Skip to content

EasyAnimate

EasyAnimate by Alibaba PAI.

The description from it's GitHub page: EasyAnimate is a pipeline based on the transformer architecture, designed for generating AI images and videos, and for training baseline models and Lora models for Diffusion Transformer. We support direct prediction from pre-trained EasyAnimate models, allowing for the generation of videos with various resolutions, approximately 6 seconds in length, at 8fps (EasyAnimateV5.1, 1 to 49 frames). Additionally, users can train their own baseline and Lora models for specific style transformations.

This pipeline was contributed by bubbliiiing. The original codebase can be found here. The original weights can be found under hf.co/alibaba-pai.

There are two official EasyAnimate checkpoints for text-to-video and video-to-video.

checkpoints recommended inference dtype
alibaba-pai/EasyAnimateV5.1-12b-zh mindspore.float16
alibaba-pai/EasyAnimateV5.1-12b-zh-InP mindspore.float16

There is one official EasyAnimate checkpoints available for image-to-video and video-to-video.

checkpoints recommended inference dtype
alibaba-pai/EasyAnimateV5.1-12b-zh-InP mindspore.float16

There are two official EasyAnimate checkpoints available for control-to-video.

checkpoints recommended inference dtype
alibaba-pai/EasyAnimateV5.1-12b-zh-Control mindspore.float16
alibaba-pai/EasyAnimateV5.1-12b-zh-Control-Camera mindspore.float16

For the EasyAnimateV5.1 series: - Text-to-video (T2V) and Image-to-video (I2V) works for multiple resolutions. The width and height can vary from 256 to 1024. - Both T2V and I2V models support generation with 1~49 frames and work best at this value. Exporting videos at 8 FPS is recommended.

mindone.diffusers.EasyAnimatePipeline

Bases: DiffusionPipeline

Pipeline for text-to-video generation using EasyAnimate.

This model inherits from [DiffusionPipeline]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

EasyAnimate uses one text encoder qwen2 vl in V5.1.

PARAMETER DESCRIPTION
vae

Variational Auto-Encoder (VAE) Model to encode and decode video to and from latent representations.

TYPE: [`AutoencoderKLMagvit`]

text_encoder

EasyAnimate uses qwen2 vl in V5.1.

TYPE: Optional[`~transformers.Qwen2VLForConditionalGeneration`, `~transformers.BertModel`]

tokenizer

A Qwen2Tokenizer or BertTokenizer to tokenize text.

TYPE: Optional[`~transformers.Qwen2Tokenizer`, `~transformers.BertTokenizer`]

transformer

The EasyAnimate model designed by EasyAnimate Team.

TYPE: [`EasyAnimateTransformer3DModel`]

scheduler

A scheduler to be used in combination with EasyAnimate to denoise the encoded image latents.

TYPE: [`FlowMatchEulerDiscreteScheduler`]

Source code in mindone/diffusers/pipelines/easyanimate/pipeline_easyanimate.py
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
class EasyAnimatePipeline(DiffusionPipeline):
    r"""
    Pipeline for text-to-video generation using EasyAnimate.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    EasyAnimate uses one text encoder [qwen2 vl](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) in V5.1.

    Args:
        vae ([`AutoencoderKLMagvit`]):
            Variational Auto-Encoder (VAE) Model to encode and decode video to and from latent representations.
        text_encoder (Optional[`~transformers.Qwen2VLForConditionalGeneration`, `~transformers.BertModel`]):
            EasyAnimate uses [qwen2 vl](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) in V5.1.
        tokenizer (Optional[`~transformers.Qwen2Tokenizer`, `~transformers.BertTokenizer`]):
            A `Qwen2Tokenizer` or `BertTokenizer` to tokenize text.
        transformer ([`EasyAnimateTransformer3DModel`]):
            The EasyAnimate model designed by EasyAnimate Team.
        scheduler ([`FlowMatchEulerDiscreteScheduler`]):
            A scheduler to be used in combination with EasyAnimate to denoise the encoded image latents.
    """

    model_cpu_offload_seq = "text_encoder->transformer->vae"
    _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]

    def __init__(
        self,
        vae: AutoencoderKLMagvit,
        text_encoder: Union[Qwen2VLForConditionalGeneration, BertModel],
        tokenizer: Union[Qwen2Tokenizer, BertTokenizer],
        transformer: EasyAnimateTransformer3DModel,
        scheduler: FlowMatchEulerDiscreteScheduler,
    ):
        super().__init__()

