such modeling files are available."
                    f"The default model files: {model_filenames} will be loaded instead. Make sure to not load from `variant={variant}`"
                    "if such variant modeling files are not available. Doing so will lead to an error in v0.24.0 as defaulting to non-variant"
                    "modeling files is deprecated."
                )
                deprecate("no variant default", "0.24.0", deprecation_message, standard_warn=False)

            # remove ignored filenames
            model_filenames = set(model_filenames) - set(ignore_filenames)
            variant_filenames = set(variant_filenames) - set(ignore_filenames)

            # if the whole pipeline is cached we don't have to ping the Hub
            if revision in DEPRECATED_REVISION_ARGS and version.parse(
                version.parse(__version__).base_version
            ) >= version.parse("0.22.0"):
                warn_deprecated_model_variant(pretrained_model_name, token, variant, revision, model_filenames)

            model_folder_names = {os.path.split(f)[0] for f in model_filenames if os.path.split(f)[0] in folder_names}

            custom_class_name = None
            if custom_pipeline is None and isinstance(config_dict["_class_name"], (list, tuple)):
                custom_pipeline = config_dict["_class_name"][0]
                custom_class_name = config_dict["_class_name"][1]

            # all filenames compatible with variant will be added
            allow_patterns = list(model_filenames)

            # allow all patterns from non-model folders
            # this enables downloading schedulers, tokenizers, ...
            allow_patterns += [f"{k}/*" for k in folder_names if k not in model_folder_names]
            # add custom component files
            allow_patterns += [f"{k}/{f}.py" for k, f in custom_components.items()]
            # add custom pipeline file
            allow_patterns += [f"{custom_pipeline}.py"] if f"{custom_pipeline}.py" in filenames else []
            # also allow downloading config.json files with the model
            allow_patterns += [os.path.join(k, "config.json") for k in model_folder_names]

            allow_patterns += [
                SCHEDULER_CONFIG_NAME,
                CONFIG_NAME,
                cls.config_name,
                CUSTOM_PIPELINE_FILE_NAME,
            ]

            load_pipe_from_hub = custom_pipeline is not None and f"{custom_pipeline}.py" in filenames
            load_components_from_hub = len(custom_components) > 0

            if load_pipe_from_hub and not trust_remote_code:
                raise ValueError(
                    f"The repository for {pretrained_model_name} contains custom code in {custom_pipeline}.py "
                    f"which must be executed to correctly load the model. You can inspect the repository content at "
                    f"https://hf.co/{pretrained_model_name}/blob/main/{custom_pipeline}.py.\n"
                    f"Please pass the argument `trust_remote_code=True` to allow custom code to be run."
                )

            if load_components_from_hub and not trust_remote_code:
                raise ValueError(
                    f"The repository for {pretrained_model_name} contains custom code in "
                    f"{'.py, '.join([os.path.join(k, v) for k,v in custom_components.items()])} "
                    f"which must be executed to correctly load the model. You can inspect the repository content at "
                    f"{', '.join([f'https://hf.co/{pretrained_model_name}/{k}/{v}.py' for k,v in custom_components.items()])}.\n"
                    f"Please pass the argument `trust_remote_code=True` to allow custom code to be run."
                )

            # retrieve passed components that should not be downloaded
            pipeline_class = _get_pipeline_class(
                cls,
                config_dict,
                load_connected_pipeline=load_connected_pipeline,
                custom_pipeline=custom_pipeline,
                repo_id=pretrained_model_name if load_pipe_from_hub else None,
                hub_revision=revision,
                class_name=custom_class_name,
                cache_dir=cache_dir,
                revision=custom_revision,
            )
            expected_components, _ = cls._get_signature_keys(pipeline_class)
            passed_components = [k for k in expected_components if k in kwargs]

            if (
                use_safetensors
                and not allow_pickle
                and not is_safetensors_compatible(model_filenames, variant=variant, passed_components=passed_components)
            ):
                raise EnvironmentError(
                    f"Could not find the necessary `safetensors` weights in {model_filenames} (variant={variant})"
                )
            if use_safetensors and is_safetensors_compatible(
                model_filenames, variant=variant, passed_components=passed_components
            ):
                ignore_patterns = ["*.bin", "*.msgpack"]

                use_onnx = use_onnx if use_onnx is not None else pipeline_class._is_onnx
                if not use_onnx:
                    ignore_patterns += ["*.onnx", "*.pb"]

                safetensors_variant_filenames = {f for f in variant_filenames if f.endswith(".safetensors")}
                safetensors_model_filenames = {f for f in model_filenames if f.endswith(".safetensors")}
                if (
                    len(safetensors_variant_filenames) > 0
                    and safetensors_model_filenames != safetensors_variant_filenames
                ):
                    logger.warning(
                        f"\nA mixture of {variant} and non-{variant} filenames will be loaded.\nLoaded {variant} filenames:\n[{', '.join(safetensors_variant_filenames)}]\nLoaded non-{variant} filenames:\n[{', '.join(safetensors_model_filenames - safetensors_variant_filenames)}\nIf this behavior is not expected, please check your folder structure."  # noqa: E501
                    )
            else:
                ignore_patterns = ["*.safetensors", "*.msgpack"]

                use_onnx = use_onnx if use_onnx is not None else pipeline_class._is_onnx
                if not use_onnx:
                    ignore_patterns += ["*.onnx", "*.pb"]

                bin_variant_filenames = {f for f in variant_filenames if f.endswith(".bin")}
                bin_model_filenames = {f for f in model_filenames if f.endswith(".bin")}
                if len(bin_variant_filenames) > 0 and bin_model_filenames != bin_variant_filenames:
                    logger.warning(
                        f"\nA mixture of {variant} and non-{variant} filenames will be loaded.\nLoaded {variant} filenames:\n[{', '.join(bin_variant_filenames)}]\nLoaded non-{variant} filenames:\n[{', '.join(bin_model_filenames - bin_variant_filenames)}\nIf this behavior is not expected, please check your folder structure."  # noqa: E501
                    )

            # Don't download any objects that are passed
            allow_patterns = [
                p for p in allow_patterns if not (len(p.split("/")) == 2 and p.split("/")[0] in passed_components)
            ]

            if pipeline_class._load_connected_pipes:
                allow_patterns.append("README.md")

            # Don't download index files of forbidden patterns either
            ignore_patterns = ignore_patterns + [f"{i}.index.*json" for i in ignore_patterns]
            re_ignore_pattern = [re.compile(fnmatch.translate(p)) for p in ignore_patterns]
            re_allow_pattern = [re.compile(fnmatch.translate(p)) for p in allow_patterns]

            expected_files = [f for f in filenames if not any(p.match(f) for p in re_ignore_pattern)]
            expected_files = [f for f in expected_files if any(p.match(f) for p in re_allow_pattern)]

            snapshot_folder = Path(config_file).parent
            pipeline_is_cached = all((snapshot_folder / f).is_file() for f in expected_files)

            if pipeline_is_cached and not force_download:
                # if the pipeline is cached, we can directly return it
                # else call snapshot_download
                return snapshot_folder

        user_agent = {"pipeline_class": cls.__name__}
        if custom_pipeline is not None and not custom_pipeline.endswith(".py"):
            user_agent["custom_pipeline"] = custom_pipeline

        # download all allow_patterns - ignore_patterns
        try:
            cached_folder = snapshot_download(
                pretrained_model_name,
                cache_dir=cache_dir,
                proxies=proxies,
                local_files_only=local_files_only,
                token=token,
                revision=revision,
                allow_patterns=allow_patterns,
                ignore_patterns=ignore_patterns,
                user_agent=user_agent,
            )

            # retrieve pipeline class from local file
            cls_name = cls.load_config(os.path.join(cached_folder, "model_index.json")).get("_class_name", None)
            cls_name = cls_name[4:] if isinstance(cls_name, str) and cls_name.startswith("Flax") else cls_name

            diffusers_module = maybe_import_module_in_mindone(__name__.split(".")[1])
            pipeline_class = getattr(diffusers_module, cls_name, None) if isinstance(cls_name, str) else None

            if pipeline_class is not None and pipeline_class._load_connected_pipes:
                modelcard = ModelCard.load(os.path.join(cached_folder, "README.md"))
                connected_pipes = sum([getattr(modelcard.data, k, []) for k in CONNECTED_PIPES_KEYS], [])
                for connected_pipe_repo_id in connected_pipes:
                    download_kwargs = {
                        "cache_dir": cache_dir,
                        "force_download": force_download,
                        "proxies": proxies,
                        "local_files_only": local_files_only,
                        "token": token,
                        "variant": variant,
                        "use_safetensors": use_safetensors,
                    }
                    DiffusionPipeline.download(connected_pipe_repo_id, **download_kwargs)

            return cached_folder

        except FileNotFoundError:
            # Means we tried to load pipeline with `local_files_only=True` but the files have not been found in local cache.
            # This can happen in two cases:
            # 1. If the user passed `local_files_only=True`                    => we raise the error directly
            # 2. If we forced `local_files_only=True` when `model_info` failed => we raise the initial error
            if model_info_call_error is None:
                # 1. user passed `local_files_only=True`
                raise
            else:
                # 2. we forced `local_files_only=True` when `model_info` failed
                raise EnvironmentError(
                    f"Cannot load model {pretrained_model_name}: model is not cached locally and an error occurred"
                    " while trying to fetch metadata from the Hub. Please check out the root cause in the stacktrace"
                    " above."
                ) from model_info_call_error

    @classmethod
    def _get_signature_keys(cls, obj):
        parameters = inspect.signature(obj.__init__).parameters
        required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
        optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})
        expected_modules = set(required_parameters.keys()) - {"self"}

        optional_names = list(optional_parameters)
        for name in optional_names:
            if name in cls._optional_components:
                expected_modules.add(name)
                optional_parameters.remove(name)

        return expected_modules, optional_parameters

    @classmethod
    def _get_signature_types(cls):
        signature_types = {}
        for k, v in inspect.signature(cls.__init__).parameters.items():
            if inspect.isclass(v.annotation):
                signature_types[k] = (v.annotation,)
            elif get_origin(v.annotation) == Union:
                signature_types[k] = get_args(v.annotation)
            else:
                logger.warning(f"cannot get type annotation for Parameter {k} of {cls}.")
        return signature_types

    @property
    def components(self) -> Dict[str, Any]:
        r"""
        The `self.components` property can be useful to run different pipelines with the same weights and
        configurations without reallocating additional memory.

        Returns (`dict`):
            A dictionary containing all the modules needed to initialize the pipeline.

