Skip to content

HiDreamImage

HiDream-I1 by HiDream.ai

Tip

Make sure to check out the Schedulers guide to learn how to explore the tradeoff between scheduler speed and quality, and see the reuse components across pipelines section to learn how to efficiently load the same components into multiple pipelines.

Available models

The following models are available for the HiDreamImagePipeline pipeline:

Model name Description
HiDream-ai/HiDream-I1-Full -
HiDream-ai/HiDream-I1-Dev -
HiDream-ai/HiDream-I1-Fast -

mindone.diffusers.HiDreamImagePipeline

Bases: DiffusionPipeline, HiDreamImageLoraLoaderMixin

Source code in mindone/diffusers/pipelines/hidream_image/pipeline_hidream_image.py
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
class HiDreamImagePipeline(DiffusionPipeline, HiDreamImageLoraLoaderMixin):
    model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder_3->text_encoder_4->transformer->vae"
    _callback_tensor_inputs = ["latents", "prompt_embeds_t5", "prompt_embeds_llama3", "pooled_prompt_embeds"]

    def __init__(
        self,
        scheduler: FlowMatchEulerDiscreteScheduler,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModelWithProjection,
        tokenizer: CLIPTokenizer,
        text_encoder_2: CLIPTextModelWithProjection,
        tokenizer_2: CLIPTokenizer,
        text_encoder_3: T5EncoderModel,
        tokenizer_3: T5Tokenizer,
        text_encoder_4: LlamaForCausalLM,
        tokenizer_4: PreTrainedTokenizerFast,
        transformer: HiDreamImageTransformer2DModel,
    ):
        super().__init__()

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            text_encoder_2=text_encoder_2,
            text_encoder_3=text_encoder_3,
            text_encoder_4=text_encoder_4,
            tokenizer=tokenizer,
            tokenizer_2=tokenizer_2,
            tokenizer_3=tokenizer_3,
            tokenizer_4=tokenizer_4,
            scheduler=scheduler,
            transformer=transformer,
        )
        self.vae_scale_factor = (
            2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
        )
        # HiDreamImage latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
        # by the patch size. So the vae scale factor is multiplied by the patch size to account for this
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
        self.default_sample_size = 128
        if getattr(self, "tokenizer_4", None) is not None:
            self.tokenizer_4.pad_token = self.tokenizer_4.eos_token

    def _get_t5_prompt_embeds(
        self,
        prompt: Union[str, List[str]] = None,
        max_sequence_length: int = 128,
        dtype: Optional[ms.Type] = None,
    ):
        dtype = dtype or self.text_encoder_3.dtype

        prompt = [prompt] if isinstance(prompt, str) else prompt

        text_inputs = self.tokenizer_3(
            prompt,
            padding="max_length",
            max_length=min(max_sequence_length, self.tokenizer_3.model_max_length),
            truncation=True,
            add_special_tokens=True,
            return_tensors="np",
        )
        text_input_ids = text_inputs.input_ids
        attention_mask = text_inputs.attention_mask
        untruncated_ids = self.tokenizer_3(prompt, padding="longest", return_tensors="np").input_ids

        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not np.array_equal(
            text_input_ids, untruncated_ids
        ):
            removed_text = self.tokenizer_3.batch_decode(
                untruncated_ids[:, min(max_sequence_length, self.tokenizer_3.model_max_length) - 1 : -1]
            )
            logger.warning(
                "The following part of your input was truncated because `max_sequence_length` is set to "
                f" {min(max_sequence_length, self.tokenizer_3.model_max_length)} tokens: {removed_text}"
            )

        prompt_embeds = self.text_encoder_3(ms.tensor(text_input_ids), attention_mask=ms.tensor(attention_mask))[0]
        prompt_embeds = prompt_embeds.to(dtype=dtype)
        return prompt_embeds

    def _get_clip_prompt_embeds(
        self,
        tokenizer,
        text_encoder,
        prompt: Union[str, List[str]],
        max_sequence_length: int = 128,
        dtype: Optional[ms.Type] = None,
    ):
        dtype = dtype or text_encoder.dtype

        prompt = [prompt] if isinstance(prompt, str) else prompt

        text_inputs = tokenizer(
            prompt,
            padding="max_length",
            max_length=min(max_sequence_length, 218),
            truncation=True,
            return_tensors="np",
        )

        text_input_ids = text_inputs.input_ids
        untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="np").input_ids
        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not np.array_equal(
            text_input_ids, untruncated_ids
        ):
            removed_text = tokenizer.batch_decode(untruncated_ids[:, 218 - 1 : -1])
            logger.warning(
                "The following part of your input was truncated because CLIP can only handle sequences up to"
                f" {218} tokens: {removed_text}"
            )
        prompt_embeds = text_encoder(ms.tensor(text_input_ids), output_hidden_states=True)

        # Use pooled output of CLIPTextModel
        prompt_embeds = prompt_embeds[0]
        prompt_embeds = prompt_embeds.to(dtype=dtype)
        return prompt_embeds

    def _get_llama3_prompt_embeds(
        self,
        prompt: Union[str, List[str]] = None,
        max_sequence_length: int = 128,
        dtype: Optional[ms.Type] = None,
    ):
        dtype = dtype or self.text_encoder_4.dtype

        prompt = [prompt] if isinstance(prompt, str) else prompt

        text_inputs = self.tokenizer_4(
            prompt,
            padding="max_length",
            max_length=min(max_sequence_length, self.tokenizer_4.model_max_length),
            truncation=True,
            add_special_tokens=True,
            return_tensors="np",
        )
        text_input_ids = text_inputs.input_ids
        attention_mask = text_inputs.attention_mask
        untruncated_ids = self.tokenizer_4(prompt, padding="longest", return_tensors="np").input_ids

        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not np.array_equal(
            text_input_ids, untruncated_ids
        ):
            removed_text = self.tokenizer_4.batch_decode(
                untruncated_ids[:, min(max_sequence_length, self.tokenizer_4.model_max_length) - 1 : -1]
            )
            logger.warning(
                "The following part of your input was truncated because `max_sequence_length` is set to "
                f" {min(max_sequence_length, self.tokenizer_4.model_max_length)} tokens: {removed_text}"
            )

        outputs = self.text_encoder_4(
            ms.tensor(text_input_ids),
            attention_mask=ms.tensor(attention_mask),
            output_hidden_states=True,
            output_attentions=True,
        )

