Skip to content

DiffEdit

DiffEdit: Diffusion-based semantic image editing with mask guidance is by Guillaume Couairon, Jakob Verbeek, Holger Schwenk, and Matthieu Cord.

The abstract from the paper is:

Image generation has recently seen tremendous advances, with diffusion models allowing to synthesize convincing images for a large variety of text prompts. In this article, we propose DiffEdit, a method to take advantage of text-conditioned diffusion models for the task of semantic image editing, where the goal is to edit an image based on a text query. Semantic image editing is an extension of image generation, with the additional constraint that the generated image should be as similar as possible to a given input image. Current editing methods based on diffusion models usually require to provide a mask, making the task much easier by treating it as a conditional inpainting task. In contrast, our main contribution is able to automatically generate a mask highlighting regions of the input image that need to be edited, by contrasting predictions of a diffusion model conditioned on different text prompts. Moreover, we rely on latent inference to preserve content in those regions of interest and show excellent synergies with mask-based diffusion. DiffEdit achieves state-of-the-art editing performance on ImageNet. In addition, we evaluate semantic image editing in more challenging settings, using images from the COCO dataset as well as text-based generated images.

The original codebase can be found at Xiang-cd/DiffEdit-stable-diffusion, and you can try it out in this demo.

This pipeline was contributed by clarencechen. ❤️

Tips

  • The pipeline can generate masks that can be fed into other inpainting pipelines.
  • In order to generate an image using this pipeline, both an image mask (source and target prompts can be manually specified or generated, and passed to StableDiffusionDiffEditPipeline.generate_mask) and a set of partially inverted latents (generated using StableDiffusionDiffEditPipeline.invert) must be provided as arguments when calling the pipeline to generate the final edited image.
  • The function StableDiffusionDiffEditPipeline.generate_mask exposes two prompt arguments, source_prompt and target_prompt that let you control the locations of the semantic edits in the final image to be generated. Let's say, you wanted to translate from "cat" to "dog". In this case, the edit direction will be "cat -> dog". To reflect this in the generated mask, you simply have to set the embeddings related to the phrases including "cat" to source_prompt and "dog" to target_prompt.
  • When generating partially inverted latents using invert, assign a caption or text embedding describing the overall image to the prompt argument to help guide the inverse latent sampling process. In most cases, the source concept is sufficiently descriptive to yield good results, but feel free to explore alternatives.
  • When calling the pipeline to generate the final edited image, assign the source concept to negative_prompt and the target concept to prompt. Taking the above example, you simply have to set the embeddings related to the phrases including "cat" to negative_prompt and "dog" to prompt.
  • If you wanted to reverse the direction in the example above, i.e., "dog -> cat", then it's recommended to:
    • Swap the source_prompt and target_prompt in the arguments to generate_mask.
    • Change the input prompt in StableDiffusionDiffEditPipeline.invert to include "dog".
    • Swap the prompt and negative_prompt in the arguments to call the pipeline to generate the final edited image.
  • The source and target prompts, or their corresponding embeddings, can also be automatically generated. Please refer to the DiffEdit guide for more details.

mindone.diffusers.StableDiffusionDiffEditPipeline

Bases: DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, LoraLoaderMixin

This is an experimental feature!

Pipeline for text-guided image inpainting using Stable Diffusion and DiffEdit.

This model inherits from [DiffusionPipeline]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).

The pipeline also inherits the following loading and saving methods
  • [~loaders.TextualInversionLoaderMixin.load_textual_inversion] for loading textual inversion embeddings
  • [~loaders.LoraLoaderMixin.load_lora_weights] for loading LoRA weights
  • [~loaders.LoraLoaderMixin.save_lora_weights] for saving LoRA weights
PARAMETER DESCRIPTION
vae

Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.

TYPE: [`AutoencoderKL`]

text_encoder

Frozen text-encoder (clip-vit-large-patch14).

TYPE: [`~transformers.CLIPTextModel`]

tokenizer

A CLIPTokenizer to tokenize text.

TYPE: [`~transformers.CLIPTokenizer`]

unet

A UNet2DConditionModel to denoise the encoded image latents.

TYPE: [`UNet2DConditionModel`]

scheduler

A scheduler to be used in combination with unet to denoise the encoded image latents.

TYPE: [`SchedulerMixin`]

inverse_scheduler

A scheduler to be used in combination with unet to fill in the unmasked part of the input latents.

TYPE: [`DDIMInverseScheduler`]

safety_checker

Classification module that estimates whether generated images could be considered offensive or harmful. Please refer to the model card for more details about a model's potential harms.

TYPE: [`StableDiffusionSafetyChecker`]

feature_extractor

A CLIPImageProcessor to extract features from generated images; used as inputs to the safety_checker.

TYPE: [`~transformers.CLIPImageProcessor`]

Source code in mindone/diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
class StableDiffusionDiffEditPipeline(
    DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, LoraLoaderMixin
):
    r"""
    <Tip warning={true}>

    This is an experimental feature!

    </Tip>

    Pipeline for text-guided image inpainting using Stable Diffusion and DiffEdit.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).

    The pipeline also inherits the following loading and saving methods:
        - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
        - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
        - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
        text_encoder ([`~transformers.CLIPTextModel`]):
            Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
        tokenizer ([`~transformers.CLIPTokenizer`]):
            A `CLIPTokenizer` to tokenize text.
        unet ([`UNet2DConditionModel`]):
            A `UNet2DConditionModel` to denoise the encoded image latents.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents.
        inverse_scheduler ([`DDIMInverseScheduler`]):
            A scheduler to be used in combination with `unet` to fill in the unmasked part of the input latents.
        safety_checker ([`StableDiffusionSafetyChecker`]):
            Classification module that estimates whether generated images could be considered offensive or harmful.
            Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
            about a model's potential harms.
        feature_extractor ([`~transformers.CLIPImageProcessor`]):
            A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
    """

    model_cpu_offload_seq = "text_encoder->unet->vae"
    _optional_components = ["safety_checker", "feature_extractor", "inverse_scheduler"]
    _exclude_from_cpu_offload = ["safety_checker"]

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
        scheduler: KarrasDiffusionSchedulers,
        safety_checker: StableDiffusionSafetyChecker,
        feature_extractor: CLIPImageProcessor,
        inverse_scheduler: DDIMInverseScheduler,
        requires_safety_checker: bool = True,
    ):
        super().__init__()

        if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
            deprecation_message = (
                f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
                f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
                "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
                " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
                " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
                " file"
            )
            deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(scheduler.config)
            new_config["steps_offset"] = 1
            scheduler._internal_dict = FrozenDict(new_config)

        if hasattr(scheduler.config, "skip_prk_steps") and scheduler.config.skip_prk_steps is False:
            deprecation_message = (
                f"The configuration file of this scheduler: {scheduler} has not set the configuration"
                " `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make"
                " sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to"
                " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face"
                " Hub, it would be very nice if you could open a Pull request for the"
                " `scheduler/scheduler_config.json` file"
            )
            deprecate("skip_prk_steps not set", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(scheduler.config)
            new_config["skip_prk_steps"] = True
            scheduler._internal_dict = FrozenDict(new_config)

        if safety_checker is None and requires_safety_checker:
            logger.warning(
                f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
                " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
                " results in services or applications open to the public. Both the diffusers team and Hugging Face"
                " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
                " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
                " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
            )

        if safety_checker is not None and feature_extractor is None:
            raise ValueError(
                "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
                " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
            )

        is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
            version.parse(unet.config._diffusers_version).base_version
        ) < version.parse("0.9.0.dev0")
        is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
        if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
            deprecation_message = (
                "The configuration file of the unet has set the default `sample_size` to smaller than"
                " 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the"
                " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
                " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
                " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
                " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
                " in the config might lead to incorrect results in future versions. If you have downloaded this"
                " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
                " the `unet/config.json` file"
            )
            deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(unet.config)
            new_config["sample_size"] = 64
            unet._internal_dict = FrozenDict(new_config)

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
            inverse_scheduler=inverse_scheduler,
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
        self.register_to_config(requires_safety_checker=requires_safety_checker)

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
    def _encode_prompt(
        self,
        prompt,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[ms.Tensor] = None,
        negative_prompt_embeds: Optional[ms.Tensor] = None,
        lora_scale: Optional[float] = None,
        **kwargs,
    ):
        deprecation_message = (
            "`_encode_prompt()` is deprecated and it will be removed in a future version. Use"
            "`encode_prompt()` instead. Also, be aware that the output format changed from a"
            "concatenated tensor to a tuple."
        )
        deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)

        prompt_embeds_tuple = self.encode_prompt(
            prompt=prompt,
            num_images_per_prompt=num_images_per_prompt,
            do_classifier_free_guidance=do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=lora_scale,
            **kwargs,
        )