        Examples:

        ```py
        >>> from mindone.diffusers import (
        ...     StableDiffusionPipeline,
        ...     StableDiffusionImg2ImgPipeline,
        ...     StableDiffusionInpaintPipeline,
        ... )

        >>> text2img = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        >>> img2img = StableDiffusionImg2ImgPipeline(**text2img.components)
        >>> inpaint = StableDiffusionInpaintPipeline(**text2img.components)
        ```
        """
        expected_modules, optional_parameters = self._get_signature_keys(self)
        components = {
            k: getattr(self, k) for k in self.config.keys() if not k.startswith("_") and k not in optional_parameters
        }

        if set(components.keys()) != expected_modules:
            raise ValueError(
                f"{self} has been incorrectly initialized or {self.__class__} is incorrectly implemented. Expected"
                f" {expected_modules} to be defined, but {components.keys()} are defined."
            )

        return components

    @staticmethod
    def numpy_to_pil(images):
        """
        Convert a NumPy image or a batch of images to a PIL image.
        """
        return numpy_to_pil(images)

    def progress_bar(self, iterable=None, total=None):
        if not hasattr(self, "_progress_bar_config"):
            self._progress_bar_config = {}
        elif not isinstance(self._progress_bar_config, dict):
            raise ValueError(
                f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}."
            )

        if iterable is not None:
            return tqdm(iterable, **self._progress_bar_config)
        elif total is not None:
            return tqdm(total=total, **self._progress_bar_config)
        else:
            raise ValueError("Either `total` or `iterable` has to be defined.")

    def set_progress_bar_config(self, **kwargs):
        self._progress_bar_config = kwargs

    def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None):
        r"""
        Enable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/). When this
        option is enabled, you should observe lower GPU memory usage and a potential speed up during inference. Speed
        up during training is not guaranteed.

        <Tip warning={true}>

        โš ๏ธ When memory efficient attention and sliced attention are both enabled, memory efficient attention takes
        precedent.

        </Tip>

        Parameters:
            attention_op (`Callable`, *optional*):
                Not supported for now.

        Examples:

        ```py
        >>> import mindspore as ms
        >>> from mindone.diffusers import DiffusionPipeline

        >>> pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", mindspore_dtype=ms.float16)
        >>> pipe.enable_xformers_memory_efficient_attention()
        >>> # Workaround for not accepting attention shape using VAE for Flash Attention
        >>> pipe.vae.enable_xformers_memory_efficient_attention(attention_op=None)
        ```
        """
        self.set_use_memory_efficient_attention_xformers(True, attention_op)

    def disable_xformers_memory_efficient_attention(self):
        r"""
        Disable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/).
        """
        self.set_use_memory_efficient_attention_xformers(False)

    def set_use_memory_efficient_attention_xformers(self, valid: bool, attention_op: Optional[Callable] = None) -> None:
        # Recursively walk through all the children.
        # Any children which exposes the set_use_memory_efficient_attention_xformers method
        # gets the message
        def fn_recursive_set_mem_eff(module: nn.Cell):
            if hasattr(module, "set_use_memory_efficient_attention_xformers"):
                module.set_use_memory_efficient_attention_xformers(valid, attention_op)

            for child in module.cells():
                fn_recursive_set_mem_eff(child)

        module_names, _ = self._get_signature_keys(self)
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, nn.Cell)]

        for module in modules:
            fn_recursive_set_mem_eff(module)

    def enable_flash_sdp(self, enabled: bool):
        r"""
        .. warning:: This flag is beta and subject to change.

        Enables or disables flash scaled dot product attention.
        """

        # Recursively walk through all the children.
        # Any children which exposes the enable_flash_sdp method
        # gets the message
        def fn_recursive_set_mem_eff(module: nn.Cell):
            if hasattr(module, "enable_flash_sdp"):
                module.enable_flash_sdp(enabled)

            for child in module.cells():
                fn_recursive_set_mem_eff(child)

        module_names, _ = self._get_signature_keys(self)
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, nn.Cell)]

        for module in modules:
            fn_recursive_set_mem_eff(module)

    def set_flash_attention_force_cast_dtype(self, force_cast_dtype: Optional[ms.Type]):
        r"""
        Since the flash-attention operator in MindSpore only supports float16 and bfloat16 data types, we need to manually
        set whether to force data type conversion.

        When the attention interface encounters data of an unsupported data type,
        if `force_cast_dtype` is not None, the function will forcibly convert the data to `force_cast_dtype` for computation
        and then restore it to the original data type afterward. If `force_cast_dtype` is None, it will fall back to the
        original attention calculation using mathematical formulas.

        Parameters:
            force_cast_dtype (Optional): The data type to which the input data should be forcibly converted. If None, no forced
            conversion is performed.
        """

        # Recursively walk through all the children.
        # Any children which exposes the set_flash_attention_force_cast_dtype method
        # gets the message
        def fn_recursive_set_mem_eff(module: nn.Cell):
            if hasattr(module, "set_flash_attention_force_cast_dtype"):
                module.set_flash_attention_force_cast_dtype(force_cast_dtype)

            for child in module.cells():
                fn_recursive_set_mem_eff(child)

        module_names, _ = self._get_signature_keys(self)
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, nn.Cell)]

        for module in modules:
            fn_recursive_set_mem_eff(module)

    @classmethod
    def from_pipe(cls, pipeline, **kwargs):
        r"""
        Create a new pipeline from a given pipeline. This method is useful to create a new pipeline from the existing
        pipeline components without reallocating additional memory.

        Arguments:
            pipeline (`DiffusionPipeline`):
                The pipeline from which to create a new pipeline.

        Returns:
            `DiffusionPipeline`:
                A new pipeline with the same weights and configurations as `pipeline`.

        Examples:

        ```py
        >>> from mindone.diffusers import StableDiffusionPipeline, StableDiffusionSAGPipeline

        >>> pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        >>> new_pipe = StableDiffusionSAGPipeline.from_pipe(pipe)
        ```
        """

        original_config = dict(pipeline.config)
        mindspore_dtype = kwargs.pop("mindspore_dtype", None)

        # derive the pipeline class to instantiate
        custom_pipeline = kwargs.pop("custom_pipeline", None)
        custom_revision = kwargs.pop("custom_revision", None)

        if custom_pipeline is not None:
            pipeline_class = _get_custom_pipeline_class(custom_pipeline, revision=custom_revision)
        else:
            pipeline_class = cls

        expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
        # true_optional_modules are optional components with default value in signature so it is ok not to pass them to `__init__`
        # e.g. `image_encoder` for StableDiffusionPipeline
        parameters = inspect.signature(cls.__init__).parameters
        true_optional_modules = set(
            {k for k, v in parameters.items() if v.default != inspect._empty and k in expected_modules}
        )

        # get the class of each component based on its type hint
        # e.g. {"unet": UNet2DConditionModel, "text_encoder": CLIPTextMode}
        component_types = pipeline_class._get_signature_types()

        pretrained_model_name_or_path = original_config.pop("_name_or_path", None)
        # allow users pass modules in `kwargs` to override the original pipeline's components
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}

        original_class_obj = {}
        for name, component in pipeline.components.items():
            if name in expected_modules and name not in passed_class_obj:
                # for model components, we will not switch over if the class does not matches the type hint in the new pipeline's signature
                if (
                    not isinstance(component, ModelMixin)
                    or type(component) in component_types[name]
                    or (component is None and name in cls._optional_components)
                ):
                    original_class_obj[name] = component
                else:
                    logger.warning(
                        f"component {name} is not switched over to new pipeline because type does not match the expected."
                        f" {name} is {type(component)} while the new pipeline expect {component_types[name]}."
                        f" please pass the component of the correct type to the new pipeline. `from_pipe(..., {name}={name})`"
                    )

        # allow users pass optional kwargs to override the original pipelines config attribute
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
        original_pipe_kwargs = {
            k: original_config[k]
            for k in original_config.keys()
            if k in optional_kwargs and k not in passed_pipe_kwargs
        }

        # config attribute that were not expected by pipeline is stored as its private attribute
        # (i.e. when the original pipeline was also instantiated with `from_pipe` from another pipeline that has this config)
        # in this case, we will pass them as optional arguments if they can be accepted by the new pipeline
        additional_pipe_kwargs = [
            k[1:]
            for k in original_config.keys()
            if k.startswith("_") and k[1:] in optional_kwargs and k[1:] not in passed_pipe_kwargs
        ]
        for k in additional_pipe_kwargs:
            original_pipe_kwargs[k] = original_config.pop(f"_{k}")

        pipeline_kwargs = {
            **passed_class_obj,
            **original_class_obj,
            **passed_pipe_kwargs,
            **original_pipe_kwargs,
            **kwargs,
        }

        # store unused config as private attribute in the new pipeline
        unused_original_config = {
            f"{'' if k.startswith('_') else '_'}{k}": v for k, v in original_config.items() if k not in pipeline_kwargs
        }

        missing_modules = (
            set(expected_modules)
            - set(pipeline._optional_components)
            - set(pipeline_kwargs.keys())
            - set(true_optional_modules)
        )

        if len(missing_modules) > 0:
            raise ValueError(
                f"Pipeline {pipeline_class} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed"  # noqa: E501
            )

        new_pipeline = pipeline_class(**pipeline_kwargs)
        if pretrained_model_name_or_path is not None:
            new_pipeline.register_to_config(_name_or_path=pretrained_model_name_or_path)
        new_pipeline.register_to_config(**unused_original_config)

        if mindspore_dtype is not None:
            new_pipeline.to(dtype=mindspore_dtype)

        return new_pipeline

mindone.diffusers.DiffusionPipeline.components: Dict[str, Any] property

The self.components property can be useful to run different pipelines with the same weights and configurations without reallocating additional memory.

Returns (dict): A dictionary containing all the modules needed to initialize the pipeline.

Examples:

>>> from mindone.diffusers import (
...     StableDiffusionPipeline,
...     StableDiffusionImg2ImgPipeline,
...     StableDiffusionInpaintPipeline,
... )

>>> text2img = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
>>> img2img = StableDiffusionImg2ImgPipeline(**text2img.components)
>>> inpaint = StableDiffusionInpaintPipeline(**text2img.components)

mindone.diffusers.DiffusionPipeline.dtype: ms.dtype property

RETURNS DESCRIPTION
dtype

mindspore.dtype: The mindspore dtype on which the pipeline is located.

mindone.diffusers.DiffusionPipeline.disable_xformers_memory_efficient_attention()

Disable memory efficient attention from xFormers.

Source code in mindone/diffusers/pipelines/pipeline_utils.py
1201
1202
1203
1204
1205
def disable_xformers_memory_efficient_attention(self):
    r"""
    Disable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/).
    """
    self.set_use_memory_efficient_attention_xformers(False)

mindone.diffusers.DiffusionPipeline.download(pretrained_model_name, **kwargs) classmethod

Download and cache a PyTorch diffusion pipeline from pretrained pipeline weights.

PARAMETER DESCRIPTION
pretrained_model_name

A string, the repository id (for example CompVis/ldm-text2im-large-256) of a pretrained pipeline hosted on the Hub.

TYPE: `str` or `os.PathLike`, *optional*

custom_pipeline

Can be either:

- A string, the *repository id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained
  pipeline hosted on the Hub. The repository must contain a file called `pipeline.py` that defines
  the custom pipeline.

- A string, the *file name* of a community pipeline hosted on GitHub under
  [Community](https://github.com/huggingface/diffusers/tree/main/examples/community). Valid file
  names must match the file name and not the pipeline script (`clip_guided_stable_diffusion`
  instead of `clip_guided_stable_diffusion.py`). Community pipelines are always loaded from the
  current `main` branch of GitHub.