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            transformer=transformer,
            scheduler=scheduler,
        )
        self.enable_text_attention_mask = (
            self.transformer.config.enable_text_attention_mask
            if getattr(self, "transformer", None) is not None
            else True
        )
        self.vae_spatial_compression_ratio = (
            self.vae.spatial_compression_ratio if getattr(self, "vae", None) is not None else 8
        )
        self.vae_temporal_compression_ratio = (
            self.vae.temporal_compression_ratio if getattr(self, "vae", None) is not None else 4
        )
        self.video_processor = VideoProcessor(vae_scale_factor=self.vae_spatial_compression_ratio)

    def encode_prompt(
        self,
        prompt: Union[str, List[str]],
        num_images_per_prompt: int = 1,
        do_classifier_free_guidance: bool = True,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        prompt_embeds: Optional[ms.Tensor] = None,
        negative_prompt_embeds: Optional[ms.Tensor] = None,
        prompt_attention_mask: Optional[ms.Tensor] = None,
        negative_prompt_attention_mask: Optional[ms.Tensor] = None,
        dtype: Optional[ms.Type] = None,
        max_sequence_length: int = 256,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            dtype (`ms.Type`):
                mindspore dtype
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            prompt_attention_mask (`ms.Tensor`, *optional*):
                Attention mask for the prompt. Required when `prompt_embeds` is passed directly.
            negative_prompt_attention_mask (`ms.Tensor`, *optional*):
                Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly.
            max_sequence_length (`int`, *optional*): maximum sequence length to use for the prompt.
        """
        dtype = dtype or self.text_encoder.dtype

        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if prompt_embeds is None:
            if isinstance(prompt, str):
                messages = [
                    {
                        "role": "user",
                        "content": [{"type": "text", "text": prompt}],
                    }
                ]
            else:
                messages = [
                    {
                        "role": "user",
                        "content": [{"type": "text", "text": _prompt}],
                    }
                    for _prompt in prompt
                ]
            text = [
                self.tokenizer.apply_chat_template([m], tokenize=False, add_generation_prompt=True) for m in messages
            ]

            text_inputs = self.tokenizer(
                text=text,
                padding="max_length",
                max_length=max_sequence_length,
                truncation=True,
                return_attention_mask=True,
                padding_side="right",
                return_tensors="np",
            )

            text_input_ids = ms.tensor(text_inputs.input_ids)
            prompt_attention_mask = ms.tensor(text_inputs.attention_mask)
            if self.enable_text_attention_mask:
                # Inference: Generation of the output
                # text_encoder only support pynative
                with pynative_context():
                    prompt_embeds = self.text_encoder(
                        input_ids=text_input_ids, attention_mask=prompt_attention_mask, output_hidden_states=True
                    )[2][-2]
            else:
                raise ValueError("LLM needs attention_mask")
            prompt_attention_mask = prompt_attention_mask.tile((num_images_per_prompt, 1))

        prompt_embeds = prompt_embeds.to(dtype=dtype)

        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.tile((1, num_images_per_prompt, 1))
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            if negative_prompt is not None and isinstance(negative_prompt, str):
                messages = [
                    {
                        "role": "user",
                        "content": [{"type": "text", "text": negative_prompt}],
                    }
                ]
            else:
                messages = [
                    {
                        "role": "user",
                        "content": [{"type": "text", "text": _negative_prompt}],
                    }
                    for _negative_prompt in negative_prompt
                ]
            text = [
                self.tokenizer.apply_chat_template([m], tokenize=False, add_generation_prompt=True) for m in messages
            ]

            text_inputs = self.tokenizer(
                text=text,
                padding="max_length",
                max_length=max_sequence_length,
                truncation=True,
                return_attention_mask=True,
                padding_side="right",
                return_tensors="np",
            )

            text_input_ids = ms.tensor(text_inputs.input_ids)
            negative_prompt_attention_mask = ms.tensor(text_inputs.attention_mask)
            if self.enable_text_attention_mask:
                # Inference: Generation of the output
                # text_encoder only support pynative
                with pynative_context():
                    negative_prompt_embeds = self.text_encoder(
                        input_ids=text_input_ids,
                        attention_mask=negative_prompt_attention_mask,
                        output_hidden_states=True,
                    )[2][-2]
            else:
                raise ValueError("LLM needs attention_mask")
            negative_prompt_attention_mask = negative_prompt_attention_mask.tile((num_images_per_prompt, 1))

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

            negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype)

            negative_prompt_embeds = negative_prompt_embeds.tile((1, num_images_per_prompt, 1))
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

        return prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def check_inputs(
        self,
        prompt,
        height,
        width,
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
        prompt_attention_mask=None,
        negative_prompt_attention_mask=None,
        callback_on_step_end_tensor_inputs=None,
    ):
        if height % 16 != 0 or width % 16 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 16 but are {height} and {width}.")