        # concatenate for backwards comp
        prompt_embeds = ops.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])

        return prompt_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
    def encode_prompt(
        self,
        prompt,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[ms.Tensor] = None,
        negative_prompt_embeds: Optional[ms.Tensor] = None,
        lora_scale: Optional[float] = None,
        clip_skip: Optional[int] = None,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            lora_scale (`float`, *optional*):
                A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
        """
        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
        if lora_scale is not None and isinstance(self, LoraLoaderMixin):
            self._lora_scale = lora_scale

            scale_lora_layers(self.text_encoder, lora_scale)

        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if prompt_embeds is None:
            # textual inversion: process multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                prompt = self.maybe_convert_prompt(prompt, self.tokenizer)

            text_inputs = self.tokenizer(
                prompt,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="np",
            )
            text_input_ids = text_inputs.input_ids
            untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="np").input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not np.array_equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {self.tokenizer.model_max_length} tokens: {removed_text}"
                )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = ms.tensor(text_inputs.attention_mask)
            else:
                attention_mask = None

            if clip_skip is None:
                prompt_embeds = self.text_encoder(ms.tensor(text_input_ids), attention_mask=attention_mask)
                prompt_embeds = prompt_embeds[0]
            else:
                prompt_embeds = self.text_encoder(
                    ms.tensor(text_input_ids), attention_mask=attention_mask, output_hidden_states=True
                )
                # Access the `hidden_states` first, that contains a tuple of
                # all the hidden states from the encoder layers. Then index into
                # the tuple to access the hidden states from the desired layer.
                prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
                # We also need to apply the final LayerNorm here to not mess with the
                # representations. The `last_hidden_states` that we typically use for
                # obtaining the final prompt representations passes through the LayerNorm
                # layer.
                prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)

        if self.text_encoder is not None:
            prompt_embeds_dtype = self.text_encoder.dtype
        elif self.unet is not None:
            prompt_embeds_dtype = self.unet.dtype
        else:
            prompt_embeds_dtype = prompt_embeds.dtype

        prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype)

        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.tile((1, num_images_per_prompt, 1))
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif prompt is not None and type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

            # textual inversion: process multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)

            max_length = prompt_embeds.shape[1]
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="np",
            )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = ms.Tensor(uncond_input.attention_mask)
            else:
                attention_mask = None

            negative_prompt_embeds = self.text_encoder(
                ms.Tensor(uncond_input.input_ids),
                attention_mask=attention_mask,
            )
            negative_prompt_embeds = negative_prompt_embeds[0]

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

            negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype)

            negative_prompt_embeds = negative_prompt_embeds.tile((1, num_images_per_prompt, 1))
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

        if self.text_encoder is not None:
            if isinstance(self, LoraLoaderMixin):
                # Retrieve the original scale by scaling back the LoRA layers
                unscale_lora_layers(self.text_encoder, lora_scale)

        return prompt_embeds, negative_prompt_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
    def run_safety_checker(self, image, dtype):
        if self.safety_checker is None:
            has_nsfw_concept = None
        else:
            if ops.is_tensor(image):
                feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
            else:
                feature_extractor_input = self.image_processor.numpy_to_pil(image)
            safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt")
            image, has_nsfw_concept = self.safety_checker(
                images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
            )
        return image, has_nsfw_concept

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
    def decode_latents(self, latents):
        deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
        deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)

        latents = 1 / self.vae.config.scaling_factor * latents
        image = self.vae.decode(latents, return_dict=False)[0]
        image = (image / 2 + 0.5).clamp(0, 1)
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
        image = image.permute(0, 2, 3, 1).float().numpy()
        return image

    def check_inputs(
        self,
        prompt,
        strength,
        callback_steps,
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
    ):
        if (strength is None) or (strength is not None and (strength < 0 or strength > 1)):
            raise ValueError(
                f"The value of `strength` should in [0.0, 1.0] but is, but is {strength} of type {type(strength)}."
            )

        if (callback_steps is None) or (
            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

    def check_source_inputs(
        self,
        source_prompt=None,
        source_negative_prompt=None,
        source_prompt_embeds=None,
        source_negative_prompt_embeds=None,
    ):
        if source_prompt is not None and source_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `source_prompt`: {source_prompt} and `source_prompt_embeds`: {source_prompt_embeds}."
                "  Please make sure to only forward one of the two."
            )
        elif source_prompt is None and source_prompt_embeds is None:
            raise ValueError(
                "Provide either `source_image` or `source_prompt_embeds`. Cannot leave all both of the arguments undefined."
            )
        elif source_prompt is not None and (not isinstance(source_prompt, str) and not isinstance(source_prompt, list)):
            raise ValueError(f"`source_prompt` has to be of type `str` or `list` but is {type(source_prompt)}")

        if source_negative_prompt is not None and source_negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `source_negative_prompt`: {source_negative_prompt} and `source_negative_prompt_embeds`:"
                f" {source_negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if source_prompt_embeds is not None and source_negative_prompt_embeds is not None:
            if source_prompt_embeds.shape != source_negative_prompt_embeds.shape:
                raise ValueError(
                    "`source_prompt_embeds` and `source_negative_prompt_embeds` must have the same shape when passed"
                    f" directly, but got: `source_prompt_embeds` {source_prompt_embeds.shape} !="
                    f" `source_negative_prompt_embeds` {source_negative_prompt_embeds.shape}."
                )

    def get_timesteps(self, num_inference_steps, strength):
        # get the original timestep using init_timestep
        init_timestep = min(int(num_inference_steps * strength), num_inference_steps)

        t_start = max(num_inference_steps - init_timestep, 0)
        timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]

        return timesteps, num_inference_steps - t_start

    def get_inverse_timesteps(self, num_inference_steps, strength):
        # get the original timestep using init_timestep
        init_timestep = min(int(num_inference_steps * strength), num_inference_steps)

        t_start = max(num_inference_steps - init_timestep, 0)

        # safety for t_start overflow to prevent empty timsteps slice
        if t_start == 0:
            return self.inverse_scheduler.timesteps, num_inference_steps
        timesteps = self.inverse_scheduler.timesteps[:-t_start]

        return timesteps, num_inference_steps - t_start

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
    def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, generator, latents=None):
        shape = (
            batch_size,
            num_channels_latents,
            int(height) // self.vae_scale_factor,
            int(width) // self.vae_scale_factor,
        )
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(shape, generator=generator, dtype=dtype)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = (latents * self.scheduler.init_noise_sigma).to(dtype)
        return latents

    def prepare_image_latents(self, image, batch_size, dtype, generator=None):
        if not isinstance(image, (ms.Tensor, PIL.Image.Image, list)):
            raise ValueError(f"`image` has to be of type `ms.Tensor`, `PIL.Image.Image` or list but is {type(image)}")

        image = image.to(dtype=dtype)

        if image.shape[1] == 4:
            latents = image

        else:
            if isinstance(generator, list) and len(generator) != batch_size:
                raise ValueError(
                    f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                    f" size of {batch_size}. Make sure the batch size matches the length of the generators."
                )

            if isinstance(generator, list):
                latents = [
                    self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i], generator=generator)
                    for i in range(batch_size)
                ]
                latents = ops.cat(latents, axis=0)
            else:
                latents = self.vae.diag_gauss_dist.sample(self.vae.encode(image)[0], generator=generator)

            latents = self.vae.config.scaling_factor * latents

        if batch_size != latents.shape[0]:
            if batch_size % latents.shape[0] == 0:
                # expand image_latents for batch_size
                deprecation_message = (
                    f"You have passed {batch_size} text prompts (`prompt`), but only {latents.shape[0]} initial"
                    " images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
                    " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
                    " your script to pass as many initial images as text prompts to suppress this warning."
                )
                deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
                additional_latents_per_image = batch_size // latents.shape[0]
                latents = ops.cat([latents] * additional_latents_per_image, axis=0)
            else:
                raise ValueError(
                    f"Cannot duplicate `image` of batch size {latents.shape[0]} to {batch_size} text prompts."
                )
        else:
            latents = ops.cat([latents], axis=0)