- A path to a *directory* (`./my_pipeline_directory/`) containing a custom pipeline. The directory
  must contain a file called `pipeline.py` that defines the custom pipeline.

๐Ÿงช This is an experimental feature and may change in the future.

For more information on how to load and create custom pipelines, take a look at How to contribute a community pipeline.

TYPE: `str`, *optional*

force_download

Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist.

TYPE: `bool`, *optional*, defaults to `False`

proxies

A dictionary of proxy servers to use by protocol or endpoint, for example, {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request.

TYPE: `Dict[str, str]`, *optional*

output_loading_info(`bool`,

Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.

TYPE: *optional*, defaults to `False`

local_files_only

Whether to only load local model weights and configuration files or not. If set to True, the model won't be downloaded from the Hub.

TYPE: `bool`, *optional*, defaults to `False`

token

The token to use as HTTP bearer authorization for remote files. If True, the token generated from diffusers-cli login (stored in ~/.huggingface) is used.

TYPE: `str` or *bool*, *optional*

revision

The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier allowed by Git.

TYPE: `str`, *optional*, defaults to `"main"`

custom_revision

The specific model version to use. It can be a branch name, a tag name, or a commit id similar to revision when loading a custom pipeline from the Hub. It can be a ๐Ÿค— Diffusers version when loading a custom pipeline from GitHub, otherwise it defaults to "main" when loading from the Hub.

TYPE: `str`, *optional*, defaults to `"main"`

mirror

Mirror source to resolve accessibility issues if you're downloading a model in China. We do not guarantee the timeliness or safety of the source, and you should refer to the mirror site for more information.

TYPE: `str`, *optional*

variant

Load weights from a specified variant filename such as "fp16" or "ema". This is ignored when loading from_flax.

TYPE: `str`, *optional*

use_safetensors

If set to None, the safetensors weights are downloaded if they're available and if the safetensors library is installed. If set to True, the model is forcibly loaded from safetensors weights. If set to False, safetensors weights are not loaded.

TYPE: `bool`, *optional*, defaults to `None`

use_onnx

If set to True, ONNX weights will always be downloaded if present. If set to False, ONNX weights will never be downloaded. By default use_onnx defaults to the _is_onnx class attribute which is False for non-ONNX pipelines and True for ONNX pipelines. ONNX weights include both files ending with .onnx and .pb.

TYPE: `bool`, *optional*, defaults to `False`

trust_remote_code

Whether or not to allow for custom pipelines and components defined on the Hub in their own files. This option should only be set to True for repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine.

TYPE: `bool`, *optional*, defaults to `False`

RETURNS DESCRIPTION
Union[str, PathLike]

os.PathLike: A path to the downloaded pipeline.

To use private or gated models, log-in with huggingface-cli login.

Source code in mindone/diffusers/pipelines/pipeline_utils.py
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
@classmethod
@validate_hf_hub_args
def download(cls, pretrained_model_name, **kwargs) -> Union[str, os.PathLike]:
    r"""
    Download and cache a PyTorch diffusion pipeline from pretrained pipeline weights.

    Parameters:
        pretrained_model_name (`str` or `os.PathLike`, *optional*):
            A string, the *repository id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
            hosted on the Hub.
        custom_pipeline (`str`, *optional*):
            Can be either:

                - A string, the *repository id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained
                  pipeline hosted on the Hub. The repository must contain a file called `pipeline.py` that defines
                  the custom pipeline.

                - A string, the *file name* of a community pipeline hosted on GitHub under
                  [Community](https://github.com/huggingface/diffusers/tree/main/examples/community). Valid file
                  names must match the file name and not the pipeline script (`clip_guided_stable_diffusion`
                  instead of `clip_guided_stable_diffusion.py`). Community pipelines are always loaded from the
                  current `main` branch of GitHub.

                - A path to a *directory* (`./my_pipeline_directory/`) containing a custom pipeline. The directory
                  must contain a file called `pipeline.py` that defines the custom pipeline.

            <Tip warning={true}>

            ๐Ÿงช This is an experimental feature and may change in the future.

            </Tip>

            For more information on how to load and create custom pipelines, take a look at [How to contribute a
            community pipeline](https://huggingface.co/docs/diffusers/main/en/using-diffusers/contribute_pipeline).

        force_download (`bool`, *optional*, defaults to `False`):
            Whether or not to force the (re-)download of the model weights and configuration files, overriding the
            cached versions if they exist.

        proxies (`Dict[str, str]`, *optional*):
            A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
            'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
        output_loading_info(`bool`, *optional*, defaults to `False`):
            Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
        local_files_only (`bool`, *optional*, defaults to `False`):
            Whether to only load local model weights and configuration files or not. If set to `True`, the model
            won't be downloaded from the Hub.
        token (`str` or *bool*, *optional*):
            The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
            `diffusers-cli login` (stored in `~/.huggingface`) is used.
        revision (`str`, *optional*, defaults to `"main"`):
            The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
            allowed by Git.
        custom_revision (`str`, *optional*, defaults to `"main"`):
            The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
            `revision` when loading a custom pipeline from the Hub. It can be a ๐Ÿค— Diffusers version when loading a
            custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
        mirror (`str`, *optional*):
            Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
            guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
            information.
        variant (`str`, *optional*):
            Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
            loading `from_flax`.
        use_safetensors (`bool`, *optional*, defaults to `None`):
            If set to `None`, the safetensors weights are downloaded if they're available **and** if the
            safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
            weights. If set to `False`, safetensors weights are not loaded.
        use_onnx (`bool`, *optional*, defaults to `False`):
            If set to `True`, ONNX weights will always be downloaded if present. If set to `False`, ONNX weights
            will never be downloaded. By default `use_onnx` defaults to the `_is_onnx` class attribute which is
            `False` for non-ONNX pipelines and `True` for ONNX pipelines. ONNX weights include both files ending
            with `.onnx` and `.pb`.
        trust_remote_code (`bool`, *optional*, defaults to `False`):
            Whether or not to allow for custom pipelines and components defined on the Hub in their own files. This
            option should only be set to `True` for repositories you trust and in which you have read the code, as
            it will execute code present on the Hub on your local machine.

    Returns:
        `os.PathLike`:
            A path to the downloaded pipeline.

    <Tip>

    To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with
    `huggingface-cli login`.

    </Tip>

    """
    cache_dir = kwargs.pop("cache_dir", None)
    force_download = kwargs.pop("force_download", False)
    proxies = kwargs.pop("proxies", None)
    local_files_only = kwargs.pop("local_files_only", None)
    token = kwargs.pop("token", None)
    revision = kwargs.pop("revision", None)
    custom_pipeline = kwargs.pop("custom_pipeline", None)
    custom_revision = kwargs.pop("custom_revision", None)
    variant = kwargs.pop("variant", None)
    use_safetensors = kwargs.pop("use_safetensors", None)
    use_onnx = kwargs.pop("use_onnx", None)
    load_connected_pipeline = kwargs.pop("load_connected_pipeline", False)
    trust_remote_code = kwargs.pop("trust_remote_code", False)

    allow_pickle = False
    if use_safetensors is None:
        use_safetensors = True
        allow_pickle = True

    allow_patterns = None
    ignore_patterns = None

    model_info_call_error: Optional[Exception] = None
    if not local_files_only:
        try:
            info = model_info(pretrained_model_name, token=token, revision=revision)
        except (HTTPError, OfflineModeIsEnabled, requests.ConnectionError) as e:
            logger.warning(f"Couldn't connect to the Hub: {e}.\nWill try to load from local cache.")
            local_files_only = True
            model_info_call_error = e  # save error to reraise it if model is not cached locally

    if not local_files_only:
        config_file = hf_hub_download(
            pretrained_model_name,
            cls.config_name,
            cache_dir=cache_dir,
            revision=revision,
            proxies=proxies,
            force_download=force_download,
            token=token,
        )

        config_dict = cls._dict_from_json_file(config_file)
        ignore_filenames = config_dict.pop("_ignore_files", [])

        # retrieve all folder_names that contain relevant files
        folder_names = [k for k, v in config_dict.items() if isinstance(v, list) and k != "_class_name"]

        filenames = {sibling.rfilename for sibling in info.siblings}
        model_filenames, variant_filenames = variant_compatible_siblings(filenames, variant=variant)

        diffusers_module = maybe_import_module_in_mindone(__name__.split(".")[1])
        pipelines = getattr(diffusers_module, "pipelines")

        # optionally create a custom component <> custom file mapping
        custom_components = {}
        for component in folder_names:
            module_candidate = config_dict[component][0]

            if module_candidate is None or not isinstance(module_candidate, str):
                continue

            # We compute candidate file path on the Hub. Do not use `os.path.join`.
            candidate_file = f"{component}/{module_candidate}.py"

            if candidate_file in filenames:
                custom_components[component] = module_candidate
            elif module_candidate not in LOADABLE_CLASSES and not hasattr(pipelines, module_candidate):
                raise ValueError(
                    f"{candidate_file} as defined in `model_index.json` does not exist in {pretrained_model_name} and is not a module in 'diffusers/pipelines'."  # noqa: E501
                )

        if len(variant_filenames) == 0 and variant is not None:
            deprecation_message = (
                f"You are trying to load the model files of the `variant={variant}`, but no such modeling files are available."
                f"The default model files: {model_filenames} will be loaded instead. Make sure to not load from `variant={variant}`"
                "if such variant modeling files are not available. Doing so will lead to an error in v0.24.0 as defaulting to non-variant"
                "modeling files is deprecated."
            )
            deprecate("no variant default", "0.24.0", deprecation_message, standard_warn=False)

        # remove ignored filenames
        model_filenames = set(model_filenames) - set(ignore_filenames)
        variant_filenames = set(variant_filenames) - set(ignore_filenames)

        # if the whole pipeline is cached we don't have to ping the Hub
        if revision in DEPRECATED_REVISION_ARGS and version.parse(
            version.parse(__version__).base_version
        ) >= version.parse("0.22.0"):
            warn_deprecated_model_variant(pretrained_model_name, token, variant, revision, model_filenames)

        model_folder_names = {os.path.split(f)[0] for f in model_filenames if os.path.split(f)[0] in folder_names}

        custom_class_name = None
        if custom_pipeline is None and isinstance(config_dict["_class_name"], (list, tuple)):
            custom_pipeline = config_dict["_class_name"][0]
            custom_class_name = config_dict["_class_name"][1]