        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"  # noqa
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if prompt_embeds is not None and prompt_attention_mask is None:
            raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
            raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

    def prepare_latents(
        self, batch_size, num_channels_latents, num_frames, height, width, dtype, generator, latents=None
    ):
        if latents is not None:
            return latents.to(dtype=dtype)

        shape = (
            batch_size,
            num_channels_latents,
            (num_frames - 1) // self.vae_temporal_compression_ratio + 1,
            height // self.vae_spatial_compression_ratio,
            width // self.vae_spatial_compression_ratio,
        )

        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        latents = randn_tensor(shape, generator=generator, dtype=dtype)
        # scale the initial noise by the standard deviation required by the scheduler
        if hasattr(self.scheduler, "init_noise_sigma"):
            latents = (latents * self.scheduler.init_noise_sigma).to(dtype)
        return latents

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def guidance_rescale(self):
        return self._guidance_rescale

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1

    @property
    def num_timesteps(self):
        return self._num_timesteps

    @property
    def interrupt(self):
        return self._interrupt

    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        num_frames: Optional[int] = 49,
        height: Optional[int] = 512,
        width: Optional[int] = 512,
        num_inference_steps: Optional[int] = 50,
        guidance_scale: Optional[float] = 5.0,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: Optional[float] = 0.0,
        generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
        latents: Optional[ms.Tensor] = None,
        prompt_embeds: Optional[ms.Tensor] = None,
        timesteps: Optional[List[int]] = None,
        negative_prompt_embeds: Optional[ms.Tensor] = None,
        prompt_attention_mask: Optional[ms.Tensor] = None,
        negative_prompt_attention_mask: Optional[ms.Tensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = False,
        callback_on_step_end: Optional[
            Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
        ] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        guidance_rescale: float = 0.0,
    ):
        r"""
        Generates images or video using the EasyAnimate pipeline based on the provided prompts.

        Examples:
            prompt (`str` or `List[str]`, *optional*):
                Text prompts to guide the image or video generation. If not provided, use `prompt_embeds` instead.
            num_frames (`int`, *optional*):
                Length of the generated video (in frames).
            height (`int`, *optional*):
                Height of the generated image in pixels.
            width (`int`, *optional*):
                Width of the generated image in pixels.
            num_inference_steps (`int`, *optional*, defaults to 50):
                Number of denoising steps during generation. More steps generally yield higher quality images but slow
                down inference.
            guidance_scale (`float`, *optional*, defaults to 5.0):
                Encourages the model to align outputs with prompts. A higher value may decrease image quality.
            negative_prompt (`str` or `List[str]`, *optional*):
                Prompts indicating what to exclude in generation. If not specified, use `negative_prompt_embeds`.
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                Number of images to generate for each prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Applies to DDIM scheduling. Controlled by the eta parameter from the related literature.
            generator (`np.random.Generator` or `List[np.random.Generator]`, *optional*):
                A generator to ensure reproducibility in image generation.
            latents (`ms.Tensor`, *optional*):
                Predefined latent tensors to condition generation.
            prompt_embeds (`ms.Tensor`, *optional*):
                Text embeddings for the prompts. Overrides prompt string inputs for more flexibility.
            negative_prompt_embeds (`ms.Tensor`, *optional*):
                Embeddings for negative prompts. Overrides string inputs if defined.
            prompt_attention_mask (`ms.Tensor`, *optional*):
                Attention mask for the primary prompt embeddings.
            negative_prompt_attention_mask (`ms.Tensor`, *optional*):
                Attention mask for negative prompt embeddings.
            output_type (`str`, *optional*, defaults to "latent"):
                Format of the generated output, either as a PIL image or as a NumPy array.
            return_dict (`bool`, *optional*, defaults to `False`):
                If `True`, returns a structured output. Otherwise returns a simple tuple.
            callback_on_step_end (`Callable`, *optional*):
                Functions called at the end of each denoising step.
            callback_on_step_end_tensor_inputs (`List[str]`, *optional*):
                Tensor names to be included in callback function calls.
            guidance_rescale (`float`, *optional*, defaults to 0.0):
                Adjusts noise levels based on guidance scale.
            original_size (`Tuple[int, int]`, *optional*, defaults to `(1024, 1024)`):
                Original dimensions of the output.
            target_size (`Tuple[int, int]`, *optional*):
                Desired output dimensions for calculations.
            crops_coords_top_left (`Tuple[int, int]`, *optional*, defaults to `(0, 0)`):
                Coordinates for cropping.