        # prompt_embeds = outputs.hidden_states[1:]
        prompt_embeds = outputs[1][1:]
        prompt_embeds = mint.stack(prompt_embeds, dim=0)
        return prompt_embeds

    def encode_prompt(
        self,
        prompt: Optional[Union[str, List[str]]] = None,
        prompt_2: Optional[Union[str, List[str]]] = None,
        prompt_3: Optional[Union[str, List[str]]] = None,
        prompt_4: Optional[Union[str, List[str]]] = None,
        dtype: Optional[ms.Type] = None,
        num_images_per_prompt: int = 1,
        do_classifier_free_guidance: bool = True,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        negative_prompt_2: Optional[Union[str, List[str]]] = None,
        negative_prompt_3: Optional[Union[str, List[str]]] = None,
        negative_prompt_4: Optional[Union[str, List[str]]] = None,
        prompt_embeds_t5: Optional[List[ms.Tensor]] = None,
        prompt_embeds_llama3: Optional[List[ms.Tensor]] = None,
        negative_prompt_embeds_t5: Optional[List[ms.Tensor]] = None,
        negative_prompt_embeds_llama3: Optional[List[ms.Tensor]] = None,
        pooled_prompt_embeds: Optional[ms.Tensor] = None,
        negative_pooled_prompt_embeds: Optional[ms.Tensor] = None,
        max_sequence_length: int = 128,
        lora_scale: Optional[float] = None,
    ):
        prompt = [prompt] if isinstance(prompt, str) else prompt
        if prompt is not None:
            batch_size = len(prompt)
        else:
            batch_size = pooled_prompt_embeds.shape[0]

        if pooled_prompt_embeds is None:
            pooled_prompt_embeds_1 = self._get_clip_prompt_embeds(
                self.tokenizer, self.text_encoder, prompt, max_sequence_length, dtype
            )

        if do_classifier_free_guidance and negative_pooled_prompt_embeds is None:
            negative_prompt = negative_prompt or ""
            negative_prompt = [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt

            if len(negative_prompt) > 1 and len(negative_prompt) != batch_size:
                raise ValueError(f"negative_prompt must be of length 1 or {batch_size}")

            negative_pooled_prompt_embeds_1 = self._get_clip_prompt_embeds(
                self.tokenizer, self.text_encoder, negative_prompt, max_sequence_length, dtype
            )

            if negative_pooled_prompt_embeds_1.shape[0] == 1 and batch_size > 1:
                negative_pooled_prompt_embeds_1 = negative_pooled_prompt_embeds_1.repeat(batch_size, 1)

        if pooled_prompt_embeds is None:
            prompt_2 = prompt_2 or prompt
            prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2

            if len(prompt_2) > 1 and len(prompt_2) != batch_size:
                raise ValueError(f"prompt_2 must be of length 1 or {batch_size}")

            pooled_prompt_embeds_2 = self._get_clip_prompt_embeds(
                self.tokenizer_2, self.text_encoder_2, prompt_2, max_sequence_length, dtype
            )

            if pooled_prompt_embeds_2.shape[0] == 1 and batch_size > 1:
                pooled_prompt_embeds_2 = pooled_prompt_embeds_2.repeat(batch_size, 1)

        if do_classifier_free_guidance and negative_pooled_prompt_embeds is None:
            negative_prompt_2 = negative_prompt_2 or negative_prompt
            negative_prompt_2 = [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2

            if len(negative_prompt_2) > 1 and len(negative_prompt_2) != batch_size:
                raise ValueError(f"negative_prompt_2 must be of length 1 or {batch_size}")

            negative_pooled_prompt_embeds_2 = self._get_clip_prompt_embeds(
                self.tokenizer_2, self.text_encoder_2, negative_prompt_2, max_sequence_length, dtype
            )

            if negative_pooled_prompt_embeds_2.shape[0] == 1 and batch_size > 1:
                negative_pooled_prompt_embeds_2 = negative_pooled_prompt_embeds_2.repeat(batch_size, 1)

        if pooled_prompt_embeds is None:
            pooled_prompt_embeds = mint.cat([pooled_prompt_embeds_1, pooled_prompt_embeds_2], dim=-1)

        if do_classifier_free_guidance and negative_pooled_prompt_embeds is None:
            negative_pooled_prompt_embeds = mint.cat(
                [negative_pooled_prompt_embeds_1, negative_pooled_prompt_embeds_2], dim=-1
            )

        if prompt_embeds_t5 is None:
            prompt_3 = prompt_3 or prompt
            prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3

            if len(prompt_3) > 1 and len(prompt_3) != batch_size:
                raise ValueError(f"prompt_3 must be of length 1 or {batch_size}")

            prompt_embeds_t5 = self._get_t5_prompt_embeds(prompt_3, max_sequence_length, dtype)

            if prompt_embeds_t5.shape[0] == 1 and batch_size > 1:
                prompt_embeds_t5 = prompt_embeds_t5.repeat(batch_size, 1, 1)

        if do_classifier_free_guidance and negative_prompt_embeds_t5 is None:
            negative_prompt_3 = negative_prompt_3 or negative_prompt
            negative_prompt_3 = [negative_prompt_3] if isinstance(negative_prompt_3, str) else negative_prompt_3

            if len(negative_prompt_3) > 1 and len(negative_prompt_3) != batch_size:
                raise ValueError(f"negative_prompt_3 must be of length 1 or {batch_size}")

            negative_prompt_embeds_t5 = self._get_t5_prompt_embeds(negative_prompt_3, max_sequence_length, dtype)

            if negative_prompt_embeds_t5.shape[0] == 1 and batch_size > 1:
                negative_prompt_embeds_t5 = negative_prompt_embeds_t5.repeat(batch_size, 1, 1)

        if prompt_embeds_llama3 is None:
            prompt_4 = prompt_4 or prompt
            prompt_4 = [prompt_4] if isinstance(prompt_4, str) else prompt_4

            if len(prompt_4) > 1 and len(prompt_4) != batch_size:
                raise ValueError(f"prompt_4 must be of length 1 or {batch_size}")

            prompt_embeds_llama3 = self._get_llama3_prompt_embeds(prompt_4, max_sequence_length, dtype)

            if prompt_embeds_llama3.shape[0] == 1 and batch_size > 1:
                prompt_embeds_llama3 = prompt_embeds_llama3.repeat(1, batch_size, 1, 1)

        if do_classifier_free_guidance and negative_prompt_embeds_llama3 is None:
            negative_prompt_4 = negative_prompt_4 or negative_prompt
            negative_prompt_4 = [negative_prompt_4] if isinstance(negative_prompt_4, str) else negative_prompt_4

            if len(negative_prompt_4) > 1 and len(negative_prompt_4) != batch_size:
                raise ValueError(f"negative_prompt_4 must be of length 1 or {batch_size}")

            negative_prompt_embeds_llama3 = self._get_llama3_prompt_embeds(
                negative_prompt_4, max_sequence_length, dtype
            )

            if negative_prompt_embeds_llama3.shape[0] == 1 and batch_size > 1:
                negative_prompt_embeds_llama3 = negative_prompt_embeds_llama3.repeat(1, batch_size, 1, 1)