        # all filenames compatible with variant will be added
        allow_patterns = list(model_filenames)

        # allow all patterns from non-model folders
        # this enables downloading schedulers, tokenizers, ...
        allow_patterns += [f"{k}/*" for k in folder_names if k not in model_folder_names]
        # add custom component files
        allow_patterns += [f"{k}/{f}.py" for k, f in custom_components.items()]
        # add custom pipeline file
        allow_patterns += [f"{custom_pipeline}.py"] if f"{custom_pipeline}.py" in filenames else []
        # also allow downloading config.json files with the model
        allow_patterns += [os.path.join(k, "config.json") for k in model_folder_names]

        allow_patterns += [
            SCHEDULER_CONFIG_NAME,
            CONFIG_NAME,
            cls.config_name,
            CUSTOM_PIPELINE_FILE_NAME,
        ]

        load_pipe_from_hub = custom_pipeline is not None and f"{custom_pipeline}.py" in filenames
        load_components_from_hub = len(custom_components) > 0

        if load_pipe_from_hub and not trust_remote_code:
            raise ValueError(
                f"The repository for {pretrained_model_name} contains custom code in {custom_pipeline}.py "
                f"which must be executed to correctly load the model. You can inspect the repository content at "
                f"https://hf.co/{pretrained_model_name}/blob/main/{custom_pipeline}.py.\n"
                f"Please pass the argument `trust_remote_code=True` to allow custom code to be run."
            )

        if load_components_from_hub and not trust_remote_code:
            raise ValueError(
                f"The repository for {pretrained_model_name} contains custom code in "
                f"{'.py, '.join([os.path.join(k, v) for k,v in custom_components.items()])} "
                f"which must be executed to correctly load the model. You can inspect the repository content at "
                f"{', '.join([f'https://hf.co/{pretrained_model_name}/{k}/{v}.py' for k,v in custom_components.items()])}.\n"
                f"Please pass the argument `trust_remote_code=True` to allow custom code to be run."
            )

        # retrieve passed components that should not be downloaded
        pipeline_class = _get_pipeline_class(
            cls,
            config_dict,
            load_connected_pipeline=load_connected_pipeline,
            custom_pipeline=custom_pipeline,
            repo_id=pretrained_model_name if load_pipe_from_hub else None,
            hub_revision=revision,
            class_name=custom_class_name,
            cache_dir=cache_dir,
            revision=custom_revision,
        )
        expected_components, _ = cls._get_signature_keys(pipeline_class)
        passed_components = [k for k in expected_components if k in kwargs]

        if (
            use_safetensors
            and not allow_pickle
            and not is_safetensors_compatible(model_filenames, variant=variant, passed_components=passed_components)
        ):
            raise EnvironmentError(
                f"Could not find the necessary `safetensors` weights in {model_filenames} (variant={variant})"
            )
        if use_safetensors and is_safetensors_compatible(
            model_filenames, variant=variant, passed_components=passed_components
        ):
            ignore_patterns = ["*.bin", "*.msgpack"]

            use_onnx = use_onnx if use_onnx is not None else pipeline_class._is_onnx
            if not use_onnx:
                ignore_patterns += ["*.onnx", "*.pb"]

            safetensors_variant_filenames = {f for f in variant_filenames if f.endswith(".safetensors")}
            safetensors_model_filenames = {f for f in model_filenames if f.endswith(".safetensors")}
            if (
                len(safetensors_variant_filenames) > 0
                and safetensors_model_filenames != safetensors_variant_filenames
            ):
                logger.warning(
                    f"\nA mixture of {variant} and non-{variant} filenames will be loaded.\nLoaded {variant} filenames:\n[{', '.join(safetensors_variant_filenames)}]\nLoaded non-{variant} filenames:\n[{', '.join(safetensors_model_filenames - safetensors_variant_filenames)}\nIf this behavior is not expected, please check your folder structure."  # noqa: E501
                )
        else:
            ignore_patterns = ["*.safetensors", "*.msgpack"]

            use_onnx = use_onnx if use_onnx is not None else pipeline_class._is_onnx
            if not use_onnx:
                ignore_patterns += ["*.onnx", "*.pb"]

            bin_variant_filenames = {f for f in variant_filenames if f.endswith(".bin")}
            bin_model_filenames = {f for f in model_filenames if f.endswith(".bin")}
            if len(bin_variant_filenames) > 0 and bin_model_filenames != bin_variant_filenames:
                logger.warning(
                    f"\nA mixture of {variant} and non-{variant} filenames will be loaded.\nLoaded {variant} filenames:\n[{', '.join(bin_variant_filenames)}]\nLoaded non-{variant} filenames:\n[{', '.join(bin_model_filenames - bin_variant_filenames)}\nIf this behavior is not expected, please check your folder structure."  # noqa: E501
                )

        # Don't download any objects that are passed
        allow_patterns = [
            p for p in allow_patterns if not (len(p.split("/")) == 2 and p.split("/")[0] in passed_components)
        ]

        if pipeline_class._load_connected_pipes:
            allow_patterns.append("README.md")

        # Don't download index files of forbidden patterns either
        ignore_patterns = ignore_patterns + [f"{i}.index.*json" for i in ignore_patterns]
        re_ignore_pattern = [re.compile(fnmatch.translate(p)) for p in ignore_patterns]
        re_allow_pattern = [re.compile(fnmatch.translate(p)) for p in allow_patterns]

        expected_files = [f for f in filenames if not any(p.match(f) for p in re_ignore_pattern)]
        expected_files = [f for f in expected_files if any(p.match(f) for p in re_allow_pattern)]

        snapshot_folder = Path(config_file).parent
        pipeline_is_cached = all((snapshot_folder / f).is_file() for f in expected_files)

        if pipeline_is_cached and not force_download:
            # if the pipeline is cached, we can directly return it
            # else call snapshot_download
            return snapshot_folder

    user_agent = {"pipeline_class": cls.__name__}
    if custom_pipeline is not None and not custom_pipeline.endswith(".py"):
        user_agent["custom_pipeline"] = custom_pipeline

    # download all allow_patterns - ignore_patterns
    try:
        cached_folder = snapshot_download(
            pretrained_model_name,
            cache_dir=cache_dir,
            proxies=proxies,
            local_files_only=local_files_only,
            token=token,
            revision=revision,
            allow_patterns=allow_patterns,
            ignore_patterns=ignore_patterns,
            user_agent=user_agent,
        )

        # retrieve pipeline class from local file
        cls_name = cls.load_config(os.path.join(cached_folder, "model_index.json")).get("_class_name", None)
        cls_name = cls_name[4:] if isinstance(cls_name, str) and cls_name.startswith("Flax") else cls_name

        diffusers_module = maybe_import_module_in_mindone(__name__.split(".")[1])
        pipeline_class = getattr(diffusers_module, cls_name, None) if isinstance(cls_name, str) else None

        if pipeline_class is not None and pipeline_class._load_connected_pipes:
            modelcard = ModelCard.load(os.path.join(cached_folder, "README.md"))
            connected_pipes = sum([getattr(modelcard.data, k, []) for k in CONNECTED_PIPES_KEYS], [])
            for connected_pipe_repo_id in connected_pipes:
                download_kwargs = {
                    "cache_dir": cache_dir,
                    "force_download": force_download,
                    "proxies": proxies,
                    "local_files_only": local_files_only,
                    "token": token,
                    "variant": variant,
                    "use_safetensors": use_safetensors,
                }
                DiffusionPipeline.download(connected_pipe_repo_id, **download_kwargs)

        return cached_folder

    except FileNotFoundError:
        # Means we tried to load pipeline with `local_files_only=True` but the files have not been found in local cache.
        # This can happen in two cases:
        # 1. If the user passed `local_files_only=True`                    => we raise the error directly
        # 2. If we forced `local_files_only=True` when `model_info` failed => we raise the initial error
        if model_info_call_error is None:
            # 1. user passed `local_files_only=True`
            raise
        else:
            # 2. we forced `local_files_only=True` when `model_info` failed
            raise EnvironmentError(
                f"Cannot load model {pretrained_model_name}: model is not cached locally and an error occurred"
                " while trying to fetch metadata from the Hub. Please check out the root cause in the stacktrace"
                " above."
            ) from model_info_call_error

mindone.diffusers.DiffusionPipeline.enable_flash_sdp(enabled)

.. warning:: This flag is beta and subject to change.

Enables or disables flash scaled dot product attention.

Source code in mindone/diffusers/pipelines/pipeline_utils.py
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
def enable_flash_sdp(self, enabled: bool):
    r"""
    .. warning:: This flag is beta and subject to change.

    Enables or disables flash scaled dot product attention.
    """

    # Recursively walk through all the children.
    # Any children which exposes the enable_flash_sdp method
    # gets the message
    def fn_recursive_set_mem_eff(module: nn.Cell):
        if hasattr(module, "enable_flash_sdp"):
            module.enable_flash_sdp(enabled)

        for child in module.cells():
            fn_recursive_set_mem_eff(child)

    module_names, _ = self._get_signature_keys(self)
    modules = [getattr(self, n, None) for n in module_names]
    modules = [m for m in modules if isinstance(m, nn.Cell)]

    for module in modules:
        fn_recursive_set_mem_eff(module)

mindone.diffusers.DiffusionPipeline.enable_model_cpu_offload(gpu_id=None, device='cuda')

Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared to enable_sequential_cpu_offload, this method moves one whole model at a time to the GPU when its forward method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with enable_sequential_cpu_offload, but performance is much better due to the iterative execution of the unet.

PARAMETER DESCRIPTION
gpu_id

The ID of the accelerator that shall be used in inference. If not specified, it will default to 0.

TYPE: `int`, *optional* DEFAULT: None

device

The PyTorch device type of the accelerator that shall be used in inference. If not specified, it will default to "cuda".

TYPE: `torch.Device` or `str`, *optional*, defaults to "cuda" DEFAULT: 'cuda'

Source code in mindone/diffusers/pipelines/pipeline_utils.py
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
def enable_model_cpu_offload(self, gpu_id: Optional[int] = None, device: str = "cuda"):
    r"""
    Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
    to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
    method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
    `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.

    Arguments:
        gpu_id (`int`, *optional*):
            The ID of the accelerator that shall be used in inference. If not specified, it will default to 0.
        device (`torch.Device` or `str`, *optional*, defaults to "cuda"):
            The PyTorch device type of the accelerator that shall be used in inference. If not specified, it will
            default to "cuda".
    """
    raise NotImplementedError(
        "`enable_model_cpu_offload` is not implemented. If you want to utilize the offload function, you can try the [capabilities provided by the framework itself](https://www.mindspore.cn/docs/zh-CN/master/model_train/parallel/memory_offload.html)."  # noqa: E501
    )

mindone.diffusers.DiffusionPipeline.enable_sequential_cpu_offload(gpu_id=None, device='cuda')

Offloads all models to CPU using ๐Ÿค— Accelerate, significantly reducing memory usage. When called, the state dicts of all torch.nn.Module components (except those in self._exclude_from_cpu_offload) are saved to CPU and then moved to torch.device('meta') and loaded to GPU only when their specific submodule has its forward method called. Offloading happens on a submodule basis. Memory savings are higher than with enable_model_cpu_offload, but performance is lower.

PARAMETER DESCRIPTION
gpu_id

The ID of the accelerator that shall be used in inference. If not specified, it will default to 0.

TYPE: `int`, *optional* DEFAULT: None

device

The PyTorch device type of the accelerator that shall be used in inference. If not specified, it will default to "cuda".

TYPE: `torch.Device` or `str`, *optional*, defaults to "cuda" DEFAULT: 'cuda'

Source code in mindone/diffusers/pipelines/pipeline_utils.py
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
def enable_sequential_cpu_offload(self, gpu_id: Optional[int] = None, device: str = "cuda"):
    r"""
    Offloads all models to CPU using ๐Ÿค— Accelerate, significantly reducing memory usage. When called, the state
    dicts of all `torch.nn.Module` components (except those in `self._exclude_from_cpu_offload`) are saved to CPU
    and then moved to `torch.device('meta')` and loaded to GPU only when their specific submodule has its `forward`
    method called. Offloading happens on a submodule basis. Memory savings are higher than with
    `enable_model_cpu_offload`, but performance is lower.