        return latents

    def get_epsilon(self, model_output: ms.Tensor, sample: ms.Tensor, timestep: int):
        pred_type = self.inverse_scheduler.config.prediction_type
        alpha_prod_t = self.inverse_scheduler.alphas_cumprod[timestep]

        beta_prod_t = 1 - alpha_prod_t

        if pred_type == "epsilon":
            return model_output
        elif pred_type == "sample":
            return (sample - alpha_prod_t ** (0.5) * model_output) / beta_prod_t ** (0.5)
        elif pred_type == "v_prediction":
            return (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
        else:
            raise ValueError(
                f"prediction_type given as {pred_type} must be one of `epsilon`, `sample`, or `v_prediction`"
            )

    def generate_mask(
        self,
        image: Union[ms.Tensor, PIL.Image.Image] = None,
        target_prompt: Optional[Union[str, List[str]]] = None,
        target_negative_prompt: Optional[Union[str, List[str]]] = None,
        target_prompt_embeds: Optional[ms.Tensor] = None,
        target_negative_prompt_embeds: Optional[ms.Tensor] = None,
        source_prompt: Optional[Union[str, List[str]]] = None,
        source_negative_prompt: Optional[Union[str, List[str]]] = None,
        source_prompt_embeds: Optional[ms.Tensor] = None,
        source_negative_prompt_embeds: Optional[ms.Tensor] = None,
        num_maps_per_mask: Optional[int] = 10,
        mask_encode_strength: Optional[float] = 0.5,
        mask_thresholding_ratio: Optional[float] = 3.0,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
        output_type: Optional[str] = "np",
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
    ):
        r"""
        Generate a latent mask given a mask prompt, a target prompt, and an image.

        Args:
            image (`PIL.Image.Image`):
                `Image` or tensor representing an image batch to be used for computing the mask.
            target_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide semantic mask generation. If not defined, you need to pass
                `prompt_embeds`.
            target_negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
            target_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument.
            target_negative_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
            source_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide semantic mask generation using DiffEdit. If not defined, you need to
                pass `source_prompt_embeds` or `source_image` instead.
            source_negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide semantic mask generation away from using DiffEdit. If not defined, you
                need to pass `source_negative_prompt_embeds` or `source_image` instead.
            source_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated text embeddings to guide the semantic mask generation. Can be used to easily tweak text
                inputs (prompt weighting). If not provided, text embeddings are generated from `source_prompt` input
                argument.
            source_negative_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated text embeddings to negatively guide the semantic mask generation. Can be used to easily
                tweak text inputs (prompt weighting). If not provided, text embeddings are generated from
                `source_negative_prompt` input argument.
            num_maps_per_mask (`int`, *optional*, defaults to 10):
                The number of noise maps sampled to generate the semantic mask using DiffEdit.
            mask_encode_strength (`float`, *optional*, defaults to 0.5):
                The strength of the noise maps sampled to generate the semantic mask using DiffEdit. Must be between 0
                and 1.
            mask_thresholding_ratio (`float`, *optional*, defaults to 3.0):
                The maximum multiple of the mean absolute difference used to clamp the semantic guidance map before
                mask binarization.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
            generator (`np.random.Generator` or `List[np.random.Generator]`, *optional*):
                A [`np.random.Generator`](https://numpy.org/doc/stable/reference/random/generator.html) to make
                generation deterministic.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the
                [`~models.attention_processor.AttnProcessor`] as defined in
                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).

        Examples:

        Returns:
            `List[PIL.Image.Image]` or `np.array`:
                When returning a `List[PIL.Image.Image]`, the list consists of a batch of single-channel binary images
                with dimensions `(height // self.vae_scale_factor, width // self.vae_scale_factor)`. If it's
                `np.array`, the shape is `(batch_size, height // self.vae_scale_factor, width //
                self.vae_scale_factor)`.
        """

        # 1. Check inputs (Provide dummy argument for callback_steps)
        self.check_inputs(
            target_prompt,
            mask_encode_strength,
            1,
            target_negative_prompt,
            target_prompt_embeds,
            target_negative_prompt_embeds,
        )

        self.check_source_inputs(
            source_prompt,
            source_negative_prompt,
            source_prompt_embeds,
            source_negative_prompt_embeds,
        )

        if (num_maps_per_mask is None) or (
            num_maps_per_mask is not None and (not isinstance(num_maps_per_mask, int) or num_maps_per_mask <= 0)
        ):
            raise ValueError(
                f"`num_maps_per_mask` has to be a positive integer but is {num_maps_per_mask} of type"
                f" {type(num_maps_per_mask)}."
            )

        if mask_thresholding_ratio is None or mask_thresholding_ratio <= 0:
            raise ValueError(
                f"`mask_thresholding_ratio` has to be positive but is {mask_thresholding_ratio} of type"
                f" {type(mask_thresholding_ratio)}."
            )

        # 2. Define call parameters
        if target_prompt is not None and isinstance(target_prompt, str):
            batch_size = 1
        elif target_prompt is not None and isinstance(target_prompt, list):
            batch_size = len(target_prompt)
        else:
            batch_size = target_prompt_embeds.shape[0]
        if cross_attention_kwargs is None:
            cross_attention_kwargs = {}

        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        # 3. Encode input prompts
        (cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None)
        target_negative_prompt_embeds, target_prompt_embeds = self.encode_prompt(
            target_prompt,
            num_maps_per_mask,
            do_classifier_free_guidance,
            target_negative_prompt,
            prompt_embeds=target_prompt_embeds,
            negative_prompt_embeds=target_negative_prompt_embeds,
        )
        # For classifier free guidance, we need to do two forward passes.
        # Here we concatenate the unconditional and text embeddings into a single batch
        # to avoid doing two forward passes
        if do_classifier_free_guidance:
            target_prompt_embeds = ops.cat([target_negative_prompt_embeds, target_prompt_embeds])

        source_negative_prompt_embeds, source_prompt_embeds = self.encode_prompt(
            source_prompt,
            num_maps_per_mask,
            do_classifier_free_guidance,
            source_negative_prompt,
            prompt_embeds=source_prompt_embeds,
            negative_prompt_embeds=source_negative_prompt_embeds,
        )
        if do_classifier_free_guidance:
            source_prompt_embeds = ops.cat([source_negative_prompt_embeds, source_prompt_embeds])

        # 4. Preprocess image
        image = self.image_processor.preprocess(image).repeat_interleave(num_maps_per_mask, dim=0)

        # 5. Set timesteps
        self.scheduler.set_timesteps(num_inference_steps)
        timesteps, _ = self.get_timesteps(num_inference_steps, mask_encode_strength)
        encode_timestep = timesteps[0]

        # 6. Prepare image latents and add noise with specified strength
        image_latents = self.prepare_image_latents(image, batch_size * num_maps_per_mask, self.vae.dtype, generator)
        noise = randn_tensor(image_latents.shape, generator=generator, dtype=self.vae.dtype)
        image_latents = self.scheduler.add_noise(image_latents, noise, encode_timestep)

        latent_model_input = ops.cat([image_latents] * (4 if do_classifier_free_guidance else 2))
        latent_model_input = self.scheduler.scale_model_input(latent_model_input, encode_timestep)

        # 7. Predict the noise residual
        prompt_embeds = ops.cat([source_prompt_embeds, target_prompt_embeds])
        noise_pred = self.unet(
            latent_model_input,
            encode_timestep,
            encoder_hidden_states=prompt_embeds,
            cross_attention_kwargs=cross_attention_kwargs,
        )[0]

        if do_classifier_free_guidance:
            noise_pred_neg_src, noise_pred_source, noise_pred_uncond, noise_pred_target = noise_pred.chunk(4)
            noise_pred_source = noise_pred_neg_src + guidance_scale * (noise_pred_source - noise_pred_neg_src)
            noise_pred_target = noise_pred_uncond + guidance_scale * (noise_pred_target - noise_pred_uncond)
        else:
            noise_pred_source, noise_pred_target = noise_pred.chunk(2)

        # 8. Compute the mask from the absolute difference of predicted noise residuals
        # TODO: Consider smoothing mask guidance map
        mask_guidance_map = (
            ops.abs(noise_pred_target - noise_pred_source)
            .reshape(batch_size, num_maps_per_mask, *noise_pred_target.shape[-3:])
            .mean([1, 2])
        )
        clamp_magnitude = mask_guidance_map.mean() * mask_thresholding_ratio
        semantic_mask_image = mask_guidance_map.clamp(ms.Tensor(0), clamp_magnitude) / clamp_magnitude
        semantic_mask_image = ops.where(semantic_mask_image <= 0.5, ms.Tensor(0), ms.Tensor(1))
        mask_image = semantic_mask_image.asnumpy()