        # duplicate pooled_prompt_embeds for each generation per prompt
        pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt)
        pooled_prompt_embeds = pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1)

        # duplicate t5_prompt_embeds for batch_size and num_images_per_prompt
        bs_embed, seq_len, _ = prompt_embeds_t5.shape
        if bs_embed == 1 and batch_size > 1:
            prompt_embeds_t5 = prompt_embeds_t5.repeat(batch_size, 1, 1)
        elif bs_embed > 1 and bs_embed != batch_size:
            raise ValueError(f"cannot duplicate prompt_embeds_t5 of batch size {bs_embed}")
        prompt_embeds_t5 = prompt_embeds_t5.repeat(1, num_images_per_prompt, 1)
        prompt_embeds_t5 = prompt_embeds_t5.view(batch_size * num_images_per_prompt, seq_len, -1)

        # duplicate llama3_prompt_embeds for batch_size and num_images_per_prompt
        _, bs_embed, seq_len, dim = prompt_embeds_llama3.shape
        if bs_embed == 1 and batch_size > 1:
            prompt_embeds_llama3 = prompt_embeds_llama3.repeat(1, batch_size, 1, 1)
        elif bs_embed > 1 and bs_embed != batch_size:
            raise ValueError(f"cannot duplicate prompt_embeds_llama3 of batch size {bs_embed}")
        prompt_embeds_llama3 = prompt_embeds_llama3.repeat(1, 1, num_images_per_prompt, 1)
        prompt_embeds_llama3 = prompt_embeds_llama3.view(-1, batch_size * num_images_per_prompt, seq_len, dim)

        if do_classifier_free_guidance:
            # duplicate negative_pooled_prompt_embeds for batch_size and num_images_per_prompt
            bs_embed, seq_len = negative_pooled_prompt_embeds.shape
            if bs_embed == 1 and batch_size > 1:
                negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(batch_size, 1)
            elif bs_embed > 1 and bs_embed != batch_size:
                raise ValueError(f"cannot duplicate negative_pooled_prompt_embeds of batch size {bs_embed}")
            negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt)
            negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1)

            # duplicate negative_t5_prompt_embeds for batch_size and num_images_per_prompt
            bs_embed, seq_len, _ = negative_prompt_embeds_t5.shape
            if bs_embed == 1 and batch_size > 1:
                negative_prompt_embeds_t5 = negative_prompt_embeds_t5.repeat(batch_size, 1, 1)
            elif bs_embed > 1 and bs_embed != batch_size:
                raise ValueError(f"cannot duplicate negative_prompt_embeds_t5 of batch size {bs_embed}")
            negative_prompt_embeds_t5 = negative_prompt_embeds_t5.repeat(1, num_images_per_prompt, 1)
            negative_prompt_embeds_t5 = negative_prompt_embeds_t5.view(batch_size * num_images_per_prompt, seq_len, -1)

            # duplicate negative_prompt_embeds_llama3 for batch_size and num_images_per_prompt
            _, bs_embed, seq_len, dim = negative_prompt_embeds_llama3.shape
            if bs_embed == 1 and batch_size > 1:
                negative_prompt_embeds_llama3 = negative_prompt_embeds_llama3.repeat(1, batch_size, 1, 1)
            elif bs_embed > 1 and bs_embed != batch_size:
                raise ValueError(f"cannot duplicate negative_prompt_embeds_llama3 of batch size {bs_embed}")
            negative_prompt_embeds_llama3 = negative_prompt_embeds_llama3.repeat(1, 1, num_images_per_prompt, 1)
            negative_prompt_embeds_llama3 = negative_prompt_embeds_llama3.view(
                -1, batch_size * num_images_per_prompt, seq_len, dim
            )

        return (
            prompt_embeds_t5,
            negative_prompt_embeds_t5,
            prompt_embeds_llama3,
            negative_prompt_embeds_llama3,
            pooled_prompt_embeds,
            negative_pooled_prompt_embeds,
        )

    def enable_vae_slicing(self):
        r"""
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
        """
        self.vae.enable_slicing()

    def disable_vae_slicing(self):
        r"""
        Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
        computing decoding in one step.
        """
        self.vae.disable_slicing()

    def enable_vae_tiling(self):
        r"""
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
        processing larger images.
        """
        self.vae.enable_tiling()

    def disable_vae_tiling(self):
        r"""
        Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
        computing decoding in one step.
        """
        self.vae.disable_tiling()

    def check_inputs(
        self,
        prompt,
        prompt_2,
        prompt_3,
        prompt_4,
        negative_prompt=None,
        negative_prompt_2=None,
        negative_prompt_3=None,
        negative_prompt_4=None,
        prompt_embeds_t5=None,
        prompt_embeds_llama3=None,
        negative_prompt_embeds_t5=None,
        negative_prompt_embeds_llama3=None,
        pooled_prompt_embeds=None,
        negative_pooled_prompt_embeds=None,
        callback_on_step_end_tensor_inputs=None,
    ):
        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs},\
                      but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
            )

        if prompt is not None and pooled_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `pooled_prompt_embeds`: {pooled_prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt_2 is not None and pooled_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt_2`: {prompt_2} and `pooled_prompt_embeds`: {pooled_prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt_3 is not None and prompt_embeds_t5 is not None:
            raise ValueError(
                f"Cannot forward both `prompt_3`: {prompt_3} and `prompt_embeds_t5`: {prompt_embeds_t5}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt_4 is not None and prompt_embeds_llama3 is not None:
            raise ValueError(
                f"Cannot forward both `prompt_4`: {prompt_4} and `prompt_embeds_llama3`: {prompt_embeds_llama3}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and pooled_prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `pooled_prompt_embeds`. Cannot leave both `prompt` and `pooled_prompt_embeds` undefined."
            )
        elif prompt is None and prompt_embeds_t5 is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds_t5`. Cannot leave both `prompt` and `prompt_embeds_t5` undefined."
            )
        elif prompt is None and prompt_embeds_llama3 is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds_llama3`. Cannot leave both `prompt` and `prompt_embeds_llama3` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
        elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
            raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
        elif prompt_3 is not None and (not isinstance(prompt_3, str) and not isinstance(prompt_3, list)):
            raise ValueError(f"`prompt_3` has to be of type `str` or `list` but is {type(prompt_3)}")
        elif prompt_4 is not None and (not isinstance(prompt_4, str) and not isinstance(prompt_4, list)):
            raise ValueError(f"`prompt_4` has to be of type `str` or `list` but is {type(prompt_4)}")