    Arguments:
        gpu_id (`int`, *optional*):
            The ID of the accelerator that shall be used in inference. If not specified, it will default to 0.
        device (`torch.Device` or `str`, *optional*, defaults to "cuda"):
            The PyTorch device type of the accelerator that shall be used in inference. If not specified, it will
            default to "cuda".
    """
    raise NotImplementedError(
        "`enable_sequential_cpu_offload` is not implemented. If you want to utilize the offload function, you can try the [capabilities provided by the framework itself](https://www.mindspore.cn/docs/zh-CN/master/model_train/parallel/memory_offload.html)."  # noqa: E501
    )

mindone.diffusers.DiffusionPipeline.enable_xformers_memory_efficient_attention(attention_op=None)

Enable memory efficient attention from xFormers. When this option is enabled, you should observe lower GPU memory usage and a potential speed up during inference. Speed up during training is not guaranteed.

โš ๏ธ When memory efficient attention and sliced attention are both enabled, memory efficient attention takes precedent.

PARAMETER DESCRIPTION
attention_op

Not supported for now.

TYPE: `Callable`, *optional* DEFAULT: None

>>> import mindspore as ms
>>> from mindone.diffusers import DiffusionPipeline

>>> pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", mindspore_dtype=ms.float16)
>>> pipe.enable_xformers_memory_efficient_attention()
>>> # Workaround for not accepting attention shape using VAE for Flash Attention
>>> pipe.vae.enable_xformers_memory_efficient_attention(attention_op=None)
Source code in mindone/diffusers/pipelines/pipeline_utils.py
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None):
    r"""
    Enable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/). When this
    option is enabled, you should observe lower GPU memory usage and a potential speed up during inference. Speed
    up during training is not guaranteed.

    <Tip warning={true}>

    โš ๏ธ When memory efficient attention and sliced attention are both enabled, memory efficient attention takes
    precedent.

    </Tip>

    Parameters:
        attention_op (`Callable`, *optional*):
            Not supported for now.

    Examples:

    ```py
    >>> import mindspore as ms
    >>> from mindone.diffusers import DiffusionPipeline

    >>> pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", mindspore_dtype=ms.float16)
    >>> pipe.enable_xformers_memory_efficient_attention()
    >>> # Workaround for not accepting attention shape using VAE for Flash Attention
    >>> pipe.vae.enable_xformers_memory_efficient_attention(attention_op=None)
    ```
    """
    self.set_use_memory_efficient_attention_xformers(True, attention_op)

mindone.diffusers.DiffusionPipeline.from_pipe(pipeline, **kwargs) classmethod

Create a new pipeline from a given pipeline. This method is useful to create a new pipeline from the existing pipeline components without reallocating additional memory.

PARAMETER DESCRIPTION
pipeline

The pipeline from which to create a new pipeline.

TYPE: `DiffusionPipeline`

RETURNS DESCRIPTION

DiffusionPipeline: A new pipeline with the same weights and configurations as pipeline.

>>> from mindone.diffusers import StableDiffusionPipeline, StableDiffusionSAGPipeline

>>> pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
>>> new_pipe = StableDiffusionSAGPipeline.from_pipe(pipe)
Source code in mindone/diffusers/pipelines/pipeline_utils.py
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
@classmethod
def from_pipe(cls, pipeline, **kwargs):
    r"""
    Create a new pipeline from a given pipeline. This method is useful to create a new pipeline from the existing
    pipeline components without reallocating additional memory.

    Arguments:
        pipeline (`DiffusionPipeline`):
            The pipeline from which to create a new pipeline.

    Returns:
        `DiffusionPipeline`:
            A new pipeline with the same weights and configurations as `pipeline`.

    Examples:

    ```py
    >>> from mindone.diffusers import StableDiffusionPipeline, StableDiffusionSAGPipeline

    >>> pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
    >>> new_pipe = StableDiffusionSAGPipeline.from_pipe(pipe)
    ```
    """

    original_config = dict(pipeline.config)
    mindspore_dtype = kwargs.pop("mindspore_dtype", None)

    # derive the pipeline class to instantiate
    custom_pipeline = kwargs.pop("custom_pipeline", None)
    custom_revision = kwargs.pop("custom_revision", None)

    if custom_pipeline is not None:
        pipeline_class = _get_custom_pipeline_class(custom_pipeline, revision=custom_revision)
    else:
        pipeline_class = cls

    expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
    # true_optional_modules are optional components with default value in signature so it is ok not to pass them to `__init__`
    # e.g. `image_encoder` for StableDiffusionPipeline
    parameters = inspect.signature(cls.__init__).parameters
    true_optional_modules = set(
        {k for k, v in parameters.items() if v.default != inspect._empty and k in expected_modules}
    )

    # get the class of each component based on its type hint
    # e.g. {"unet": UNet2DConditionModel, "text_encoder": CLIPTextMode}
    component_types = pipeline_class._get_signature_types()

    pretrained_model_name_or_path = original_config.pop("_name_or_path", None)
    # allow users pass modules in `kwargs` to override the original pipeline's components
    passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}

    original_class_obj = {}
    for name, component in pipeline.components.items():
        if name in expected_modules and name not in passed_class_obj:
            # for model components, we will not switch over if the class does not matches the type hint in the new pipeline's signature
            if (
                not isinstance(component, ModelMixin)
                or type(component) in component_types[name]
                or (component is None and name in cls._optional_components)
            ):
                original_class_obj[name] = component
            else:
                logger.warning(
                    f"component {name} is not switched over to new pipeline because type does not match the expected."
                    f" {name} is {type(component)} while the new pipeline expect {component_types[name]}."
                    f" please pass the component of the correct type to the new pipeline. `from_pipe(..., {name}={name})`"
                )

    # allow users pass optional kwargs to override the original pipelines config attribute
    passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
    original_pipe_kwargs = {
        k: original_config[k]
        for k in original_config.keys()
        if k in optional_kwargs and k not in passed_pipe_kwargs
    }

    # config attribute that were not expected by pipeline is stored as its private attribute
    # (i.e. when the original pipeline was also instantiated with `from_pipe` from another pipeline that has this config)
    # in this case, we will pass them as optional arguments if they can be accepted by the new pipeline
    additional_pipe_kwargs = [
        k[1:]
        for k in original_config.keys()
        if k.startswith("_") and k[1:] in optional_kwargs and k[1:] not in passed_pipe_kwargs
    ]
    for k in additional_pipe_kwargs:
        original_pipe_kwargs[k] = original_config.pop(f"_{k}")

    pipeline_kwargs = {
        **passed_class_obj,
        **original_class_obj,
        **passed_pipe_kwargs,
        **original_pipe_kwargs,
        **kwargs,
    }

    # store unused config as private attribute in the new pipeline
    unused_original_config = {
        f"{'' if k.startswith('_') else '_'}{k}": v for k, v in original_config.items() if k not in pipeline_kwargs
    }

    missing_modules = (
        set(expected_modules)
        - set(pipeline._optional_components)
        - set(pipeline_kwargs.keys())
        - set(true_optional_modules)
    )

    if len(missing_modules) > 0:
        raise ValueError(
            f"Pipeline {pipeline_class} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed"  # noqa: E501
        )

    new_pipeline = pipeline_class(**pipeline_kwargs)
    if pretrained_model_name_or_path is not None:
        new_pipeline.register_to_config(_name_or_path=pretrained_model_name_or_path)
    new_pipeline.register_to_config(**unused_original_config)

    if mindspore_dtype is not None:
        new_pipeline.to(dtype=mindspore_dtype)

    return new_pipeline

mindone.diffusers.DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, **kwargs) classmethod

Instantiate a PyTorch diffusion pipeline from pretrained pipeline weights.

The pipeline is set in evaluation mode (model.eval()) by default.

If you get the error message below, you need to finetune the weights for your downstream task:

Some weights of UNet2DConditionModel were not initialized from the model checkpoint at
runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
PARAMETER DESCRIPTION
pretrained_model_name_or_path

Can be either:

- A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
  hosted on the Hub.
- A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights
  saved using
[`~DiffusionPipeline.save_pretrained`].

TYPE: `str` or `os.PathLike`, *optional*

mindspore_dtype

Override the default mindspore.dtype and load the model with another dtype. If "auto" is passed, the dtype is automatically derived from the model's weights.

TYPE: `str` or `mindspore.dtype`, *optional*

custom_pipeline

๐Ÿงช This is an experimental feature and may change in the future.

Can be either:

- A string, the *repo id* (for example `hf-internal-testing/diffusers-dummy-pipeline`) of a custom
  pipeline hosted on the Hub. The repository must contain a file called pipeline.py that defines
  the custom pipeline.
- A string, the *file name* of a community pipeline hosted on GitHub under
  [Community](https://github.com/huggingface/diffusers/tree/main/examples/community). Valid file
  names must match the file name and not the pipeline script (`clip_guided_stable_diffusion`
  instead of `clip_guided_stable_diffusion.py`). Community pipelines are always loaded from the
  current main branch of GitHub.
- A path to a directory (`./my_pipeline_directory/`) containing a custom pipeline. The directory
  must contain a file called `pipeline.py` that defines the custom pipeline.

For more information on how to load and create custom pipelines, please have a look at Loading and Adding Custom Pipelines

TYPE: `str`, *optional*

force_download

Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist.

TYPE: `bool`, *optional*, defaults to `False`

cache_dir

Path to a directory where a downloaded pretrained model configuration is cached if the standard cache is not used.

TYPE: `Union[str, os.PathLike]`, *optional*

proxies

A dictionary of proxy servers to use by protocol or endpoint, for example, {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request.

TYPE: `Dict[str, str]`, *optional*

output_loading_info(`bool`,

Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.

TYPE: *optional*, defaults to `False`

local_files_only

Whether to only load local model weights and configuration files or not. If set to True, the model won't be downloaded from the Hub.

TYPE: `bool`, *optional*, defaults to `False`

token

The token to use as HTTP bearer authorization for remote files. If True, the token generated from diffusers-cli login (stored in ~/.huggingface) is used.

TYPE: `str` or *bool*, *optional*

revision

The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier allowed by Git.

TYPE: `str`, *optional*, defaults to `"main"`

custom_revision

The specific model version to use. It can be a branch name, a tag name, or a commit id similar to revision when loading a custom pipeline from the Hub. Defaults to the latest stable ๐Ÿค— Diffusers version.

TYPE: `str`, *optional*

mirror

Mirror source to resolve accessibility issues if youโ€™re downloading a model in China. We do not guarantee the timeliness or safety of the source, and you should refer to the mirror site for more information.

TYPE: `str`, *optional*

use_safetensors

If set to None, the safetensors weights are downloaded if they're available and if the safetensors library is installed. If set to True, the model is forcibly loaded from safetensors weights. If set to False, safetensors weights are not loaded.