        # 9. Convert to Numpy array or PIL.
        if output_type == "pil":
            mask_image = self.image_processor.numpy_to_pil(mask_image)

        return mask_image

    def invert(
        self,
        prompt: Optional[Union[str, List[str]]] = None,
        image: Union[ms.Tensor, PIL.Image.Image] = None,
        num_inference_steps: int = 50,
        inpaint_strength: float = 0.8,
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
        prompt_embeds: Optional[ms.Tensor] = None,
        negative_prompt_embeds: Optional[ms.Tensor] = None,
        decode_latents: bool = False,
        output_type: Optional[str] = "pil",
        return_dict: bool = False,
        callback: Optional[Callable[[int, int, ms.Tensor], None]] = None,
        callback_steps: Optional[int] = 1,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        lambda_auto_corr: float = 20.0,
        lambda_kl: float = 20.0,
        num_reg_steps: int = 0,
        num_auto_corr_rolls: int = 5,
    ):
        r"""
        Generate inverted latents given a prompt and image.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
            image (`PIL.Image.Image`):
                `Image` or tensor representing an image batch to produce the inverted latents guided by `prompt`.
            inpaint_strength (`float`, *optional*, defaults to 0.8):
                Indicates extent of the noising process to run latent inversion. Must be between 0 and 1. When
                `inpaint_strength` is 1, the inversion process is run for the full number of iterations specified in
                `num_inference_steps`. `image` is used as a reference for the inversion process, and adding more noise
                increases `inpaint_strength`. If `inpaint_strength` is 0, no inpainting occurs.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
            generator (`np.random.Generator`, *optional*):
                A [`np.random.Generator`](https://numpy.org/doc/stable/reference/random/generator.html) to make
                generation deterministic.
            prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument.
            negative_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
            decode_latents (`bool`, *optional*, defaults to `False`):
                Whether or not to decode the inverted latents into a generated image. Setting this argument to `True`
                decodes all inverted latents for each timestep into a list of generated images.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.DiffEditInversionPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
                A function that calls every `callback_steps` steps during inference. The function is called with the
                following arguments: `callback(step: int, timestep: int, latents: ms.Tensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function is called. If not specified, the callback is called at
                every step.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the
                [`~models.attention_processor.AttnProcessor`] as defined in
                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            lambda_auto_corr (`float`, *optional*, defaults to 20.0):
                Lambda parameter to control auto correction.
            lambda_kl (`float`, *optional*, defaults to 20.0):
                Lambda parameter to control Kullback-Leibler divergence output.
            num_reg_steps (`int`, *optional*, defaults to 0):
                Number of regularization loss steps.
            num_auto_corr_rolls (`int`, *optional*, defaults to 5):
                Number of auto correction roll steps.

        Examples:

        Returns:
            [`~pipelines.stable_diffusion.pipeline_stable_diffusion_diffedit.DiffEditInversionPipelineOutput`] or
            `tuple`:
                If `return_dict` is `True`,
                [`~pipelines.stable_diffusion.pipeline_stable_diffusion_diffedit.DiffEditInversionPipelineOutput`] is
                returned, otherwise a `tuple` is returned where the first element is the inverted latents tensors
                ordered by increasing noise, and the second is the corresponding decoded images if `decode_latents` is
                `True`, otherwise `None`.
        """

        # 1. Check inputs
        self.check_inputs(
            prompt,
            inpaint_strength,
            callback_steps,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
        )

        if image is None:
            raise ValueError("`image` input cannot be undefined.")

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]
        if cross_attention_kwargs is None:
            cross_attention_kwargs = {}

        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        # 3. Preprocess image
        image = self.image_processor.preprocess(image)

        # 4. Prepare latent variables
        num_images_per_prompt = 1
        latents = self.prepare_image_latents(image, batch_size * num_images_per_prompt, self.vae.dtype, generator)

        # 5. Encode input prompt
        prompt_embeds, negative_prompt_embeds = self.encode_prompt(
            prompt,
            num_images_per_prompt,
            do_classifier_free_guidance,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
        )
        # For classifier free guidance, we need to do two forward passes.
        # Here we concatenate the unconditional and text embeddings into a single batch
        # to avoid doing two forward passes
        if do_classifier_free_guidance:
            prompt_embeds = ops.cat([negative_prompt_embeds, prompt_embeds])

        # 6. Prepare timesteps
        self.inverse_scheduler.set_timesteps(num_inference_steps)
        timesteps, num_inference_steps = self.get_inverse_timesteps(num_inference_steps, inpaint_strength)

        # 7. Noising loop where we obtain the intermediate noised latent image for each timestep.
        num_warmup_steps = len(timesteps) - num_inference_steps * self.inverse_scheduler.order
        inverted_latents = []
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = ops.cat([latents] * 2) if do_classifier_free_guidance else latents
                latent_model_input = self.inverse_scheduler.scale_model_input(latent_model_input, t)

                # predict the noise residual
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    cross_attention_kwargs=cross_attention_kwargs,
                )[0]

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                # regularization of the noise prediction (not in original code or paper but borrowed from Pix2PixZero)
                if num_reg_steps > 0:
                    raise NotImplementedError("Regularization of the noise prediction is not yet supported.")

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.inverse_scheduler.step(noise_pred, t, latents)[0]
                inverted_latents.append(latents)

                # call the callback, if provided
                if i == len(timesteps) - 1 or (
                    (i + 1) > num_warmup_steps and (i + 1) % self.inverse_scheduler.order == 0
                ):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)

        assert len(inverted_latents) == len(timesteps)
        latents = ops.stack(list(reversed(inverted_latents)), 1)

        # 8. Post-processing
        image = None
        if decode_latents:
            image = self.decode_latents(latents.flatten(start_dim=0, end_dim=1))

        # 9. Convert to PIL.
        if decode_latents and output_type == "pil":
            image = self.image_processor.numpy_to_pil(image)

        if not return_dict:
            return (latents, image)

        return DiffEditInversionPipelineOutput(latents=latents, images=image)

    def __call__(
        self,
        prompt: Optional[Union[str, List[str]]] = None,
        mask_image: Union[ms.Tensor, PIL.Image.Image] = None,
        image_latents: Union[ms.Tensor, PIL.Image.Image] = None,
        inpaint_strength: Optional[float] = 0.8,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
        latents: Optional[ms.Tensor] = None,
        prompt_embeds: Optional[ms.Tensor] = None,
        negative_prompt_embeds: Optional[ms.Tensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = False,
        callback: Optional[Callable[[int, int, ms.Tensor], None]] = None,
        callback_steps: int = 1,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        clip_skip: int = None,
    ):
        r"""
        The call function to the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
            mask_image (`PIL.Image.Image`):
                `Image` or tensor representing an image batch to mask the generated image. White pixels in the mask are
                repainted, while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a
                single channel (luminance) before use. If it's a tensor, it should contain one color channel (L)
                instead of 3, so the expected shape would be `(B, 1, H, W)`.
            image_latents (`PIL.Image.Image` or `ms.Tensor`):
                Partially noised image latents from the inversion process to be used as inputs for image generation.
            inpaint_strength (`float`, *optional*, defaults to 0.8):
                Indicates extent to inpaint the masked area. Must be between 0 and 1. When `inpaint_strength` is 1, the
                denoising process is run on the masked area for the full number of iterations specified in
                `num_inference_steps`. `image_latents` is used as a reference for the masked area, and adding more
                noise to a region increases `inpaint_strength`. If `inpaint_strength` is 0, no inpainting occurs.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
            generator (`np.random.Generator`, *optional*):
                A [`np.random.Generator`](https://numpy.org/doc/stable/reference/random/generator.html) to make
                generation deterministic.
            latents (`ms.Tensor`, *optional*):
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor is generated by sampling using the supplied random `generator`.
            prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument.
            negative_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
                A function that calls every `callback_steps` steps during inference. The function is called with the
                following arguments: `callback(step: int, timestep: int, latents: ms.Tensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function is called. If not specified, the callback is called at
                every step.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
        Examples:

        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
                otherwise a `tuple` is returned where the first element is a list with the generated images and the
                second element is a list of `bool`s indicating whether the corresponding generated image contains
                "not-safe-for-work" (nsfw) content.
        """