        if negative_prompt is not None and negative_pooled_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_pooled_prompt_embeds`:"
                f" {negative_pooled_prompt_embeds}. Please make sure to only forward one of the two."
            )
        elif negative_prompt_2 is not None and negative_pooled_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_pooled_prompt_embeds`:"
                f" {negative_pooled_prompt_embeds}. Please make sure to only forward one of the two."
            )
        elif negative_prompt_3 is not None and negative_prompt_embeds_t5 is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt_3`: {negative_prompt_3} and `negative_prompt_embeds_t5`:"
                f" {negative_prompt_embeds_t5}. Please make sure to only forward one of the two."
            )
        elif negative_prompt_4 is not None and negative_prompt_embeds_llama3 is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt_4`: {negative_prompt_4} and `negative_prompt_embeds_llama3`:"
                f" {negative_prompt_embeds_llama3}. Please make sure to only forward one of the two."
            )

        if pooled_prompt_embeds is not None and negative_pooled_prompt_embeds is not None:
            if pooled_prompt_embeds.shape != negative_pooled_prompt_embeds.shape:
                raise ValueError(
                    "`pooled_prompt_embeds` and `negative_pooled_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `pooled_prompt_embeds` {pooled_prompt_embeds.shape} != `negative_pooled_prompt_embeds`"
                    f" {negative_pooled_prompt_embeds.shape}."
                )
        if prompt_embeds_t5 is not None and negative_prompt_embeds_t5 is not None:
            if prompt_embeds_t5.shape != negative_prompt_embeds_t5.shape:
                raise ValueError(
                    "`prompt_embeds_t5` and `negative_prompt_embeds_t5` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds_t5` {prompt_embeds_t5.shape} != `negative_prompt_embeds_t5`"
                    f" {negative_prompt_embeds_t5.shape}."
                )
        if prompt_embeds_llama3 is not None and negative_prompt_embeds_llama3 is not None:
            if prompt_embeds_llama3.shape != negative_prompt_embeds_llama3.shape:
                raise ValueError(
                    "`prompt_embeds_llama3` and `negative_prompt_embeds_llama3` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds_llama3` {prompt_embeds_llama3.shape} != `negative_prompt_embeds_llama3`"
                    f" {negative_prompt_embeds_llama3.shape}."
                )

    def prepare_latents(
        self,
        batch_size,
        num_channels_latents,
        height,
        width,
        dtype,
        generator,
        latents=None,
    ):
        # VAE applies 8x compression on images but we must also account for packing which requires
        # latent height and width to be divisible by 2.
        height = 2 * (int(height) // (self.vae_scale_factor * 2))
        width = 2 * (int(width) // (self.vae_scale_factor * 2))

        shape = (batch_size, num_channels_latents, height, width)

        if latents is None:
            latents = randn_tensor(shape, generator=generator, dtype=dtype)
        else:
            if latents.shape != shape:
                raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
            latents = latents
        return latents

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1

    @property
    def attention_kwargs(self):
        return self._attention_kwargs

    @property
    def num_timesteps(self):
        return self._num_timesteps

    @property
    def interrupt(self):
        return self._interrupt

    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        prompt_2: Optional[Union[str, List[str]]] = None,
        prompt_3: Optional[Union[str, List[str]]] = None,
        prompt_4: Optional[Union[str, List[str]]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        sigmas: Optional[List[float]] = None,
        guidance_scale: float = 5.0,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        negative_prompt_2: Optional[Union[str, List[str]]] = None,
        negative_prompt_3: Optional[Union[str, List[str]]] = None,
        negative_prompt_4: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
        latents: Optional[ms.Tensor] = None,
        prompt_embeds_t5: Optional[ms.Tensor] = None,
        prompt_embeds_llama3: Optional[ms.Tensor] = None,
        negative_prompt_embeds_t5: Optional[ms.Tensor] = None,
        negative_prompt_embeds_llama3: Optional[ms.Tensor] = None,
        pooled_prompt_embeds: Optional[ms.Tensor] = None,
        negative_pooled_prompt_embeds: Optional[ms.Tensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = False,
        attention_kwargs: Optional[Dict[str, Any]] = None,
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        max_sequence_length: int = 128,
        **kwargs,
    ):
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
                instead.
            prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
                will be used instead.
            prompt_3 (`str` or `List[str]`, *optional*):
                The prompt or prompts to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
                will be used instead.
            prompt_4 (`str` or `List[str]`, *optional*):
                The prompt or prompts to be sent to `tokenizer_4` and `text_encoder_4`. If not defined, `prompt` is
                will be used instead.
            height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The height in pixels of the generated image. This is set to 1024 by default for the best results.
            width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The width in pixels of the generated image. This is set to 1024 by default for the best results.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            sigmas (`List[float]`, *optional*):
                Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
                their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
                will be used.
            guidance_scale (`float`, *optional*, defaults to 3.5):
                Guidance scale as defined in [Classifier-Free Diffusion
                Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
                of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
                `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
                the text `prompt`, usually at the expense of lower image quality.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is
                not greater than `1`).
            negative_prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
                `text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
            negative_prompt_3 (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
                `text_encoder_3`. If not defined, `negative_prompt` is used in all the text-encoders.
            negative_prompt_4 (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation to be sent to `tokenizer_4` and
                `text_encoder_4`. If not defined, `negative_prompt` is used in all the text-encoders.
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            generator (`np.random.Generator` or `List[np.random.Generator]`, *optional*):
                One or a list of [np.random.Generator(s)](https://numpy.org/doc/stable/reference/random/generator.html)
                to make generation deterministic.
            latents (`ms.Tensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            pooled_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
                If not provided, pooled text embeddings will be generated from `prompt` input argument.
            negative_pooled_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
                input argument.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
            attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            callback_on_step_end (`Callable`, *optional*):
                A function that calls at the end of each denoising steps during the inference. The function is called
                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
                `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
                `._callback_tensor_inputs` attribute of your pipeline class.
            max_sequence_length (`int` defaults to 128): Maximum sequence length to use with the `prompt`.