TYPE: `bool`, *optional*, defaults to `None`

use_onnx

If set to True, ONNX weights will always be downloaded if present. If set to False, ONNX weights will never be downloaded. By default use_onnx defaults to the _is_onnx class attribute which is False for non-ONNX pipelines and True for ONNX pipelines. ONNX weights include both files ending with .onnx and .pb.

TYPE: `bool`, *optional*, defaults to `None`

kwargs

Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline class). The overwritten components are passed directly to the pipelines __init__ method. See example below for more information.

TYPE: remaining dictionary of keyword arguments, *optional* DEFAULT: {}

variant

Load weights from a specified variant filename such as "fp16" or "ema". This is ignored when loading from_flax.

TYPE: `str`, *optional*

To use private or gated models, log-in with huggingface-cli login.

Examples:

>>> from mindone.diffusers import DiffusionPipeline

>>> # Download pipeline from huggingface.co and cache.
>>> pipeline = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256")

>>> # Download pipeline that requires an authorization token
>>> # For more information on access tokens, please refer to this section
>>> # of the documentation](https://huggingface.co/docs/hub/security-tokens)
>>> pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")

>>> # Use a different scheduler
>>> from mindone.diffusers import LMSDiscreteScheduler

>>> scheduler = LMSDiscreteScheduler.from_config(pipeline.scheduler.config)
>>> pipeline.scheduler = scheduler
Source code in mindone/diffusers/pipelines/pipeline_utils.py
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
@classmethod
@validate_hf_hub_args
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
    r"""
    Instantiate a PyTorch diffusion pipeline from pretrained pipeline weights.

    The pipeline is set in evaluation mode (`model.eval()`) by default.

    If you get the error message below, you need to finetune the weights for your downstream task:

    ```
    Some weights of UNet2DConditionModel were not initialized from the model checkpoint at
    runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
    - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
    You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
    ```

    Parameters:
        pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
            Can be either:

                - A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
                  hosted on the Hub.
                - A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights
                  saved using
                [`~DiffusionPipeline.save_pretrained`].
        mindspore_dtype (`str` or `mindspore.dtype`, *optional*):
            Override the default `mindspore.dtype` and load the model with another dtype. If "auto" is passed, the
            dtype is automatically derived from the model's weights.
        custom_pipeline (`str`, *optional*):

            <Tip warning={true}>

            ๐Ÿงช This is an experimental feature and may change in the future.

            </Tip>

            Can be either:

                - A string, the *repo id* (for example `hf-internal-testing/diffusers-dummy-pipeline`) of a custom
                  pipeline hosted on the Hub. The repository must contain a file called pipeline.py that defines
                  the custom pipeline.
                - A string, the *file name* of a community pipeline hosted on GitHub under
                  [Community](https://github.com/huggingface/diffusers/tree/main/examples/community). Valid file
                  names must match the file name and not the pipeline script (`clip_guided_stable_diffusion`
                  instead of `clip_guided_stable_diffusion.py`). Community pipelines are always loaded from the
                  current main branch of GitHub.
                - A path to a directory (`./my_pipeline_directory/`) containing a custom pipeline. The directory
                  must contain a file called `pipeline.py` that defines the custom pipeline.

            For more information on how to load and create custom pipelines, please have a look at [Loading and
            Adding Custom
            Pipelines](https://huggingface.co/docs/diffusers/using-diffusers/custom_pipeline_overview)
        force_download (`bool`, *optional*, defaults to `False`):
            Whether or not to force the (re-)download of the model weights and configuration files, overriding the
            cached versions if they exist.
        cache_dir (`Union[str, os.PathLike]`, *optional*):
            Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
            is not used.

        proxies (`Dict[str, str]`, *optional*):
            A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
            'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
        output_loading_info(`bool`, *optional*, defaults to `False`):
            Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
        local_files_only (`bool`, *optional*, defaults to `False`):
            Whether to only load local model weights and configuration files or not. If set to `True`, the model
            won't be downloaded from the Hub.
        token (`str` or *bool*, *optional*):
            The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
            `diffusers-cli login` (stored in `~/.huggingface`) is used.
        revision (`str`, *optional*, defaults to `"main"`):
            The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
            allowed by Git.
        custom_revision (`str`, *optional*):
            The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
            `revision` when loading a custom pipeline from the Hub. Defaults to the latest stable ๐Ÿค— Diffusers
            version.
        mirror (`str`, *optional*):
            Mirror source to resolve accessibility issues if youโ€™re downloading a model in China. We do not
            guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
            information.
        use_safetensors (`bool`, *optional*, defaults to `None`):
            If set to `None`, the safetensors weights are downloaded if they're available **and** if the
            safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
            weights. If set to `False`, safetensors weights are not loaded.
        use_onnx (`bool`, *optional*, defaults to `None`):
            If set to `True`, ONNX weights will always be downloaded if present. If set to `False`, ONNX weights
            will never be downloaded. By default `use_onnx` defaults to the `_is_onnx` class attribute which is
            `False` for non-ONNX pipelines and `True` for ONNX pipelines. ONNX weights include both files ending
            with `.onnx` and `.pb`.
        kwargs (remaining dictionary of keyword arguments, *optional*):
            Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
            class). The overwritten components are passed directly to the pipelines `__init__` method. See example
            below for more information.
        variant (`str`, *optional*):
            Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
            loading `from_flax`.

    <Tip>

    To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with
    `huggingface-cli login`.

    </Tip>

    Examples:

    ```py
    >>> from mindone.diffusers import DiffusionPipeline

    >>> # Download pipeline from huggingface.co and cache.
    >>> pipeline = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256")

    >>> # Download pipeline that requires an authorization token
    >>> # For more information on access tokens, please refer to this section
    >>> # of the documentation](https://huggingface.co/docs/hub/security-tokens)
    >>> pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")

    >>> # Use a different scheduler
    >>> from mindone.diffusers import LMSDiscreteScheduler

    >>> scheduler = LMSDiscreteScheduler.from_config(pipeline.scheduler.config)
    >>> pipeline.scheduler = scheduler
    ```
    """
    cache_dir = kwargs.pop("cache_dir", None)
    force_download = kwargs.pop("force_download", False)
    proxies = kwargs.pop("proxies", None)
    local_files_only = kwargs.pop("local_files_only", None)
    token = kwargs.pop("token", None)
    revision = kwargs.pop("revision", None)
    mindspore_dtype = kwargs.pop("mindspore_dtype", None)
    custom_pipeline = kwargs.pop("custom_pipeline", None)
    custom_revision = kwargs.pop("custom_revision", None)
    variant = kwargs.pop("variant", None)
    use_safetensors = kwargs.pop("use_safetensors", None)
    use_onnx = kwargs.pop("use_onnx", None)
    load_connected_pipeline = kwargs.pop("load_connected_pipeline", False)

    # 1. Download the checkpoints and configs
    # use snapshot download here to get it working from from_pretrained
    if not os.path.isdir(pretrained_model_name_or_path):
        if pretrained_model_name_or_path.count("/") > 1:
            raise ValueError(
                f'The provided pretrained_model_name_or_path "{pretrained_model_name_or_path}"'
                " is neither a valid local path nor a valid repo id. Please check the parameter."
            )
        cached_folder = cls.download(
            pretrained_model_name_or_path,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            local_files_only=local_files_only,
            token=token,
            revision=revision,
            use_safetensors=use_safetensors,
            use_onnx=use_onnx,
            custom_pipeline=custom_pipeline,
            custom_revision=custom_revision,
            variant=variant,
            load_connected_pipeline=load_connected_pipeline,
            **kwargs,
        )
    else:
        cached_folder = pretrained_model_name_or_path

    config_dict = cls.load_config(cached_folder)

    # pop out "_ignore_files" as it is only needed for download
    config_dict.pop("_ignore_files", None)

    # 2. Define which model components should load variants
    # We retrieve the information by matching whether variant
    # model checkpoints exist in the subfolders
    model_variants = {}
    if variant is not None:
        for folder in os.listdir(cached_folder):
            folder_path = os.path.join(cached_folder, folder)
            is_folder = os.path.isdir(folder_path) and folder in config_dict
            variant_exists = is_folder and any(p.split(".")[1].startswith(variant) for p in os.listdir(folder_path))
            if variant_exists:
                model_variants[folder] = variant

    # 3. Load the pipeline class, if using custom module then load it from the hub
    # if we load from explicit class, let's use it
    custom_class_name = None
    if os.path.isfile(os.path.join(cached_folder, f"{custom_pipeline}.py")):
        custom_pipeline = os.path.join(cached_folder, f"{custom_pipeline}.py")
    elif isinstance(config_dict["_class_name"], (list, tuple)) and os.path.isfile(
        os.path.join(cached_folder, f"{config_dict['_class_name'][0]}.py")
    ):
        custom_pipeline = os.path.join(cached_folder, f"{config_dict['_class_name'][0]}.py")
        custom_class_name = config_dict["_class_name"][1]

    pipeline_class = _get_pipeline_class(
        cls,
        config_dict,
        load_connected_pipeline=load_connected_pipeline,
        custom_pipeline=custom_pipeline,
        class_name=custom_class_name,
        cache_dir=cache_dir,
        revision=custom_revision,
    )

    # 4. Define expected modules given pipeline signature
    # and define non-None initialized modules (=`init_kwargs`)

    # some modules can be passed directly to the init
    # in this case they are already instantiated in `kwargs`
    # extract them here
    expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
    passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
    passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}

    init_dict, unused_kwargs, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)

    # define init kwargs and make sure that optional component modules are filtered out
    init_kwargs = {
        k: init_dict.pop(k)
        for k in optional_kwargs
        if k in init_dict and k not in pipeline_class._optional_components
    }
    init_kwargs = {**init_kwargs, **passed_pipe_kwargs}

    # remove `null` components
    def load_module(name, value):
        if value[0] is None:
            return False
        if name in passed_class_obj and passed_class_obj[name] is None:
            return False
        return True

    init_dict = {k: v for k, v in init_dict.items() if load_module(k, v)}

    # 5. Throw nice warnings / errors for fast accelerate loading
    if len(unused_kwargs) > 0:
        logger.warning(
            f"Keyword arguments {unused_kwargs} are not expected by {pipeline_class.__name__} and will be ignored."
        )

    # import it here to avoid circular import
    from mindone.diffusers import pipelines

    # 6. device map delegation which is not supported in MindSpore
    # 7. Load each module in the pipeline
    for name, (library_name, class_name) in logging.tqdm(init_dict.items(), desc="Loading pipeline components..."):
        # 7.1 - now that JAX/Flax is an official framework of the library, we might load from Flax names
        class_name = class_name[4:] if class_name.startswith("Flax") else class_name

        # 7.2 Define all importable classes
        is_pipeline_module = hasattr(pipelines, library_name)
        importable_classes = ALL_IMPORTABLE_CLASSES
        loaded_sub_model = None