        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
                otherwise a `tuple` is returned where the first element is a list with the generated images and the
                second element is a list of `bool`s indicating whether the corresponding generated image contains
                "not-safe-for-work" (nsfw) content.
        """

        if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
            callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs

        # 0. default height and width
        height = int((height // 16) * 16)
        width = int((width // 16) * 16)

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            height,
            width,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
            prompt_attention_mask,
            negative_prompt_attention_mask,
            callback_on_step_end_tensor_inputs,
        )
        self._guidance_scale = guidance_scale
        self._guidance_rescale = guidance_rescale
        self._interrupt = False

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if self.text_encoder is not None:
            dtype = self.text_encoder.dtype
        else:
            dtype = self.transformer.dtype

        # 3. Encode input prompt
        (
            prompt_embeds,
            negative_prompt_embeds,
            prompt_attention_mask,
            negative_prompt_attention_mask,
        ) = self.encode_prompt(
            prompt=prompt,
            dtype=dtype,
            num_images_per_prompt=num_images_per_prompt,
            do_classifier_free_guidance=self.do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            prompt_attention_mask=prompt_attention_mask,
            negative_prompt_attention_mask=negative_prompt_attention_mask,
        )

        # 4. Prepare timesteps
        if isinstance(self.scheduler, FlowMatchEulerDiscreteScheduler):
            timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, timesteps, mu=1)
        else:
            timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, timesteps)

        # 5. Prepare latent variables
        num_channels_latents = self.transformer.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            num_frames,
            height,
            width,
            dtype,
            generator,
            latents,
        )

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        if self.do_classifier_free_guidance:
            prompt_embeds = mint.cat([negative_prompt_embeds, prompt_embeds])
            prompt_attention_mask = mint.cat([negative_prompt_attention_mask, prompt_attention_mask])

        # 7. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        self._num_timesteps = len(timesteps)
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                if self.interrupt:
                    continue

                # expand the latents if we are doing classifier free guidance
                latent_model_input = mint.cat([latents] * 2) if self.do_classifier_free_guidance else latents
                if hasattr(self.scheduler, "scale_model_input"):
                    latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # expand scalar t to 1-D tensor to match the 1st dim of latent_model_input
                t_expand = ms.tensor([t] * latent_model_input.shape[0]).to(dtype=latent_model_input.dtype)

                # predict the noise residual
                noise_pred = self.transformer(
                    latent_model_input,
                    t_expand,
                    encoder_hidden_states=prompt_embeds,
                    return_dict=False,
                )[0]

                if noise_pred.shape[1] != self.vae.config.latent_channels:
                    noise_pred, _ = noise_pred.chunk(2, dim=1)

                # perform guidance
                if self.do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                if self.do_classifier_free_guidance and guidance_rescale > 0.0:
                    # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
                    noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()

        if not output_type == "latent":
            latents = 1 / self.vae.config.scaling_factor * latents
            # vae decode only support pynative
            with pynative_context():
                video = self.vae.decode(latents, return_dict=False)[0]
            video = self.video_processor.postprocess_video(video=video, output_type=output_type)
        else:
            video = latents

        if not return_dict:
            return (video,)

        return EasyAnimatePipelineOutput(frames=video)

mindone.diffusers.EasyAnimatePipeline.__call__(prompt=None, num_frames=49, height=512, width=512, num_inference_steps=50, guidance_scale=5.0, negative_prompt=None, num_images_per_prompt=1, eta=0.0, generator=None, latents=None, prompt_embeds=None, timesteps=None, negative_prompt_embeds=None, prompt_attention_mask=None, negative_prompt_attention_mask=None, output_type='pil', return_dict=False, callback_on_step_end=None, callback_on_step_end_tensor_inputs=['latents'], guidance_rescale=0.0)

Generates images or video using the EasyAnimate pipeline based on the provided prompts.