        # 1. Check inputs
        self.check_inputs(
            prompt,
            inpaint_strength,
            callback_steps,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
        )

        if mask_image is None:
            raise ValueError(
                "`mask_image` input cannot be undefined. Use `generate_mask()` to compute `mask_image` from text prompts."
            )
        if image_latents is None:
            raise ValueError(
                "`image_latents` input cannot be undefined. Use `invert()` to compute `image_latents` from input images."
            )

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]
        if cross_attention_kwargs is None:
            cross_attention_kwargs = {}

        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        # 3. Encode input prompt
        text_encoder_lora_scale = (
            cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
        )
        prompt_embeds, negative_prompt_embeds = self.encode_prompt(
            prompt,
            num_images_per_prompt,
            do_classifier_free_guidance,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=text_encoder_lora_scale,
            clip_skip=clip_skip,
        )
        # For classifier free guidance, we need to do two forward passes.
        # Here we concatenate the unconditional and text embeddings into a single batch
        # to avoid doing two forward passes
        if do_classifier_free_guidance:
            prompt_embeds = ops.cat([negative_prompt_embeds, prompt_embeds])

        # 4. Preprocess mask
        mask_image = preprocess_mask(mask_image, batch_size)
        latent_height, latent_width = mask_image.shape[-2:]
        mask_image = ops.cat([mask_image] * num_images_per_prompt)
        mask_image = mask_image.to(prompt_embeds.dtype)

        # 5. Set timesteps
        self.scheduler.set_timesteps(num_inference_steps)
        timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, inpaint_strength)

        # 6. Preprocess image latents
        if isinstance(image_latents, list) and any(isinstance(i, ms.Tensor) and i.ndim == 5 for i in image_latents):
            image_latents = ops.cat(image_latents)
        elif isinstance(image_latents, ms.Tensor) and image_latents.ndim == 5:
            image_latents = image_latents
        else:
            image_latents = self.image_processor.preprocess(image_latents)

        latent_shape = (self.vae.config.latent_channels, latent_height, latent_width)
        if image_latents.shape[-3:] != latent_shape:
            raise ValueError(
                f"Each latent image in `image_latents` must have shape {latent_shape}, "
                f"but has shape {image_latents.shape[-3:]}"
            )
        if image_latents.ndim == 4:
            image_latents = image_latents.reshape(batch_size, len(timesteps), *latent_shape)
        if image_latents.shape[:2] != (batch_size, len(timesteps)):
            raise ValueError(
                f"`image_latents` must have batch size {batch_size} with latent images from {len(timesteps)}"
                f" timesteps, but has batch size {image_latents.shape[0]} with latent images from"
                f" {image_latents.shape[1]} timesteps."
            )
        image_latents = image_latents.swapaxes(0, 1).repeat_interleave(num_images_per_prompt, dim=1)
        image_latents = image_latents.to(prompt_embeds.dtype)

        # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 8. Denoising loop
        latents = image_latents[0]
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = ops.cat([latents] * 2) if do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # predict the noise residual
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    cross_attention_kwargs=cross_attention_kwargs,
                )[0]

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs)[0]

                # mask with inverted latents from appropriate timestep - use original image latent for last step
                latents = latents * mask_image + image_latents[i] * (1 - mask_image)

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)

        if not output_type == "latent":
            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
            image, has_nsfw_concept = self.run_safety_checker(image, prompt_embeds.dtype)
        else:
            image = latents
            has_nsfw_concept = None

        if has_nsfw_concept is None:
            do_denormalize = [True] * image.shape[0]
        else:
            do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]

        image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)

        if not return_dict:
            return (image, has_nsfw_concept)

        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)

mindone.diffusers.StableDiffusionDiffEditPipeline.__call__(prompt=None, mask_image=None, image_latents=None, inpaint_strength=0.8, num_inference_steps=50, guidance_scale=7.5, negative_prompt=None, num_images_per_prompt=1, eta=0.0, generator=None, latents=None, prompt_embeds=None, negative_prompt_embeds=None, output_type='pil', return_dict=False, callback=None, callback_steps=1, cross_attention_kwargs=None, clip_skip=None)

The call function to the pipeline for generation.

PARAMETER DESCRIPTION
prompt

The prompt or prompts to guide image generation. If not defined, you need to pass prompt_embeds.

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

mask_image

Image or tensor representing an image batch to mask the generated image. White pixels in the mask are repainted, while black pixels are preserved. If mask_image is a PIL image, it is converted to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L) instead of 3, so the expected shape would be (B, 1, H, W).

TYPE: `PIL.Image.Image` DEFAULT: None

image_latents

Partially noised image latents from the inversion process to be used as inputs for image generation.

TYPE: `PIL.Image.Image` or `ms.Tensor` DEFAULT: None

inpaint_strength

Indicates extent to inpaint the masked area. Must be between 0 and 1. When inpaint_strength is 1, the denoising process is run on the masked area for the full number of iterations specified in num_inference_steps. image_latents is used as a reference for the masked area, and adding more noise to a region increases inpaint_strength. If inpaint_strength is 0, no inpainting occurs.

TYPE: `float`, *optional*, defaults to 0.8 DEFAULT: 0.8

num_inference_steps

The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.

TYPE: `int`, *optional*, defaults to 50 DEFAULT: 50

guidance_scale

A higher guidance scale value encourages the model to generate images closely linked to the text prompt at the expense of lower image quality. Guidance scale is enabled when guidance_scale > 1.

TYPE: `float`, *optional*, defaults to 7.5 DEFAULT: 7.5

negative_prompt

The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass negative_prompt_embeds instead. Ignored when not using guidance (guidance_scale < 1).

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

num_images_per_prompt

The number of images to generate per prompt.

TYPE: `int`, *optional*, defaults to 1 DEFAULT: 1

eta

Corresponds to parameter eta (η) from the DDIM paper. Only applies to the [~schedulers.DDIMScheduler], and is ignored in other schedulers.

TYPE: `float`, *optional*, defaults to 0.0 DEFAULT: 0.0

generator

A np.random.Generator to make generation deterministic.

TYPE: `np.random.Generator`, *optional* DEFAULT: None

latents

Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random generator.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

prompt_embeds

Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_prompt_embeds

Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, negative_prompt_embeds are generated from the negative_prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

output_type

The output format of the generated image. Choose between PIL.Image or np.array.

TYPE: `str`, *optional*, defaults to `"pil"` DEFAULT: 'pil'

return_dict

Whether or not to return a [~pipelines.stable_diffusion.StableDiffusionPipelineOutput] instead of a plain tuple.

TYPE: `bool`, *optional*, defaults to `True` DEFAULT: False

callback

A function that calls every callback_steps steps during inference. The function is called with the following arguments: callback(step: int, timestep: int, latents: ms.Tensor).

TYPE: `Callable`, *optional* DEFAULT: None

callback_steps

The frequency at which the callback function is called. If not specified, the callback is called at every step.

TYPE: `int`, *optional*, defaults to 1 DEFAULT: 1

cross_attention_kwargs

A kwargs dictionary that if specified is passed along to the [AttentionProcessor] as defined in self.processor.

TYPE: `dict`, *optional* DEFAULT: None

clip_skip

Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings.

TYPE: `int`, *optional* DEFAULT: None

RETURNS DESCRIPTION

[~pipelines.stable_diffusion.StableDiffusionPipelineOutput] or tuple: If return_dict is True, [~pipelines.stable_diffusion.StableDiffusionPipelineOutput] is returned, otherwise a tuple is returned where the first element is a list with the generated images and the second element is a list of bools indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content.

Source code in mindone/diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
def __call__(
    self,
    prompt: Optional[Union[str, List[str]]] = None,
    mask_image: Union[ms.Tensor, PIL.Image.Image] = None,
    image_latents: Union[ms.Tensor, PIL.Image.Image] = None,
    inpaint_strength: Optional[float] = 0.8,
    num_inference_steps: int = 50,
    guidance_scale: float = 7.5,
    negative_prompt: Optional[Union[str, List[str]]] = None,
    num_images_per_prompt: Optional[int] = 1,
    eta: float = 0.0,
    generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
    latents: Optional[ms.Tensor] = None,
    prompt_embeds: Optional[ms.Tensor] = None,
    negative_prompt_embeds: Optional[ms.Tensor] = None,
    output_type: Optional[str] = "pil",
    return_dict: bool = False,
    callback: Optional[Callable[[int, int, ms.Tensor], None]] = None,
    callback_steps: int = 1,
    cross_attention_kwargs: Optional[Dict[str, Any]] = None,
    clip_skip: int = None,
):
    r"""
    The call function to the pipeline for generation.