        # 7.3 Use passed sub model or load class_name from library_name
        if name in passed_class_obj:
            # if the model is in a pipeline module, then we load it from the pipeline
            # check that passed_class_obj has correct parent class
            maybe_raise_or_warn(
                library_name, class_name, importable_classes, passed_class_obj, name, is_pipeline_module
            )

            loaded_sub_model = passed_class_obj[name]
        else:
            # load sub model
            loaded_sub_model = load_sub_model(
                library_name=library_name,
                class_name=class_name,
                importable_classes=importable_classes,
                pipelines=pipelines,
                is_pipeline_module=is_pipeline_module,
                pipeline_class=pipeline_class,
                mindspore_dtype=mindspore_dtype,
                model_variants=model_variants,
                name=name,
                variant=variant,
                cached_folder=cached_folder,
            )
            logger.info(
                f"Loaded {name} as {class_name} from `{name}` subfolder of {pretrained_model_name_or_path}."
            )

        init_kwargs[name] = loaded_sub_model  # UNet(...), # DiffusionSchedule(...)

    if pipeline_class._load_connected_pipes and os.path.isfile(os.path.join(cached_folder, "README.md")):
        modelcard = ModelCard.load(os.path.join(cached_folder, "README.md"))
        connected_pipes = {prefix: getattr(modelcard.data, prefix, [None])[0] for prefix in CONNECTED_PIPES_KEYS}
        load_kwargs = {
            "cache_dir": cache_dir,
            "force_download": force_download,
            "proxies": proxies,
            "local_files_only": local_files_only,
            "token": token,
            "revision": revision,
            "mindspore_dtype": mindspore_dtype,
            "custom_pipeline": custom_pipeline,
            "custom_revision": custom_revision,
            "variant": variant,
            "use_safetensors": use_safetensors,
        }

        def get_connected_passed_kwargs(prefix):
            connected_passed_class_obj = {
                k.replace(f"{prefix}_", ""): w for k, w in passed_class_obj.items() if k.split("_")[0] == prefix
            }
            connected_passed_pipe_kwargs = {
                k.replace(f"{prefix}_", ""): w for k, w in passed_pipe_kwargs.items() if k.split("_")[0] == prefix
            }

            connected_passed_kwargs = {**connected_passed_class_obj, **connected_passed_pipe_kwargs}
            return connected_passed_kwargs

        connected_pipes = {
            prefix: DiffusionPipeline.from_pretrained(
                repo_id, **load_kwargs.copy(), **get_connected_passed_kwargs(prefix)
            )
            for prefix, repo_id in connected_pipes.items()
            if repo_id is not None
        }

        for prefix, connected_pipe in connected_pipes.items():
            # add connected pipes to `init_kwargs` with <prefix>_<component_name>, e.g. "prior_text_encoder"
            init_kwargs.update(
                {"_".join([prefix, name]): component for name, component in connected_pipe.components.items()}
            )

    # 8. Potentially add passed objects if expected
    missing_modules = set(expected_modules) - set(init_kwargs.keys())
    passed_modules = list(passed_class_obj.keys())
    optional_modules = pipeline_class._optional_components
    if len(missing_modules) > 0 and missing_modules <= set(passed_modules + optional_modules):
        for module in missing_modules:
            init_kwargs[module] = passed_class_obj.get(module, None)
    elif len(missing_modules) > 0:
        passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys())) - optional_kwargs
        raise ValueError(
            f"Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed."
        )

    # 9. Instantiate the pipeline
    model = pipeline_class(**init_kwargs)

    # 10. Save where the model was instantiated from
    model.register_to_config(_name_or_path=pretrained_model_name_or_path)
    return model

mindone.diffusers.DiffusionPipeline.maybe_free_model_hooks()

Function that offloads all components, removes all model hooks that were added when using enable_model_cpu_offload and then applies them again. In case the model has not been offloaded this function is a no-op. Make sure to add this function to the end of the __call__ function of your pipeline so that it functions correctly when applying enable_model_cpu_offload.

Source code in mindone/diffusers/pipelines/pipeline_utils.py
683
684
685
686
687
688
689
690
def maybe_free_model_hooks(self):
    r"""
    Function that offloads all components, removes all model hooks that were added when using
    `enable_model_cpu_offload` and then applies them again. In case the model has not been offloaded this function
    is a no-op. Make sure to add this function to the end of the `__call__` function of your pipeline so that it
    functions correctly when applying enable_model_cpu_offload.
    """
    raise NotImplementedError("`maybe_free_model_hooks` is not implemented.")

mindone.diffusers.DiffusionPipeline.numpy_to_pil(images) staticmethod

Convert a NumPy image or a batch of images to a PIL image.

Source code in mindone/diffusers/pipelines/pipeline_utils.py
1145
1146
1147
1148
1149
1150
@staticmethod
def numpy_to_pil(images):
    """
    Convert a NumPy image or a batch of images to a PIL image.
    """
    return numpy_to_pil(images)

mindone.diffusers.DiffusionPipeline.remove_all_hooks()

Removes all hooks that were added when using enable_sequential_cpu_offload or enable_model_cpu_offload.

Source code in mindone/diffusers/pipelines/pipeline_utils.py
659
660
661
662
663
def remove_all_hooks(self):
    r"""
    Removes all hooks that were added when using `enable_sequential_cpu_offload` or `enable_model_cpu_offload`.
    """
    raise NotImplementedError("`remove_all_hooks` is not implemented.")

mindone.diffusers.DiffusionPipeline.reset_device_map()

Resets the device maps (if any) to None.

Source code in mindone/diffusers/pipelines/pipeline_utils.py
711
712
713
714
715
def reset_device_map(self):
    r"""
    Resets the device maps (if any) to None.
    """
    raise NotImplementedError("`reset_device_map` is not implemented.")

mindone.diffusers.DiffusionPipeline.save_pretrained(save_directory, safe_serialization=True, variant=None, push_to_hub=False, **kwargs)

Save all saveable variables of the pipeline to a directory. A pipeline variable can be saved and loaded if its class implements both a save and loading method. The pipeline is easily reloaded using the [~DiffusionPipeline.from_pretrained] class method.

PARAMETER DESCRIPTION
save_directory

Directory to save a pipeline to. Will be created if it doesn't exist.

TYPE: `str` or `os.PathLike`

safe_serialization

Whether to save the model using safetensors or the traditional PyTorch way with pickle.

TYPE: `bool`, *optional*, defaults to `True` DEFAULT: True

variant

If specified, weights are saved in the format pytorch_model.<variant>.bin.

TYPE: `str`, *optional* DEFAULT: None

push_to_hub

Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the repository you want to push to with repo_id (will default to the name of save_directory in your namespace).

TYPE: `bool`, *optional*, defaults to `False` DEFAULT: False

kwargs

Additional keyword arguments passed along to the [~utils.PushToHubMixin.push_to_hub] method.

TYPE: `Dict[str, Any]`, *optional* DEFAULT: {}

Source code in mindone/diffusers/pipelines/pipeline_utils.py
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
def save_pretrained(
    self,
    save_directory: Union[str, os.PathLike],
    safe_serialization: bool = True,
    variant: Optional[str] = None,
    push_to_hub: bool = False,
    **kwargs,
):
    """
    Save all saveable variables of the pipeline to a directory. A pipeline variable can be saved and loaded if its
    class implements both a save and loading method. The pipeline is easily reloaded using the
    [`~DiffusionPipeline.from_pretrained`] class method.

    Arguments:
        save_directory (`str` or `os.PathLike`):
            Directory to save a pipeline to. Will be created if it doesn't exist.
        safe_serialization (`bool`, *optional*, defaults to `True`):
            Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
        variant (`str`, *optional*):
            If specified, weights are saved in the format `pytorch_model.<variant>.bin`.
        push_to_hub (`bool`, *optional*, defaults to `False`):
            Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
            repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
            namespace).
        kwargs (`Dict[str, Any]`, *optional*):
            Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
    """
    model_index_dict = dict(self.config)
    model_index_dict.pop("_class_name", None)
    model_index_dict.pop("_diffusers_version", None)
    model_index_dict.pop("_module", None)
    model_index_dict.pop("_name_or_path", None)

    if push_to_hub:
        commit_message = kwargs.pop("commit_message", None)
        private = kwargs.pop("private", False)
        create_pr = kwargs.pop("create_pr", False)
        token = kwargs.pop("token", None)
        repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
        repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id

    expected_modules, optional_kwargs = self._get_signature_keys(self)

    def is_saveable_module(name, value):
        if name not in expected_modules:
            return False
        if name in self._optional_components and value[0] is None:
            return False
        return True

    model_index_dict = {k: v for k, v in model_index_dict.items() if is_saveable_module(k, v)}
    for pipeline_component_name in model_index_dict.keys():
        sub_model = getattr(self, pipeline_component_name)
        model_cls = sub_model.__class__

        save_method_name = None
        # search for the model's base class in LOADABLE_CLASSES
        for library_name, library_classes in LOADABLE_CLASSES.items():
            # we always have mindone.{library_name} installed, so there is no need to check
            # TODO: what about "onnxruntime.training" in huggingface/diffusers?
            library = maybe_import_module_in_mindone(library_name)
            for base_class, save_load_methods in library_classes.items():
                class_candidate = getattr(library, base_class, None)
                if class_candidate is None:
                    # base_class is not implemented in mindone, try get it from huggingface library
                    library_original = maybe_import_module_in_mindone(library_name, force_original=True)
                    class_candidate = getattr(library_original, base_class, None)
                if class_candidate is not None and issubclass(model_cls, class_candidate):
                    # if we found a suitable base class in LOADABLE_CLASSES then grab its save method
                    save_method_name = save_load_methods[0]
                    break
            if save_method_name is not None:
                break

        if save_method_name is None:
            logger.warning(f"self.{pipeline_component_name}={sub_model} of type {type(sub_model)} cannot be saved.")
            # make sure that unsaveable components are not tried to be loaded afterward
            self.register_to_config(**{pipeline_component_name: (None, None)})
            continue

        save_method = getattr(sub_model, save_method_name)

        # Call the save method with the argument safe_serialization only if it's supported
        save_method_signature = inspect.signature(save_method)
        save_method_accept_safe = "safe_serialization" in save_method_signature.parameters
        save_method_accept_variant = "variant" in save_method_signature.parameters

        save_kwargs = {}
        if save_method_accept_safe:
            save_kwargs["safe_serialization"] = safe_serialization
        if save_method_accept_variant:
            save_kwargs["variant"] = variant

        save_method(os.path.join(save_directory, pipeline_component_name), **save_kwargs)

    # finally save the config
    self.save_config(save_directory)

    if push_to_hub:
        # Create a new empty model card and eventually tag it
        model_card = load_or_create_model_card(repo_id, token=token, is_pipeline=True)
        model_card = populate_model_card(model_card)
        model_card.save(os.path.join(save_directory, "README.md"))

        self._upload_folder(
            save_directory,
            repo_id,
            token=token,
            commit_message=commit_message,
            create_pr=create_pr,
        )

mindone.diffusers.DiffusionPipeline.set_flash_attention_force_cast_dtype(force_cast_dtype)

Since the flash-attention operator in MindSpore only supports float16 and bfloat16 data types, we need to manually set whether to force data type conversion.

When the attention interface encounters data of an unsupported data type, if force_cast_dtype is not None, the function will forcibly convert the data to force_cast_dtype for computation and then restore it to the original data type afterward. If force_cast_dtype is None, it will fall back to the original attention calculation using mathematical formulas.