Examples:

prompt (str or List[str], optional): Text prompts to guide the image or video generation. If not provided, use prompt_embeds instead. num_frames (int, optional): Length of the generated video (in frames). height (int, optional): Height of the generated image in pixels. width (int, optional): Width of the generated image in pixels. num_inference_steps (int, optional, defaults to 50): Number of denoising steps during generation. More steps generally yield higher quality images but slow down inference. guidance_scale (float, optional, defaults to 5.0): Encourages the model to align outputs with prompts. A higher value may decrease image quality. negative_prompt (str or List[str], optional): Prompts indicating what to exclude in generation. If not specified, use negative_prompt_embeds. num_images_per_prompt (int, optional, defaults to 1): Number of images to generate for each prompt. eta (float, optional, defaults to 0.0): Applies to DDIM scheduling. Controlled by the eta parameter from the related literature. generator (np.random.Generator or List[np.random.Generator], optional): A generator to ensure reproducibility in image generation. latents (ms.Tensor, optional): Predefined latent tensors to condition generation. prompt_embeds (ms.Tensor, optional): Text embeddings for the prompts. Overrides prompt string inputs for more flexibility. negative_prompt_embeds (ms.Tensor, optional): Embeddings for negative prompts. Overrides string inputs if defined. prompt_attention_mask (ms.Tensor, optional): Attention mask for the primary prompt embeddings. negative_prompt_attention_mask (ms.Tensor, optional): Attention mask for negative prompt embeddings. output_type (str, optional, defaults to "latent"): Format of the generated output, either as a PIL image or as a NumPy array. return_dict (bool, optional, defaults to False): If True, returns a structured output. Otherwise returns a simple tuple. callback_on_step_end (Callable, optional): Functions called at the end of each denoising step. callback_on_step_end_tensor_inputs (List[str], optional): Tensor names to be included in callback function calls. guidance_rescale (float, optional, defaults to 0.0): Adjusts noise levels based on guidance scale. original_size (Tuple[int, int], optional, defaults to (1024, 1024)): Original dimensions of the output. target_size (Tuple[int, int], optional): Desired output dimensions for calculations. crops_coords_top_left (Tuple[int, int], optional, defaults to (0, 0)): Coordinates for cropping.

RETURNS DESCRIPTION

[~pipelines.stable_diffusion.StableDiffusionPipelineOutput] or tuple: If return_dict is True, [~pipelines.stable_diffusion.StableDiffusionPipelineOutput] is returned, otherwise a tuple is returned where the first element is a list with the generated images and the second element is a list of bools indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content.

Source code in mindone/diffusers/pipelines/easyanimate/pipeline_easyanimate.py
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
def __call__(
    self,
    prompt: Union[str, List[str]] = None,
    num_frames: Optional[int] = 49,
    height: Optional[int] = 512,
    width: Optional[int] = 512,
    num_inference_steps: Optional[int] = 50,
    guidance_scale: Optional[float] = 5.0,
    negative_prompt: Optional[Union[str, List[str]]] = None,
    num_images_per_prompt: Optional[int] = 1,
    eta: Optional[float] = 0.0,
    generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
    latents: Optional[ms.Tensor] = None,
    prompt_embeds: Optional[ms.Tensor] = None,
    timesteps: Optional[List[int]] = None,
    negative_prompt_embeds: Optional[ms.Tensor] = None,
    prompt_attention_mask: Optional[ms.Tensor] = None,
    negative_prompt_attention_mask: Optional[ms.Tensor] = None,
    output_type: Optional[str] = "pil",
    return_dict: bool = False,
    callback_on_step_end: Optional[
        Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
    ] = None,
    callback_on_step_end_tensor_inputs: List[str] = ["latents"],
    guidance_rescale: float = 0.0,
):
    r"""
    Generates images or video using the EasyAnimate pipeline based on the provided prompts.