    Args:
        prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
        mask_image (`PIL.Image.Image`):
            `Image` or tensor representing an image batch to mask the generated image. White pixels in the mask are
            repainted, while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a
            single channel (luminance) before use. If it's a tensor, it should contain one color channel (L)
            instead of 3, so the expected shape would be `(B, 1, H, W)`.
        image_latents (`PIL.Image.Image` or `ms.Tensor`):
            Partially noised image latents from the inversion process to be used as inputs for image generation.
        inpaint_strength (`float`, *optional*, defaults to 0.8):
            Indicates extent to inpaint the masked area. Must be between 0 and 1. When `inpaint_strength` is 1, the
            denoising process is run on the masked area for the full number of iterations specified in
            `num_inference_steps`. `image_latents` is used as a reference for the masked area, and adding more
            noise to a region increases `inpaint_strength`. If `inpaint_strength` is 0, no inpainting occurs.
        num_inference_steps (`int`, *optional*, defaults to 50):
            The number of denoising steps. More denoising steps usually lead to a higher quality image at the
            expense of slower inference.
        guidance_scale (`float`, *optional*, defaults to 7.5):
            A higher guidance scale value encourages the model to generate images closely linked to the text
            `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
        negative_prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts to guide what to not include in image generation. If not defined, you need to
            pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
        num_images_per_prompt (`int`, *optional*, defaults to 1):
            The number of images to generate per prompt.
        eta (`float`, *optional*, defaults to 0.0):
            Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
            to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
        generator (`np.random.Generator`, *optional*):
            A [`np.random.Generator`](https://numpy.org/doc/stable/reference/random/generator.html) to make
            generation deterministic.
        latents (`ms.Tensor`, *optional*):
            Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
            generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
            tensor is generated by sampling using the supplied random `generator`.
        prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
            provided, text embeddings are generated from the `prompt` input argument.
        negative_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
            not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
        output_type (`str`, *optional*, defaults to `"pil"`):
            The output format of the generated image. Choose between `PIL.Image` or `np.array`.
        return_dict (`bool`, *optional*, defaults to `True`):
            Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
            plain tuple.
        callback (`Callable`, *optional*):
            A function that calls every `callback_steps` steps during inference. The function is called with the
            following arguments: `callback(step: int, timestep: int, latents: ms.Tensor)`.
        callback_steps (`int`, *optional*, defaults to 1):
            The frequency at which the `callback` function is called. If not specified, the callback is called at
            every step.
        cross_attention_kwargs (`dict`, *optional*):
            A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
            [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
        clip_skip (`int`, *optional*):
            Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
            the output of the pre-final layer will be used for computing the prompt embeddings.
    Examples:

    Returns:
        [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
            If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
            otherwise a `tuple` is returned where the first element is a list with the generated images and the
            second element is a list of `bool`s indicating whether the corresponding generated image contains
            "not-safe-for-work" (nsfw) content.
    """

    # 1. Check inputs
    self.check_inputs(
        prompt,
        inpaint_strength,
        callback_steps,
        negative_prompt,
        prompt_embeds,
        negative_prompt_embeds,
    )

    if mask_image is None:
        raise ValueError(
            "`mask_image` input cannot be undefined. Use `generate_mask()` to compute `mask_image` from text prompts."
        )
    if image_latents is None:
        raise ValueError(
            "`image_latents` input cannot be undefined. Use `invert()` to compute `image_latents` from input images."
        )

    # 2. Define call parameters
    if prompt is not None and isinstance(prompt, str):
        batch_size = 1
    elif prompt is not None and isinstance(prompt, list):
        batch_size = len(prompt)
    else:
        batch_size = prompt_embeds.shape[0]
    if cross_attention_kwargs is None:
        cross_attention_kwargs = {}

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    do_classifier_free_guidance = guidance_scale > 1.0

    # 3. Encode input prompt
    text_encoder_lora_scale = (
        cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
    )
    prompt_embeds, negative_prompt_embeds = self.encode_prompt(
        prompt,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt,
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=negative_prompt_embeds,
        lora_scale=text_encoder_lora_scale,
        clip_skip=clip_skip,
    )
    # For classifier free guidance, we need to do two forward passes.
    # Here we concatenate the unconditional and text embeddings into a single batch
    # to avoid doing two forward passes
    if do_classifier_free_guidance:
        prompt_embeds = ops.cat([negative_prompt_embeds, prompt_embeds])

    # 4. Preprocess mask
    mask_image = preprocess_mask(mask_image, batch_size)
    latent_height, latent_width = mask_image.shape[-2:]
    mask_image = ops.cat([mask_image] * num_images_per_prompt)
    mask_image = mask_image.to(prompt_embeds.dtype)

    # 5. Set timesteps
    self.scheduler.set_timesteps(num_inference_steps)
    timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, inpaint_strength)

    # 6. Preprocess image latents
    if isinstance(image_latents, list) and any(isinstance(i, ms.Tensor) and i.ndim == 5 for i in image_latents):
        image_latents = ops.cat(image_latents)
    elif isinstance(image_latents, ms.Tensor) and image_latents.ndim == 5:
        image_latents = image_latents
    else:
        image_latents = self.image_processor.preprocess(image_latents)

    latent_shape = (self.vae.config.latent_channels, latent_height, latent_width)
    if image_latents.shape[-3:] != latent_shape:
        raise ValueError(
            f"Each latent image in `image_latents` must have shape {latent_shape}, "
            f"but has shape {image_latents.shape[-3:]}"
        )
    if image_latents.ndim == 4:
        image_latents = image_latents.reshape(batch_size, len(timesteps), *latent_shape)
    if image_latents.shape[:2] != (batch_size, len(timesteps)):
        raise ValueError(
            f"`image_latents` must have batch size {batch_size} with latent images from {len(timesteps)}"
            f" timesteps, but has batch size {image_latents.shape[0]} with latent images from"
            f" {image_latents.shape[1]} timesteps."
        )
    image_latents = image_latents.swapaxes(0, 1).repeat_interleave(num_images_per_prompt, dim=1)
    image_latents = image_latents.to(prompt_embeds.dtype)

    # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
    extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

    # 8. Denoising loop
    latents = image_latents[0]
    num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
    with self.progress_bar(total=num_inference_steps) as progress_bar:
        for i, t in enumerate(timesteps):
            # expand the latents if we are doing classifier free guidance
            latent_model_input = ops.cat([latents] * 2) if do_classifier_free_guidance else latents
            latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

            # predict the noise residual
            noise_pred = self.unet(
                latent_model_input,
                t,
                encoder_hidden_states=prompt_embeds,
                cross_attention_kwargs=cross_attention_kwargs,
            )[0]

            # perform guidance
            if do_classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

            # compute the previous noisy sample x_t -> x_t-1
            latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs)[0]

            # mask with inverted latents from appropriate timestep - use original image latent for last step
            latents = latents * mask_image + image_latents[i] * (1 - mask_image)

            # call the callback, if provided
            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                progress_bar.update()
                if callback is not None and i % callback_steps == 0:
                    step_idx = i // getattr(self.scheduler, "order", 1)
                    callback(step_idx, t, latents)

    if not output_type == "latent":
        image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
        image, has_nsfw_concept = self.run_safety_checker(image, prompt_embeds.dtype)
    else:
        image = latents
        has_nsfw_concept = None

    if has_nsfw_concept is None:
        do_denormalize = [True] * image.shape[0]
    else:
        do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]

    image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)

    if not return_dict:
        return (image, has_nsfw_concept)

    return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)

mindone.diffusers.StableDiffusionDiffEditPipeline.encode_prompt(prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, lora_scale=None, clip_skip=None)

Encodes the prompt into text encoder hidden states.

PARAMETER DESCRIPTION
prompt

prompt to be encoded

TYPE: `str` or `List[str]`, *optional*

num_images_per_prompt

number of images that should be generated per prompt

TYPE: `int`

do_classifier_free_guidance

whether to use classifier free guidance or not

TYPE: `bool`

negative_prompt

The prompt or prompts not to guide the image generation. If not defined, one has to pass negative_prompt_embeds instead. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1).

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

prompt_embeds

Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_prompt_embeds

Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

lora_scale

A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.

TYPE: `float`, *optional* DEFAULT: None

clip_skip

Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings.