PARAMETER DESCRIPTION
force_cast_dtype

The data type to which the input data should be forcibly converted. If None, no forced

TYPE: Optional

Source code in mindone/diffusers/pipelines/pipeline_utils.py
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
def set_flash_attention_force_cast_dtype(self, force_cast_dtype: Optional[ms.Type]):
    r"""
    Since the flash-attention operator in MindSpore only supports float16 and bfloat16 data types, we need to manually
    set whether to force data type conversion.

    When the attention interface encounters data of an unsupported data type,
    if `force_cast_dtype` is not None, the function will forcibly convert the data to `force_cast_dtype` for computation
    and then restore it to the original data type afterward. If `force_cast_dtype` is None, it will fall back to the
    original attention calculation using mathematical formulas.

    Parameters:
        force_cast_dtype (Optional): The data type to which the input data should be forcibly converted. If None, no forced
        conversion is performed.
    """

    # Recursively walk through all the children.
    # Any children which exposes the set_flash_attention_force_cast_dtype method
    # gets the message
    def fn_recursive_set_mem_eff(module: nn.Cell):
        if hasattr(module, "set_flash_attention_force_cast_dtype"):
            module.set_flash_attention_force_cast_dtype(force_cast_dtype)

        for child in module.cells():
            fn_recursive_set_mem_eff(child)

    module_names, _ = self._get_signature_keys(self)
    modules = [getattr(self, n, None) for n in module_names]
    modules = [m for m in modules if isinstance(m, nn.Cell)]

    for module in modules:
        fn_recursive_set_mem_eff(module)

mindone.diffusers.DiffusionPipeline.to(dtype)

Performs Pipeline dtype conversion. A ms.dtype inferred from the argument of self.to(dtype).

If the pipeline already has the correct ms.dtype, then it is returned as is. Otherwise,
the returned pipeline is a copy of self with the desired ms.dtype.

Here are the ways to call to:

  • to(dtype) โ†’ DiffusionPipeline to return a pipeline with the specified dtype
PARAMETER DESCRIPTION
dtype

Returns a pipeline with the specified dtype

TYPE: `mindspore.dtype`

RETURNS DESCRIPTION

[DiffusionPipeline]: The pipeline converted to specified dtype and/or dtype.

Source code in mindone/diffusers/pipelines/pipeline_utils.py
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
def to(self, dtype):
    r"""
    Performs Pipeline dtype conversion. A ms.dtype inferred from the argument of `self.to(dtype).`

    <Tip>

        If the pipeline already has the correct ms.dtype, then it is returned as is. Otherwise,
        the returned pipeline is a copy of self with the desired ms.dtype.

    </Tip>


    Here are the ways to call `to`:

    - `to(dtype) โ†’ DiffusionPipeline` to return a pipeline with the specified `dtype`

    Arguments:
        dtype (`mindspore.dtype`):
            Returns a pipeline with the specified `dtype`

    Returns:
        [`DiffusionPipeline`]: The pipeline converted to specified `dtype` and/or `dtype`.
    """
    module_names, _ = self._get_signature_keys(self)
    modules = [getattr(self, n, None) for n in module_names]
    modules = [m for m in modules if isinstance(m, nn.Cell)]
    for module in modules:
        module.to(dtype)
    return self

mindone.diffusers.utils.PushToHubMixin

A Mixin to push a model, scheduler, or pipeline to the Hugging Face Hub.

Source code in mindone/diffusers/utils/hub_utils.py
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
class PushToHubMixin:
    """
    A Mixin to push a model, scheduler, or pipeline to the Hugging Face Hub.
    """

    def _upload_folder(
        self,
        working_dir: Union[str, os.PathLike],
        repo_id: str,
        token: Optional[str] = None,
        commit_message: Optional[str] = None,
        create_pr: bool = False,
    ):
        """
        Uploads all files in `working_dir` to `repo_id`.
        """
        if commit_message is None:
            if "Model" in self.__class__.__name__:
                commit_message = "Upload model"
            elif "Scheduler" in self.__class__.__name__:
                commit_message = "Upload scheduler"
            else:
                commit_message = f"Upload {self.__class__.__name__}"

        logger.info(f"Uploading the files of {working_dir} to {repo_id}.")
        return upload_folder(
            repo_id=repo_id, folder_path=working_dir, token=token, commit_message=commit_message, create_pr=create_pr
        )

    def push_to_hub(
        self,
        repo_id: str,
        commit_message: Optional[str] = None,
        private: Optional[bool] = None,
        token: Optional[str] = None,
        create_pr: bool = False,
        safe_serialization: bool = True,
        variant: Optional[str] = None,
    ) -> str:
        """
        Upload model, scheduler, or pipeline files to the ๐Ÿค— Hugging Face Hub.

        Parameters:
            repo_id (`str`):
                The name of the repository you want to push your model, scheduler, or pipeline files to. It should
                contain your organization name when pushing to an organization. `repo_id` can also be a path to a local
                directory.
            commit_message (`str`, *optional*):
                Message to commit while pushing. Default to `"Upload {object}"`.
            private (`bool`, *optional*):
                Whether or not the repository created should be private.
            token (`str`, *optional*):
                The token to use as HTTP bearer authorization for remote files. The token generated when running
                `huggingface-cli login` (stored in `~/.huggingface`).
            create_pr (`bool`, *optional*, defaults to `False`):
                Whether or not to create a PR with the uploaded files or directly commit.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether or not to convert the model weights to the `safetensors` format.
            variant (`str`, *optional*):
                If specified, weights are saved in the format `pytorch_model.<variant>.bin`.

        Examples:

        ```python
        from mindone.diffusers import UNet2DConditionModel

        unet = UNet2DConditionModel.from_pretrained("stabilityai/stable-diffusion-2", subfolder="unet")

        # Push the `unet` to your namespace with the name "my-finetuned-unet".
        unet.push_to_hub("my-finetuned-unet")

        # Push the `unet` to an organization with the name "my-finetuned-unet".
        unet.push_to_hub("your-org/my-finetuned-unet")
        ```
        """
        repo_id = create_repo(repo_id, private=private, token=token, exist_ok=True).repo_id

        # Create a new empty model card and eventually tag it
        model_card = load_or_create_model_card(repo_id, token=token)
        model_card = populate_model_card(model_card)

        # Save all files.
        save_kwargs = {"safe_serialization": safe_serialization}
        if "Scheduler" not in self.__class__.__name__:
            save_kwargs.update({"variant": variant})

        with tempfile.TemporaryDirectory() as tmpdir:
            self.save_pretrained(tmpdir, **save_kwargs)

            # Update model card if needed:
            model_card.save(os.path.join(tmpdir, "README.md"))

            return self._upload_folder(
                tmpdir,
                repo_id,
                token=token,
                commit_message=commit_message,
                create_pr=create_pr,
            )

mindone.diffusers.utils.PushToHubMixin.push_to_hub(repo_id, commit_message=None, private=None, token=None, create_pr=False, safe_serialization=True, variant=None)

Upload model, scheduler, or pipeline files to the ๐Ÿค— Hugging Face Hub.

PARAMETER DESCRIPTION
repo_id

The name of the repository you want to push your model, scheduler, or pipeline files to. It should contain your organization name when pushing to an organization. repo_id can also be a path to a local directory.

TYPE: `str`

commit_message

Message to commit while pushing. Default to "Upload {object}".

TYPE: `str`, *optional* DEFAULT: None

private

Whether or not the repository created should be private.

TYPE: `bool`, *optional* DEFAULT: None

token

The token to use as HTTP bearer authorization for remote files. The token generated when running huggingface-cli login (stored in ~/.huggingface).

TYPE: `str`, *optional* DEFAULT: None

create_pr

Whether or not to create a PR with the uploaded files or directly commit.

TYPE: `bool`, *optional*, defaults to `False` DEFAULT: False

safe_serialization

Whether or not to convert the model weights to the safetensors format.

TYPE: `bool`, *optional*, defaults to `True` DEFAULT: True

variant

If specified, weights are saved in the format pytorch_model.<variant>.bin.

TYPE: `str`, *optional* DEFAULT: None

from mindone.diffusers import UNet2DConditionModel

unet = UNet2DConditionModel.from_pretrained("stabilityai/stable-diffusion-2", subfolder="unet")

# Push the `unet` to your namespace with the name "my-finetuned-unet".
unet.push_to_hub("my-finetuned-unet")

# Push the `unet` to an organization with the name "my-finetuned-unet".
unet.push_to_hub("your-org/my-finetuned-unet")
Source code in mindone/diffusers/utils/hub_utils.py
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
def push_to_hub(
    self,
    repo_id: str,
    commit_message: Optional[str] = None,
    private: Optional[bool] = None,
    token: Optional[str] = None,
    create_pr: bool = False,
    safe_serialization: bool = True,
    variant: Optional[str] = None,
) -> str:
    """
    Upload model, scheduler, or pipeline files to the ๐Ÿค— Hugging Face Hub.

    Parameters:
        repo_id (`str`):
            The name of the repository you want to push your model, scheduler, or pipeline files to. It should
            contain your organization name when pushing to an organization. `repo_id` can also be a path to a local
            directory.
        commit_message (`str`, *optional*):
            Message to commit while pushing. Default to `"Upload {object}"`.
        private (`bool`, *optional*):
            Whether or not the repository created should be private.
        token (`str`, *optional*):
            The token to use as HTTP bearer authorization for remote files. The token generated when running
            `huggingface-cli login` (stored in `~/.huggingface`).
        create_pr (`bool`, *optional*, defaults to `False`):
            Whether or not to create a PR with the uploaded files or directly commit.
        safe_serialization (`bool`, *optional*, defaults to `True`):
            Whether or not to convert the model weights to the `safetensors` format.
        variant (`str`, *optional*):
            If specified, weights are saved in the format `pytorch_model.<variant>.bin`.

    Examples:

    ```python
    from mindone.diffusers import UNet2DConditionModel

    unet = UNet2DConditionModel.from_pretrained("stabilityai/stable-diffusion-2", subfolder="unet")

    # Push the `unet` to your namespace with the name "my-finetuned-unet".
    unet.push_to_hub("my-finetuned-unet")

    # Push the `unet` to an organization with the name "my-finetuned-unet".
    unet.push_to_hub("your-org/my-finetuned-unet")
    ```
    """
    repo_id = create_repo(repo_id, private=private, token=token, exist_ok=True).repo_id

    # Create a new empty model card and eventually tag it
    model_card = load_or_create_model_card(repo_id, token=token)
    model_card = populate_model_card(model_card)

    # Save all files.
    save_kwargs = {"safe_serialization": safe_serialization}
    if "Scheduler" not in self.__class__.__name__:
        save_kwargs.update({"variant": variant})

    with tempfile.TemporaryDirectory() as tmpdir:
        self.save_pretrained(tmpdir, **save_kwargs)

        # Update model card if needed:
        model_card.save(os.path.join(tmpdir, "README.md"))

        return self._upload_folder(
            tmpdir,
            repo_id,
            token=token,
            commit_message=commit_message,
            create_pr=create_pr,
        )