    Examples:
        prompt (`str` or `List[str]`, *optional*):
            Text prompts to guide the image or video generation. If not provided, use `prompt_embeds` instead.
        num_frames (`int`, *optional*):
            Length of the generated video (in frames).
        height (`int`, *optional*):
            Height of the generated image in pixels.
        width (`int`, *optional*):
            Width of the generated image in pixels.
        num_inference_steps (`int`, *optional*, defaults to 50):
            Number of denoising steps during generation. More steps generally yield higher quality images but slow
            down inference.
        guidance_scale (`float`, *optional*, defaults to 5.0):
            Encourages the model to align outputs with prompts. A higher value may decrease image quality.
        negative_prompt (`str` or `List[str]`, *optional*):
            Prompts indicating what to exclude in generation. If not specified, use `negative_prompt_embeds`.
        num_images_per_prompt (`int`, *optional*, defaults to 1):
            Number of images to generate for each prompt.
        eta (`float`, *optional*, defaults to 0.0):
            Applies to DDIM scheduling. Controlled by the eta parameter from the related literature.
        generator (`np.random.Generator` or `List[np.random.Generator]`, *optional*):
            A generator to ensure reproducibility in image generation.
        latents (`ms.Tensor`, *optional*):
            Predefined latent tensors to condition generation.
        prompt_embeds (`ms.Tensor`, *optional*):
            Text embeddings for the prompts. Overrides prompt string inputs for more flexibility.
        negative_prompt_embeds (`ms.Tensor`, *optional*):
            Embeddings for negative prompts. Overrides string inputs if defined.
        prompt_attention_mask (`ms.Tensor`, *optional*):
            Attention mask for the primary prompt embeddings.
        negative_prompt_attention_mask (`ms.Tensor`, *optional*):
            Attention mask for negative prompt embeddings.
        output_type (`str`, *optional*, defaults to "latent"):
            Format of the generated output, either as a PIL image or as a NumPy array.
        return_dict (`bool`, *optional*, defaults to `False`):
            If `True`, returns a structured output. Otherwise returns a simple tuple.
        callback_on_step_end (`Callable`, *optional*):
            Functions called at the end of each denoising step.
        callback_on_step_end_tensor_inputs (`List[str]`, *optional*):
            Tensor names to be included in callback function calls.
        guidance_rescale (`float`, *optional*, defaults to 0.0):
            Adjusts noise levels based on guidance scale.
        original_size (`Tuple[int, int]`, *optional*, defaults to `(1024, 1024)`):
            Original dimensions of the output.
        target_size (`Tuple[int, int]`, *optional*):
            Desired output dimensions for calculations.
        crops_coords_top_left (`Tuple[int, int]`, *optional*, defaults to `(0, 0)`):
            Coordinates for cropping.

    Returns:
        [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
            If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
            otherwise a `tuple` is returned where the first element is a list with the generated images and the
            second element is a list of `bool`s indicating whether the corresponding generated image contains
            "not-safe-for-work" (nsfw) content.
    """

    if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
        callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs

    # 0. default height and width
    height = int((height // 16) * 16)
    width = int((width // 16) * 16)

    # 1. Check inputs. Raise error if not correct
    self.check_inputs(
        prompt,
        height,
        width,
        negative_prompt,
        prompt_embeds,
        negative_prompt_embeds,
        prompt_attention_mask,
        negative_prompt_attention_mask,
        callback_on_step_end_tensor_inputs,
    )
    self._guidance_scale = guidance_scale
    self._guidance_rescale = guidance_rescale
    self._interrupt = False

    # 2. Define call parameters
    if prompt is not None and isinstance(prompt, str):
        batch_size = 1
    elif prompt is not None and isinstance(prompt, list):
        batch_size = len(prompt)
    else:
        batch_size = prompt_embeds.shape[0]

    if self.text_encoder is not None:
        dtype = self.text_encoder.dtype
    else:
        dtype = self.transformer.dtype

    # 3. Encode input prompt
    (
        prompt_embeds,
        negative_prompt_embeds,
        prompt_attention_mask,
        negative_prompt_attention_mask,
    ) = self.encode_prompt(
        prompt=prompt,
        dtype=dtype,
        num_images_per_prompt=num_images_per_prompt,
        do_classifier_free_guidance=self.do_classifier_free_guidance,
        negative_prompt=negative_prompt,
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=negative_prompt_embeds,
        prompt_attention_mask=prompt_attention_mask,
        negative_prompt_attention_mask=negative_prompt_attention_mask,
    )

    # 4. Prepare timesteps
    if isinstance(self.scheduler, FlowMatchEulerDiscreteScheduler):
        timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, timesteps, mu=1)
    else:
        timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, timesteps)

    # 5. Prepare latent variables
    num_channels_latents = self.transformer.config.in_channels
    latents = self.prepare_latents(
        batch_size * num_images_per_prompt,
        num_channels_latents,
        num_frames,
        height,
        width,
        dtype,
        generator,
        latents,
    )

    # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
    extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

    if self.do_classifier_free_guidance:
        prompt_embeds = mint.cat([negative_prompt_embeds, prompt_embeds])
        prompt_attention_mask = mint.cat([negative_prompt_attention_mask, prompt_attention_mask])

    # 7. Denoising loop
    num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
    self._num_timesteps = len(timesteps)
    with self.progress_bar(total=num_inference_steps) as progress_bar:
        for i, t in enumerate(timesteps):
            if self.interrupt:
                continue