TYPE: `int`, *optional* DEFAULT: None

Source code in mindone/diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
def encode_prompt(
    self,
    prompt,
    num_images_per_prompt,
    do_classifier_free_guidance,
    negative_prompt=None,
    prompt_embeds: Optional[ms.Tensor] = None,
    negative_prompt_embeds: Optional[ms.Tensor] = None,
    lora_scale: Optional[float] = None,
    clip_skip: Optional[int] = None,
):
    r"""
    Encodes the prompt into text encoder hidden states.

    Args:
        prompt (`str` or `List[str]`, *optional*):
            prompt to be encoded
        num_images_per_prompt (`int`):
            number of images that should be generated per prompt
        do_classifier_free_guidance (`bool`):
            whether to use classifier free guidance or not
        negative_prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts not to guide the image generation. If not defined, one has to pass
            `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
            less than `1`).
        prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
            provided, text embeddings will be generated from `prompt` input argument.
        negative_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
            weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
            argument.
        lora_scale (`float`, *optional*):
            A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
        clip_skip (`int`, *optional*):
            Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
            the output of the pre-final layer will be used for computing the prompt embeddings.
    """
    # set lora scale so that monkey patched LoRA
    # function of text encoder can correctly access it
    if lora_scale is not None and isinstance(self, LoraLoaderMixin):
        self._lora_scale = lora_scale

        scale_lora_layers(self.text_encoder, lora_scale)

    if prompt is not None and isinstance(prompt, str):
        batch_size = 1
    elif prompt is not None and isinstance(prompt, list):
        batch_size = len(prompt)
    else:
        batch_size = prompt_embeds.shape[0]

    if prompt_embeds is None:
        # textual inversion: process multi-vector tokens if necessary
        if isinstance(self, TextualInversionLoaderMixin):
            prompt = self.maybe_convert_prompt(prompt, self.tokenizer)

        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
            truncation=True,
            return_tensors="np",
        )
        text_input_ids = text_inputs.input_ids
        untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="np").input_ids

        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not np.array_equal(
            text_input_ids, untruncated_ids
        ):
            removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
            logger.warning(
                "The following part of your input was truncated because CLIP can only handle sequences up to"
                f" {self.tokenizer.model_max_length} tokens: {removed_text}"
            )

        if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
            attention_mask = ms.tensor(text_inputs.attention_mask)
        else:
            attention_mask = None

        if clip_skip is None:
            prompt_embeds = self.text_encoder(ms.tensor(text_input_ids), attention_mask=attention_mask)
            prompt_embeds = prompt_embeds[0]
        else:
            prompt_embeds = self.text_encoder(
                ms.tensor(text_input_ids), attention_mask=attention_mask, output_hidden_states=True
            )
            # Access the `hidden_states` first, that contains a tuple of
            # all the hidden states from the encoder layers. Then index into
            # the tuple to access the hidden states from the desired layer.
            prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
            # We also need to apply the final LayerNorm here to not mess with the
            # representations. The `last_hidden_states` that we typically use for
            # obtaining the final prompt representations passes through the LayerNorm
            # layer.
            prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)

    if self.text_encoder is not None:
        prompt_embeds_dtype = self.text_encoder.dtype
    elif self.unet is not None:
        prompt_embeds_dtype = self.unet.dtype
    else:
        prompt_embeds_dtype = prompt_embeds.dtype

    prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype)

    bs_embed, seq_len, _ = prompt_embeds.shape
    # duplicate text embeddings for each generation per prompt, using mps friendly method
    prompt_embeds = prompt_embeds.tile((1, num_images_per_prompt, 1))
    prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

    # get unconditional embeddings for classifier free guidance
    if do_classifier_free_guidance and negative_prompt_embeds is None:
        uncond_tokens: List[str]
        if negative_prompt is None:
            uncond_tokens = [""] * batch_size
        elif prompt is not None and type(prompt) is not type(negative_prompt):
            raise TypeError(
                f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                f" {type(prompt)}."
            )
        elif isinstance(negative_prompt, str):
            uncond_tokens = [negative_prompt]
        elif batch_size != len(negative_prompt):
            raise ValueError(
                f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                " the batch size of `prompt`."
            )
        else:
            uncond_tokens = negative_prompt

        # textual inversion: process multi-vector tokens if necessary
        if isinstance(self, TextualInversionLoaderMixin):
            uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)

        max_length = prompt_embeds.shape[1]
        uncond_input = self.tokenizer(
            uncond_tokens,
            padding="max_length",
            max_length=max_length,
            truncation=True,
            return_tensors="np",
        )

        if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
            attention_mask = ms.Tensor(uncond_input.attention_mask)
        else:
            attention_mask = None

        negative_prompt_embeds = self.text_encoder(
            ms.Tensor(uncond_input.input_ids),
            attention_mask=attention_mask,
        )
        negative_prompt_embeds = negative_prompt_embeds[0]

    if do_classifier_free_guidance:
        # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
        seq_len = negative_prompt_embeds.shape[1]

        negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype)

        negative_prompt_embeds = negative_prompt_embeds.tile((1, num_images_per_prompt, 1))
        negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

    if self.text_encoder is not None:
        if isinstance(self, LoraLoaderMixin):
            # Retrieve the original scale by scaling back the LoRA layers
            unscale_lora_layers(self.text_encoder, lora_scale)

    return prompt_embeds, negative_prompt_embeds

mindone.diffusers.StableDiffusionDiffEditPipeline.generate_mask(image=None, target_prompt=None, target_negative_prompt=None, target_prompt_embeds=None, target_negative_prompt_embeds=None, source_prompt=None, source_negative_prompt=None, source_prompt_embeds=None, source_negative_prompt_embeds=None, num_maps_per_mask=10, mask_encode_strength=0.5, mask_thresholding_ratio=3.0, num_inference_steps=50, guidance_scale=7.5, generator=None, output_type='np', cross_attention_kwargs=None)

Generate a latent mask given a mask prompt, a target prompt, and an image.

PARAMETER DESCRIPTION
image

Image or tensor representing an image batch to be used for computing the mask.

TYPE: `PIL.Image.Image` DEFAULT: None

target_prompt

The prompt or prompts to guide semantic mask generation. If not defined, you need to pass prompt_embeds.

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

target_negative_prompt

The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass negative_prompt_embeds instead. Ignored when not using guidance (guidance_scale < 1).

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

target_prompt_embeds

Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

target_negative_prompt_embeds

Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, negative_prompt_embeds are generated from the negative_prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

source_prompt

The prompt or prompts to guide semantic mask generation using DiffEdit. If not defined, you need to pass source_prompt_embeds or source_image instead.

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

source_negative_prompt

The prompt or prompts to guide semantic mask generation away from using DiffEdit. If not defined, you need to pass source_negative_prompt_embeds or source_image instead.

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

source_prompt_embeds

Pre-generated text embeddings to guide the semantic mask generation. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from source_prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

source_negative_prompt_embeds

Pre-generated text embeddings to negatively guide the semantic mask generation. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from source_negative_prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

num_maps_per_mask

The number of noise maps sampled to generate the semantic mask using DiffEdit.

TYPE: `int`, *optional*, defaults to 10 DEFAULT: 10

mask_encode_strength

The strength of the noise maps sampled to generate the semantic mask using DiffEdit. Must be between 0 and 1.

TYPE: `float`, *optional*, defaults to 0.5 DEFAULT: 0.5

mask_thresholding_ratio

The maximum multiple of the mean absolute difference used to clamp the semantic guidance map before mask binarization.

TYPE: `float`, *optional*, defaults to 3.0 DEFAULT: 3.0

num_inference_steps

The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.

TYPE: `int`, *optional*, defaults to 50 DEFAULT: 50

guidance_scale

A higher guidance scale value encourages the model to generate images closely linked to the text prompt at the expense of lower image quality. Guidance scale is enabled when guidance_scale > 1.

TYPE: `float`, *optional*, defaults to 7.5 DEFAULT: 7.5

generator

A np.random.Generator to make generation deterministic.

TYPE: `np.random.Generator` or `List[np.random.Generator]`, *optional* DEFAULT: None

output_type

The output format of the generated image. Choose between PIL.Image or np.array.

TYPE: `str`, *optional*, defaults to `"pil"` DEFAULT: 'np'

cross_attention_kwargs

A kwargs dictionary that if specified is passed along to the [~models.attention_processor.AttnProcessor] as defined in self.processor.