        Examples:

        Returns:
            [`~pipelines.hidream_image.HiDreamImagePipelineOutput`] or `tuple`:
            [`~pipelines.hidream_image.HiDreamImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When
            returning a tuple, the first element is a list with the generated. images.
        """

        prompt_embeds = kwargs.get("prompt_embeds", None)
        negative_prompt_embeds = kwargs.get("negative_prompt_embeds", None)

        if prompt_embeds is not None:
            deprecation_message = "The `prompt_embeds` argument is deprecated. \
                Please use `prompt_embeds_t5` and `prompt_embeds_llama3` instead."
            deprecate("prompt_embeds", "0.35.0", deprecation_message)
            prompt_embeds_t5 = prompt_embeds[0]
            prompt_embeds_llama3 = prompt_embeds[1]

        if negative_prompt_embeds is not None:
            deprecation_message = "The `negative_prompt_embeds` argument is deprecated. \
                Please use `negative_prompt_embeds_t5` and `negative_prompt_embeds_llama3` instead."
            deprecate("negative_prompt_embeds", "0.35.0", deprecation_message)
            negative_prompt_embeds_t5 = negative_prompt_embeds[0]
            negative_prompt_embeds_llama3 = negative_prompt_embeds[1]

        height = height or self.default_sample_size * self.vae_scale_factor
        width = width or self.default_sample_size * self.vae_scale_factor

        division = self.vae_scale_factor * 2
        S_max = (self.default_sample_size * self.vae_scale_factor) ** 2
        scale = S_max / (width * height)
        scale = math.sqrt(scale)
        width, height = int(width * scale // division * division), int(height * scale // division * division)

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            prompt_2,
            prompt_3,
            prompt_4,
            negative_prompt=negative_prompt,
            negative_prompt_2=negative_prompt_2,
            negative_prompt_3=negative_prompt_3,
            negative_prompt_4=negative_prompt_4,
            prompt_embeds_t5=prompt_embeds_t5,
            prompt_embeds_llama3=prompt_embeds_llama3,
            negative_prompt_embeds_t5=negative_prompt_embeds_t5,
            negative_prompt_embeds_llama3=negative_prompt_embeds_llama3,
            pooled_prompt_embeds=pooled_prompt_embeds,
            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
            callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
        )

        self._guidance_scale = guidance_scale
        self._attention_kwargs = attention_kwargs
        self._interrupt = False

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        elif pooled_prompt_embeds is not None:
            batch_size = pooled_prompt_embeds.shape[0]

        # 3. Encode prompt
        lora_scale = self.attention_kwargs.get("scale", None) if self.attention_kwargs is not None else None
        (
            prompt_embeds_t5,
            negative_prompt_embeds_t5,
            prompt_embeds_llama3,
            negative_prompt_embeds_llama3,
            pooled_prompt_embeds,
            negative_pooled_prompt_embeds,
        ) = self.encode_prompt(
            prompt=prompt,
            prompt_2=prompt_2,
            prompt_3=prompt_3,
            prompt_4=prompt_4,
            negative_prompt=negative_prompt,
            negative_prompt_2=negative_prompt_2,
            negative_prompt_3=negative_prompt_3,
            negative_prompt_4=negative_prompt_4,
            do_classifier_free_guidance=self.do_classifier_free_guidance,
            prompt_embeds_t5=prompt_embeds_t5,
            prompt_embeds_llama3=prompt_embeds_llama3,
            negative_prompt_embeds_t5=negative_prompt_embeds_t5,
            negative_prompt_embeds_llama3=negative_prompt_embeds_llama3,
            pooled_prompt_embeds=pooled_prompt_embeds,
            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
            num_images_per_prompt=num_images_per_prompt,
            max_sequence_length=max_sequence_length,
            lora_scale=lora_scale,
        )

        if self.do_classifier_free_guidance:
            prompt_embeds_t5 = mint.cat([negative_prompt_embeds_t5, prompt_embeds_t5], dim=0)
            prompt_embeds_llama3 = mint.cat([negative_prompt_embeds_llama3, prompt_embeds_llama3], dim=1)
            pooled_prompt_embeds = mint.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)

        # 4. Prepare latent variables
        num_channels_latents = self.transformer.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            pooled_prompt_embeds.dtype,
            generator,
            latents,
        )

        # 5. Prepare timesteps
        mu = calculate_shift(self.transformer.max_seq)
        scheduler_kwargs = {"mu": mu}
        if isinstance(self.scheduler, UniPCMultistepScheduler):
            self.scheduler.set_timesteps(num_inference_steps)  # , shift=math.exp(mu))
            timesteps = self.scheduler.timesteps
        else:
            timesteps, num_inference_steps = retrieve_timesteps(
                self.scheduler,
                num_inference_steps,
                sigmas=sigmas,
                **scheduler_kwargs,
            )
        num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
        self._num_timesteps = len(timesteps)

        # 6. Denoising loop
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                if self.interrupt:
                    continue

                # expand the latents if we are doing classifier free guidance
                latent_model_input = mint.cat([latents] * 2) if self.do_classifier_free_guidance else latents
                # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
                timestep = t.broadcast_to((latent_model_input.shape[0],))  # .to(latents.dtype)

                noise_pred = self.transformer(
                    hidden_states=latent_model_input,
                    timesteps=timestep,
                    encoder_hidden_states_t5=prompt_embeds_t5,
                    encoder_hidden_states_llama3=prompt_embeds_llama3,
                    pooled_embeds=pooled_prompt_embeds,
                    return_dict=False,
                )[0]
                noise_pred = -noise_pred

                # perform guidance
                if self.do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                latents_dtype = latents.dtype
                latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]

                if latents.dtype != latents_dtype:
                    latents = latents.to(latents_dtype)

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds_t5 = callback_outputs.pop("prompt_embeds_t5", prompt_embeds_t5)
                    prompt_embeds_llama3 = callback_outputs.pop("prompt_embeds_llama3", prompt_embeds_llama3)
                    pooled_prompt_embeds = callback_outputs.pop("pooled_prompt_embeds", pooled_prompt_embeds)

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()

        if output_type == "latent":
            image = latents

        else:
            latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor

            image = self.vae.decode(latents, return_dict=False)[0]
            image = self.image_processor.postprocess(image, output_type=output_type)

        if not return_dict:
            return (image,)

        return HiDreamImagePipelineOutput(images=image)

mindone.diffusers.HiDreamImagePipeline.__call__(prompt=None, prompt_2=None, prompt_3=None, prompt_4=None, height=None, width=None, num_inference_steps=50, sigmas=None, guidance_scale=5.0, negative_prompt=None, negative_prompt_2=None, negative_prompt_3=None, negative_prompt_4=None, num_images_per_prompt=1, generator=None, latents=None, prompt_embeds_t5=None, prompt_embeds_llama3=None, negative_prompt_embeds_t5=None, negative_prompt_embeds_llama3=None, pooled_prompt_embeds=None, negative_pooled_prompt_embeds=None, output_type='pil', return_dict=False, attention_kwargs=None, callback_on_step_end=None, callback_on_step_end_tensor_inputs=['latents'], max_sequence_length=128, **kwargs)

Function invoked when calling the pipeline for generation.