            # expand the latents if we are doing classifier free guidance
            latent_model_input = mint.cat([latents] * 2) if self.do_classifier_free_guidance else latents
            if hasattr(self.scheduler, "scale_model_input"):
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

            # expand scalar t to 1-D tensor to match the 1st dim of latent_model_input
            t_expand = ms.tensor([t] * latent_model_input.shape[0]).to(dtype=latent_model_input.dtype)

            # predict the noise residual
            noise_pred = self.transformer(
                latent_model_input,
                t_expand,
                encoder_hidden_states=prompt_embeds,
                return_dict=False,
            )[0]

            if noise_pred.shape[1] != self.vae.config.latent_channels:
                noise_pred, _ = noise_pred.chunk(2, dim=1)

            # perform guidance
            if self.do_classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

            if self.do_classifier_free_guidance and guidance_rescale > 0.0:
                # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
                noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)

            # compute the previous noisy sample x_t -> x_t-1
            latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

            if callback_on_step_end is not None:
                callback_kwargs = {}
                for k in callback_on_step_end_tensor_inputs:
                    callback_kwargs[k] = locals()[k]
                callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                latents = callback_outputs.pop("latents", latents)
                prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                progress_bar.update()

    if not output_type == "latent":
        latents = 1 / self.vae.config.scaling_factor * latents
        # vae decode only support pynative
        with pynative_context():
            video = self.vae.decode(latents, return_dict=False)[0]
        video = self.video_processor.postprocess_video(video=video, output_type=output_type)
    else:
        video = latents

    if not return_dict:
        return (video,)

    return EasyAnimatePipelineOutput(frames=video)

mindone.diffusers.EasyAnimatePipeline.encode_prompt(prompt, num_images_per_prompt=1, do_classifier_free_guidance=True, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, prompt_attention_mask=None, negative_prompt_attention_mask=None, dtype=None, max_sequence_length=256)

Encodes the prompt into text encoder hidden states.

PARAMETER DESCRIPTION
prompt

prompt to be encoded

TYPE: `str` or `List[str]`, *optional*

dtype

mindspore dtype

TYPE: `ms.Type` DEFAULT: None

num_images_per_prompt

number of images that should be generated per prompt

TYPE: `int` DEFAULT: 1

do_classifier_free_guidance

whether to use classifier free guidance or not

TYPE: `bool` DEFAULT: True

negative_prompt

The prompt or prompts not to guide the image generation. If not defined, one has to pass negative_prompt_embeds instead. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1).

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

prompt_embeds

Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_prompt_embeds

Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

prompt_attention_mask

Attention mask for the prompt. Required when prompt_embeds is passed directly.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_prompt_attention_mask

Attention mask for the negative prompt. Required when negative_prompt_embeds is passed directly.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

max_sequence_length

maximum sequence length to use for the prompt.

TYPE: `int`, *optional* DEFAULT: 256

Source code in mindone/diffusers/pipelines/easyanimate/pipeline_easyanimate.py
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
def encode_prompt(
    self,
    prompt: Union[str, List[str]],
    num_images_per_prompt: int = 1,
    do_classifier_free_guidance: bool = True,
    negative_prompt: Optional[Union[str, List[str]]] = None,
    prompt_embeds: Optional[ms.Tensor] = None,
    negative_prompt_embeds: Optional[ms.Tensor] = None,
    prompt_attention_mask: Optional[ms.Tensor] = None,
    negative_prompt_attention_mask: Optional[ms.Tensor] = None,
    dtype: Optional[ms.Type] = None,
    max_sequence_length: int = 256,
):
    r"""
    Encodes the prompt into text encoder hidden states.

    Args:
        prompt (`str` or `List[str]`, *optional*):
            prompt to be encoded
        dtype (`ms.Type`):
            mindspore dtype
        num_images_per_prompt (`int`):
            number of images that should be generated per prompt
        do_classifier_free_guidance (`bool`):
            whether to use classifier free guidance or not
        negative_prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts not to guide the image generation. If not defined, one has to pass
            `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
            less than `1`).
        prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
            provided, text embeddings will be generated from `prompt` input argument.
        negative_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
            weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
            argument.
        prompt_attention_mask (`ms.Tensor`, *optional*):
            Attention mask for the prompt. Required when `prompt_embeds` is passed directly.
        negative_prompt_attention_mask (`ms.Tensor`, *optional*):
            Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly.
        max_sequence_length (`int`, *optional*): maximum sequence length to use for the prompt.
    """
    dtype = dtype or self.text_encoder.dtype

    if prompt is not None and isinstance(prompt, str):
        batch_size = 1
    elif prompt is not None and isinstance(prompt, list):
        batch_size = len(prompt)
    else:
        batch_size = prompt_embeds.shape[0]

    if prompt_embeds is None:
        if isinstance(prompt, str):
            messages = [
                {
                    "role": "user",
                    "content": [{"type": "text", "text": prompt}],
                }
            ]
        else:
            messages = [
                {
                    "role": "user",
                    "content": [{"type": "text", "text": _prompt}],
                }
                for _prompt in prompt
            ]
        text = [
            self.tokenizer.apply_chat_template([m], tokenize=False, add_generation_prompt=True) for m in messages
        ]

        text_inputs = self.tokenizer(
            text=text,
            padding="max_length",
            max_length=max_sequence_length,
            truncation=True,
            return_attention_mask=True,
            padding_side="right",
            return_tensors="np",
        )

        text_input_ids = ms.tensor(text_inputs.input_ids)
        prompt_attention_mask = ms.tensor(text_inputs.attention_mask)
        if self.enable_text_attention_mask:
            # Inference: Generation of the output
            # text_encoder only support pynative
            with pynative_context():
                prompt_embeds = self.text_encoder(
                    input_ids=text_input_ids, attention_mask=prompt_attention_mask, output_hidden_states=True
                )[2][-2]
        else:
            raise ValueError("LLM needs attention_mask")
        prompt_attention_mask = prompt_attention_mask.tile((num_images_per_prompt, 1))

    prompt_embeds = prompt_embeds.to(dtype=dtype)

    bs_embed, seq_len, _ = prompt_embeds.shape
    # duplicate text embeddings for each generation per prompt, using mps friendly method
    prompt_embeds = prompt_embeds.tile((1, num_images_per_prompt, 1))
    prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

    # get unconditional embeddings for classifier free guidance
    if do_classifier_free_guidance and negative_prompt_embeds is None:
        if negative_prompt is not None and isinstance(negative_prompt, str):
            messages = [
                {
                    "role": "user",
                    "content": [{"type": "text", "text": negative_prompt}],
                }
            ]
        else:
            messages = [
                {
                    "role": "user",
                    "content": [{"type": "text", "text": _negative_prompt}],
                }
                for _negative_prompt in negative_prompt
            ]
        text = [
            self.tokenizer.apply_chat_template([m], tokenize=False, add_generation_prompt=True) for m in messages
        ]

        text_inputs = self.tokenizer(
            text=text,
            padding="max_length",
            max_length=max_sequence_length,
            truncation=True,
            return_attention_mask=True,
            padding_side="right",
            return_tensors="np",
        )

        text_input_ids = ms.tensor(text_inputs.input_ids)
        negative_prompt_attention_mask = ms.tensor(text_inputs.attention_mask)
        if self.enable_text_attention_mask:
            # Inference: Generation of the output
            # text_encoder only support pynative
            with pynative_context():
                negative_prompt_embeds = self.text_encoder(
                    input_ids=text_input_ids,
                    attention_mask=negative_prompt_attention_mask,
                    output_hidden_states=True,
                )[2][-2]
        else:
            raise ValueError("LLM needs attention_mask")
        negative_prompt_attention_mask = negative_prompt_attention_mask.tile((num_images_per_prompt, 1))

    if do_classifier_free_guidance:
        # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
        seq_len = negative_prompt_embeds.shape[1]

        negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype)

        negative_prompt_embeds = negative_prompt_embeds.tile((1, num_images_per_prompt, 1))
        negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

    return prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask

mindone.diffusers.pipelines.easyanimate.pipeline_output.EasyAnimatePipelineOutput dataclass

Bases: BaseOutput

Output class for EasyAnimate pipelines.

PARAMETER DESCRIPTION
frames

List of video outputs - It can be a nested list of length batch_size, with each sub-list containing denoised PIL image sequences of length num_frames. It can also be a NumPy array or Torch tensor of shape (batch_size, num_frames, channels, height, width).

TYPE: `ms.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]

Source code in mindone/diffusers/pipelines/easyanimate/pipeline_output.py
 8
 9
10
11
12
13
14
15
16
17
18
19
20
@dataclass
class EasyAnimatePipelineOutput(BaseOutput):
    r"""
    Output class for EasyAnimate pipelines.

    Args:
        frames (`ms.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]):
            List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing
            denoised PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape
            `(batch_size, num_frames, channels, height, width)`.
    """

    frames: ms.Tensor