PARAMETER DESCRIPTION
prompt

The prompt or prompts to guide the image generation. If not defined, one has to pass prompt_embeds. instead.

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

prompt_2

The prompt or prompts to be sent to tokenizer_2 and text_encoder_2. If not defined, prompt is will be used instead.

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

prompt_3

The prompt or prompts to be sent to tokenizer_3 and text_encoder_3. If not defined, prompt is will be used instead.

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

prompt_4

The prompt or prompts to be sent to tokenizer_4 and text_encoder_4. If not defined, prompt is will be used instead.

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

height

The height in pixels of the generated image. This is set to 1024 by default for the best results.

TYPE: `int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor DEFAULT: None

width

The width in pixels of the generated image. This is set to 1024 by default for the best results.

TYPE: `int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor DEFAULT: None

num_inference_steps

The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.

TYPE: `int`, *optional*, defaults to 50 DEFAULT: 50

sigmas

Custom sigmas to use for the denoising process with schedulers which support a sigmas argument in their set_timesteps method. If not defined, the default behavior when num_inference_steps is passed will be used.

TYPE: `List[float]`, *optional* DEFAULT: None

guidance_scale

Guidance scale as defined in Classifier-Free Diffusion Guidance. guidance_scale is defined as w of equation 2. of Imagen Paper. Guidance scale is enabled by setting guidance_scale > 1. Higher guidance scale encourages to generate images that are closely linked to the text prompt, usually at the expense of lower image quality.

TYPE: `float`, *optional*, defaults to 3.5 DEFAULT: 5.0

negative_prompt

The prompt or prompts not to guide the image generation. If not defined, one has to pass negative_prompt_embeds instead. Ignored when not using guidance (i.e., ignored if true_cfg_scale is not greater than 1).

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

negative_prompt_2

The prompt or prompts not to guide the image generation to be sent to tokenizer_2 and text_encoder_2. If not defined, negative_prompt is used in all the text-encoders.

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

negative_prompt_3

The prompt or prompts not to guide the image generation to be sent to tokenizer_3 and text_encoder_3. If not defined, negative_prompt is used in all the text-encoders.

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

negative_prompt_4

The prompt or prompts not to guide the image generation to be sent to tokenizer_4 and text_encoder_4. If not defined, negative_prompt is used in all the text-encoders.

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

num_images_per_prompt

The number of images to generate per prompt.

TYPE: `int`, *optional*, defaults to 1 DEFAULT: 1

generator

One or a list of np.random.Generator(s) to make generation deterministic.

TYPE: `np.random.Generator` or `List[np.random.Generator]`, *optional* DEFAULT: None

latents

Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random generator.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

prompt_embeds

Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt input argument.

TYPE: `ms.Tensor`, *optional*

negative_prompt_embeds

Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt input argument.

TYPE: `ms.Tensor`, *optional*

pooled_prompt_embeds

Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated from prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_pooled_prompt_embeds

Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled negative_prompt_embeds will be generated from negative_prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

output_type

The output format of the generate image. Choose between PIL: PIL.Image.Image or np.array.

TYPE: `str`, *optional*, defaults to `"pil"` DEFAULT: 'pil'

return_dict

Whether or not to return a [~pipelines.flux.FluxPipelineOutput] instead of a plain tuple.

TYPE: `bool`, *optional*, defaults to `False` DEFAULT: False

attention_kwargs

A kwargs dictionary that if specified is passed along to the AttentionProcessor as defined under self.processor in diffusers.models.attention_processor.

TYPE: `dict`, *optional* DEFAULT: None

callback_on_step_end

A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict). callback_kwargs will include a list of all tensors as specified by callback_on_step_end_tensor_inputs.

TYPE: `Callable`, *optional* DEFAULT: None

callback_on_step_end_tensor_inputs

The list of tensor inputs for the callback_on_step_end function. The tensors specified in the list will be passed as callback_kwargs argument. You will only be able to include variables listed in the ._callback_tensor_inputs attribute of your pipeline class.

TYPE: `List`, *optional* DEFAULT: ['latents']

max_sequence_length

Maximum sequence length to use with the prompt.

TYPE: `int` defaults to 128 DEFAULT: 128

RETURNS DESCRIPTION

[~pipelines.hidream_image.HiDreamImagePipelineOutput] or tuple:

[~pipelines.hidream_image.HiDreamImagePipelineOutput] if return_dict is True, otherwise a tuple. When

returning a tuple, the first element is a list with the generated. images.

Source code in mindone/diffusers/pipelines/hidream_image/pipeline_hidream_image.py
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
def __call__(
    self,
    prompt: Union[str, List[str]] = None,
    prompt_2: Optional[Union[str, List[str]]] = None,
    prompt_3: Optional[Union[str, List[str]]] = None,
    prompt_4: Optional[Union[str, List[str]]] = None,
    height: Optional[int] = None,
    width: Optional[int] = None,
    num_inference_steps: int = 50,
    sigmas: Optional[List[float]] = None,
    guidance_scale: float = 5.0,
    negative_prompt: Optional[Union[str, List[str]]] = None,
    negative_prompt_2: Optional[Union[str, List[str]]] = None,
    negative_prompt_3: Optional[Union[str, List[str]]] = None,
    negative_prompt_4: Optional[Union[str, List[str]]] = None,
    num_images_per_prompt: Optional[int] = 1,
    generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
    latents: Optional[ms.Tensor] = None,
    prompt_embeds_t5: Optional[ms.Tensor] = None,
    prompt_embeds_llama3: Optional[ms.Tensor] = None,
    negative_prompt_embeds_t5: Optional[ms.Tensor] = None,
    negative_prompt_embeds_llama3: Optional[ms.Tensor] = None,
    pooled_prompt_embeds: Optional[ms.Tensor] = None,
    negative_pooled_prompt_embeds: Optional[ms.Tensor] = None,
    output_type: Optional[str] = "pil",
    return_dict: bool = False,
    attention_kwargs: Optional[Dict[str, Any]] = None,
    callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
    callback_on_step_end_tensor_inputs: List[str] = ["latents"],
    max_sequence_length: int = 128,
    **kwargs,
):
    r"""
    Function invoked when calling the pipeline for generation.

    Args:
        prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
            instead.
        prompt_2 (`str` or `List[str]`, *optional*):
            The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
            will be used instead.
        prompt_3 (`str` or `List[str]`, *optional*):
            The prompt or prompts to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
            will be used instead.
        prompt_4 (`str` or `List[str]`, *optional*):
            The prompt or prompts to be sent to `tokenizer_4` and `text_encoder_4`. If not defined, `prompt` is
            will be used instead.
        height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
            The height in pixels of the generated image. This is set to 1024 by default for the best results.
        width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
            The width in pixels of the generated image. This is set to 1024 by default for the best results.
        num_inference_steps (`int`, *optional*, defaults to 50):
            The number of denoising steps. More denoising steps usually lead to a higher quality image at the
            expense of slower inference.
        sigmas (`List[float]`, *optional*):
            Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
            their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
            will be used.
        guidance_scale (`float`, *optional*, defaults to 3.5):
            Guidance scale as defined in [Classifier-Free Diffusion
            Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
            of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
            `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
            the text `prompt`, usually at the expense of lower image quality.
        negative_prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts not to guide the image generation. If not defined, one has to pass
            `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is
            not greater than `1`).
        negative_prompt_2 (`str` or `List[str]`, *optional*):
            The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
            `text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
        negative_prompt_3 (`str` or `List[str]`, *optional*):
            The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
            `text_encoder_3`. If not defined, `negative_prompt` is used in all the text-encoders.
        negative_prompt_4 (`str` or `List[str]`, *optional*):
            The prompt or prompts not to guide the image generation to be sent to `tokenizer_4` and
            `text_encoder_4`. If not defined, `negative_prompt` is used in all the text-encoders.
        num_images_per_prompt (`int`, *optional*, defaults to 1):
            The number of images to generate per prompt.
        generator (`np.random.Generator` or `List[np.random.Generator]`, *optional*):
            One or a list of [np.random.Generator(s)](https://numpy.org/doc/stable/reference/random/generator.html)
            to make generation deterministic.
        latents (`ms.Tensor`, *optional*):
            Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
            generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
            tensor will ge generated by sampling using the supplied random `generator`.
        prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
            provided, text embeddings will be generated from `prompt` input argument.
        negative_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
            weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
            argument.
        pooled_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
            If not provided, pooled text embeddings will be generated from `prompt` input argument.
        negative_pooled_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
            weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
            input argument.
        output_type (`str`, *optional*, defaults to `"pil"`):
            The output format of the generate image. Choose between
            [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
        return_dict (`bool`, *optional*, defaults to `False`):
            Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
        attention_kwargs (`dict`, *optional*):
            A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
            `self.processor` in
            [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
        callback_on_step_end (`Callable`, *optional*):
            A function that calls at the end of each denoising steps during the inference. The function is called
            with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
            callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
            `callback_on_step_end_tensor_inputs`.
        callback_on_step_end_tensor_inputs (`List`, *optional*):
            The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
            will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
            `._callback_tensor_inputs` attribute of your pipeline class.
        max_sequence_length (`int` defaults to 128): Maximum sequence length to use with the `prompt`.

    Examples:

    Returns:
        [`~pipelines.hidream_image.HiDreamImagePipelineOutput`] or `tuple`:
        [`~pipelines.hidream_image.HiDreamImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When
        returning a tuple, the first element is a list with the generated. images.
    """

    prompt_embeds = kwargs.get("prompt_embeds", None)
    negative_prompt_embeds = kwargs.get("negative_prompt_embeds", None)

    if prompt_embeds is not None:
        deprecation_message = "The `prompt_embeds` argument is deprecated. \
            Please use `prompt_embeds_t5` and `prompt_embeds_llama3` instead."
        deprecate("prompt_embeds", "0.35.0", deprecation_message)
        prompt_embeds_t5 = prompt_embeds[0]
        prompt_embeds_llama3 = prompt_embeds[1]

    if negative_prompt_embeds is not None:
        deprecation_message = "The `negative_prompt_embeds` argument is deprecated. \
            Please use `negative_prompt_embeds_t5` and `negative_prompt_embeds_llama3` instead."
        deprecate("negative_prompt_embeds", "0.35.0", deprecation_message)
        negative_prompt_embeds_t5 = negative_prompt_embeds[0]
        negative_prompt_embeds_llama3 = negative_prompt_embeds[1]

    height = height or self.default_sample_size * self.vae_scale_factor
    width = width or self.default_sample_size * self.vae_scale_factor

    division = self.vae_scale_factor * 2
    S_max = (self.default_sample_size * self.vae_scale_factor) ** 2
    scale = S_max / (width * height)
    scale = math.sqrt(scale)
    width, height = int(width * scale // division * division), int(height * scale // division * division)

    # 1. Check inputs. Raise error if not correct
    self.check_inputs(
        prompt,
        prompt_2,
        prompt_3,
        prompt_4,
        negative_prompt=negative_prompt,
        negative_prompt_2=negative_prompt_2,
        negative_prompt_3=negative_prompt_3,
        negative_prompt_4=negative_prompt_4,
        prompt_embeds_t5=prompt_embeds_t5,
        prompt_embeds_llama3=prompt_embeds_llama3,
        negative_prompt_embeds_t5=negative_prompt_embeds_t5,
        negative_prompt_embeds_llama3=negative_prompt_embeds_llama3,
        pooled_prompt_embeds=pooled_prompt_embeds,
        negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
        callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
    )

    self._guidance_scale = guidance_scale
    self._attention_kwargs = attention_kwargs
    self._interrupt = False

    # 2. Define call parameters
    if prompt is not None and isinstance(prompt, str):
        batch_size = 1
    elif prompt is not None and isinstance(prompt, list):
        batch_size = len(prompt)
    elif pooled_prompt_embeds is not None:
        batch_size = pooled_prompt_embeds.shape[0]

    # 3. Encode prompt
    lora_scale = self.attention_kwargs.get("scale", None) if self.attention_kwargs is not None else None
    (
        prompt_embeds_t5,
        negative_prompt_embeds_t5,
        prompt_embeds_llama3,
        negative_prompt_embeds_llama3,
        pooled_prompt_embeds,
        negative_pooled_prompt_embeds,
    ) = self.encode_prompt(
        prompt=prompt,
        prompt_2=prompt_2,
        prompt_3=prompt_3,
        prompt_4=prompt_4,
        negative_prompt=negative_prompt,
        negative_prompt_2=negative_prompt_2,
        negative_prompt_3=negative_prompt_3,
        negative_prompt_4=negative_prompt_4,
        do_classifier_free_guidance=self.do_classifier_free_guidance,
        prompt_embeds_t5=prompt_embeds_t5,
        prompt_embeds_llama3=prompt_embeds_llama3,
        negative_prompt_embeds_t5=negative_prompt_embeds_t5,
        negative_prompt_embeds_llama3=negative_prompt_embeds_llama3,
        pooled_prompt_embeds=pooled_prompt_embeds,
        negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
        num_images_per_prompt=num_images_per_prompt,
        max_sequence_length=max_sequence_length,
        lora_scale=lora_scale,
    )

    if self.do_classifier_free_guidance:
        prompt_embeds_t5 = mint.cat([negative_prompt_embeds_t5, prompt_embeds_t5], dim=0)
        prompt_embeds_llama3 = mint.cat([negative_prompt_embeds_llama3, prompt_embeds_llama3], dim=1)
        pooled_prompt_embeds = mint.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)

    # 4. Prepare latent variables
    num_channels_latents = self.transformer.config.in_channels
    latents = self.prepare_latents(
        batch_size * num_images_per_prompt,
        num_channels_latents,
        height,
        width,
        pooled_prompt_embeds.dtype,
        generator,
        latents,
    )

    # 5. Prepare timesteps
    mu = calculate_shift(self.transformer.max_seq)
    scheduler_kwargs = {"mu": mu}
    if isinstance(self.scheduler, UniPCMultistepScheduler):
        self.scheduler.set_timesteps(num_inference_steps)  # , shift=math.exp(mu))
        timesteps = self.scheduler.timesteps
    else:
        timesteps, num_inference_steps = retrieve_timesteps(
            self.scheduler,
            num_inference_steps,
            sigmas=sigmas,
            **scheduler_kwargs,
        )
    num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
    self._num_timesteps = len(timesteps)

    # 6. Denoising loop
    with self.progress_bar(total=num_inference_steps) as progress_bar:
        for i, t in enumerate(timesteps):
            if self.interrupt:
                continue

            # expand the latents if we are doing classifier free guidance
            latent_model_input = mint.cat([latents] * 2) if self.do_classifier_free_guidance else latents
            # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
            timestep = t.broadcast_to((latent_model_input.shape[0],))  # .to(latents.dtype)

            noise_pred = self.transformer(
                hidden_states=latent_model_input,
                timesteps=timestep,
                encoder_hidden_states_t5=prompt_embeds_t5,
                encoder_hidden_states_llama3=prompt_embeds_llama3,
                pooled_embeds=pooled_prompt_embeds,
                return_dict=False,
            )[0]
            noise_pred = -noise_pred

            # perform guidance
            if self.do_classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)

            # compute the previous noisy sample x_t -> x_t-1
            latents_dtype = latents.dtype
            latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]

            if latents.dtype != latents_dtype:
                latents = latents.to(latents_dtype)

            if callback_on_step_end is not None:
                callback_kwargs = {}
                for k in callback_on_step_end_tensor_inputs:
                    callback_kwargs[k] = locals()[k]
                callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                latents = callback_outputs.pop("latents", latents)
                prompt_embeds_t5 = callback_outputs.pop("prompt_embeds_t5", prompt_embeds_t5)
                prompt_embeds_llama3 = callback_outputs.pop("prompt_embeds_llama3", prompt_embeds_llama3)
                pooled_prompt_embeds = callback_outputs.pop("pooled_prompt_embeds", pooled_prompt_embeds)

            # call the callback, if provided
            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                progress_bar.update()

    if output_type == "latent":
        image = latents

    else:
        latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor

        image = self.vae.decode(latents, return_dict=False)[0]
        image = self.image_processor.postprocess(image, output_type=output_type)

    if not return_dict:
        return (image,)

    return HiDreamImagePipelineOutput(images=image)

mindone.diffusers.HiDreamImagePipeline.disable_vae_slicing()

Disable sliced VAE decoding. If enable_vae_slicing was previously enabled, this method will go back to computing decoding in one step.

Source code in mindone/diffusers/pipelines/hidream_image/pipeline_hidream_image.py
496
497
498
499
500
501
def disable_vae_slicing(self):
    r"""
    Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
    computing decoding in one step.
    """
    self.vae.disable_slicing()

mindone.diffusers.HiDreamImagePipeline.disable_vae_tiling()

Disable tiled VAE decoding. If enable_vae_tiling was previously enabled, this method will go back to computing decoding in one step.

Source code in mindone/diffusers/pipelines/hidream_image/pipeline_hidream_image.py
511
512
513
514
515
516
def disable_vae_tiling(self):
    r"""
    Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
    computing decoding in one step.
    """
    self.vae.disable_tiling()

mindone.diffusers.HiDreamImagePipeline.enable_vae_slicing()

Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.

Source code in mindone/diffusers/pipelines/hidream_image/pipeline_hidream_image.py
489
490
491
492
493
494
def enable_vae_slicing(self):
    r"""
    Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
    compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
    """
    self.vae.enable_slicing()

mindone.diffusers.HiDreamImagePipeline.enable_vae_tiling()

Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images.

Source code in mindone/diffusers/pipelines/hidream_image/pipeline_hidream_image.py
503
504
505
506
507
508
509
def enable_vae_tiling(self):
    r"""
    Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
    compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
    processing larger images.
    """
    self.vae.enable_tiling()

mindone.diffusers.pipelines.hidream_image.pipeline_output.HiDreamImagePipelineOutput dataclass

Bases: BaseOutput

Output class for HiDreamImage pipelines.

Source code in mindone/diffusers/pipelines/hidream_image/pipeline_output.py
10
11
12
13
14
15
16
17
18
19
20
21
@dataclass
class HiDreamImagePipelineOutput(BaseOutput):
    """
    Output class for HiDreamImage pipelines.

    Args:
        images (`List[PIL.Image.Image]` or `np.ndarray`)
            List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
            num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
    """

    images: Union[List[PIL.Image.Image], np.ndarray]