TYPE: `dict`, *optional* DEFAULT: None

RETURNS DESCRIPTION

List[PIL.Image.Image] or np.array: When returning a List[PIL.Image.Image], the list consists of a batch of single-channel binary images with dimensions (height // self.vae_scale_factor, width // self.vae_scale_factor). If it's np.array, the shape is (batch_size, height // self.vae_scale_factor, width // self.vae_scale_factor).

Source code in mindone/diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
def generate_mask(
    self,
    image: Union[ms.Tensor, PIL.Image.Image] = None,
    target_prompt: Optional[Union[str, List[str]]] = None,
    target_negative_prompt: Optional[Union[str, List[str]]] = None,
    target_prompt_embeds: Optional[ms.Tensor] = None,
    target_negative_prompt_embeds: Optional[ms.Tensor] = None,
    source_prompt: Optional[Union[str, List[str]]] = None,
    source_negative_prompt: Optional[Union[str, List[str]]] = None,
    source_prompt_embeds: Optional[ms.Tensor] = None,
    source_negative_prompt_embeds: Optional[ms.Tensor] = None,
    num_maps_per_mask: Optional[int] = 10,
    mask_encode_strength: Optional[float] = 0.5,
    mask_thresholding_ratio: Optional[float] = 3.0,
    num_inference_steps: int = 50,
    guidance_scale: float = 7.5,
    generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
    output_type: Optional[str] = "np",
    cross_attention_kwargs: Optional[Dict[str, Any]] = None,
):
    r"""
    Generate a latent mask given a mask prompt, a target prompt, and an image.

    Args:
        image (`PIL.Image.Image`):
            `Image` or tensor representing an image batch to be used for computing the mask.
        target_prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts to guide semantic mask generation. If not defined, you need to pass
            `prompt_embeds`.
        target_negative_prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts to guide what to not include in image generation. If not defined, you need to
            pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
        target_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
            provided, text embeddings are generated from the `prompt` input argument.
        target_negative_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
            not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
        source_prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts to guide semantic mask generation using DiffEdit. If not defined, you need to
            pass `source_prompt_embeds` or `source_image` instead.
        source_negative_prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts to guide semantic mask generation away from using DiffEdit. If not defined, you
            need to pass `source_negative_prompt_embeds` or `source_image` instead.
        source_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated text embeddings to guide the semantic mask generation. Can be used to easily tweak text
            inputs (prompt weighting). If not provided, text embeddings are generated from `source_prompt` input
            argument.
        source_negative_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated text embeddings to negatively guide the semantic mask generation. Can be used to easily
            tweak text inputs (prompt weighting). If not provided, text embeddings are generated from
            `source_negative_prompt` input argument.
        num_maps_per_mask (`int`, *optional*, defaults to 10):
            The number of noise maps sampled to generate the semantic mask using DiffEdit.
        mask_encode_strength (`float`, *optional*, defaults to 0.5):
            The strength of the noise maps sampled to generate the semantic mask using DiffEdit. Must be between 0
            and 1.
        mask_thresholding_ratio (`float`, *optional*, defaults to 3.0):
            The maximum multiple of the mean absolute difference used to clamp the semantic guidance map before
            mask binarization.
        num_inference_steps (`int`, *optional*, defaults to 50):
            The number of denoising steps. More denoising steps usually lead to a higher quality image at the
            expense of slower inference.
        guidance_scale (`float`, *optional*, defaults to 7.5):
            A higher guidance scale value encourages the model to generate images closely linked to the text
            `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
        generator (`np.random.Generator` or `List[np.random.Generator]`, *optional*):
            A [`np.random.Generator`](https://numpy.org/doc/stable/reference/random/generator.html) to make
            generation deterministic.
        output_type (`str`, *optional*, defaults to `"pil"`):
            The output format of the generated image. Choose between `PIL.Image` or `np.array`.
        cross_attention_kwargs (`dict`, *optional*):
            A kwargs dictionary that if specified is passed along to the
            [`~models.attention_processor.AttnProcessor`] as defined in
            [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).

    Examples:

    Returns:
        `List[PIL.Image.Image]` or `np.array`:
            When returning a `List[PIL.Image.Image]`, the list consists of a batch of single-channel binary images
            with dimensions `(height // self.vae_scale_factor, width // self.vae_scale_factor)`. If it's
            `np.array`, the shape is `(batch_size, height // self.vae_scale_factor, width //
            self.vae_scale_factor)`.
    """

    # 1. Check inputs (Provide dummy argument for callback_steps)
    self.check_inputs(
        target_prompt,
        mask_encode_strength,
        1,
        target_negative_prompt,
        target_prompt_embeds,
        target_negative_prompt_embeds,
    )

    self.check_source_inputs(
        source_prompt,
        source_negative_prompt,
        source_prompt_embeds,
        source_negative_prompt_embeds,
    )

    if (num_maps_per_mask is None) or (
        num_maps_per_mask is not None and (not isinstance(num_maps_per_mask, int) or num_maps_per_mask <= 0)
    ):
        raise ValueError(
            f"`num_maps_per_mask` has to be a positive integer but is {num_maps_per_mask} of type"
            f" {type(num_maps_per_mask)}."
        )

    if mask_thresholding_ratio is None or mask_thresholding_ratio <= 0:
        raise ValueError(
            f"`mask_thresholding_ratio` has to be positive but is {mask_thresholding_ratio} of type"
            f" {type(mask_thresholding_ratio)}."
        )

    # 2. Define call parameters
    if target_prompt is not None and isinstance(target_prompt, str):
        batch_size = 1
    elif target_prompt is not None and isinstance(target_prompt, list):
        batch_size = len(target_prompt)
    else:
        batch_size = target_prompt_embeds.shape[0]
    if cross_attention_kwargs is None:
        cross_attention_kwargs = {}

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    do_classifier_free_guidance = guidance_scale > 1.0

    # 3. Encode input prompts
    (cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None)
    target_negative_prompt_embeds, target_prompt_embeds = self.encode_prompt(
        target_prompt,
        num_maps_per_mask,
        do_classifier_free_guidance,
        target_negative_prompt,
        prompt_embeds=target_prompt_embeds,
        negative_prompt_embeds=target_negative_prompt_embeds,
    )
    # For classifier free guidance, we need to do two forward passes.
    # Here we concatenate the unconditional and text embeddings into a single batch
    # to avoid doing two forward passes
    if do_classifier_free_guidance:
        target_prompt_embeds = ops.cat([target_negative_prompt_embeds, target_prompt_embeds])

    source_negative_prompt_embeds, source_prompt_embeds = self.encode_prompt(
        source_prompt,
        num_maps_per_mask,
        do_classifier_free_guidance,
        source_negative_prompt,
        prompt_embeds=source_prompt_embeds,
        negative_prompt_embeds=source_negative_prompt_embeds,
    )
    if do_classifier_free_guidance:
        source_prompt_embeds = ops.cat([source_negative_prompt_embeds, source_prompt_embeds])

    # 4. Preprocess image
    image = self.image_processor.preprocess(image).repeat_interleave(num_maps_per_mask, dim=0)

    # 5. Set timesteps
    self.scheduler.set_timesteps(num_inference_steps)
    timesteps, _ = self.get_timesteps(num_inference_steps, mask_encode_strength)
    encode_timestep = timesteps[0]

    # 6. Prepare image latents and add noise with specified strength
    image_latents = self.prepare_image_latents(image, batch_size * num_maps_per_mask, self.vae.dtype, generator)
    noise = randn_tensor(image_latents.shape, generator=generator, dtype=self.vae.dtype)
    image_latents = self.scheduler.add_noise(image_latents, noise, encode_timestep)

    latent_model_input = ops.cat([image_latents] * (4 if do_classifier_free_guidance else 2))
    latent_model_input = self.scheduler.scale_model_input(latent_model_input, encode_timestep)

    # 7. Predict the noise residual
    prompt_embeds = ops.cat([source_prompt_embeds, target_prompt_embeds])
    noise_pred = self.unet(
        latent_model_input,
        encode_timestep,
        encoder_hidden_states=prompt_embeds,
        cross_attention_kwargs=cross_attention_kwargs,
    )[0]

    if do_classifier_free_guidance:
        noise_pred_neg_src, noise_pred_source, noise_pred_uncond, noise_pred_target = noise_pred.chunk(4)
        noise_pred_source = noise_pred_neg_src + guidance_scale * (noise_pred_source - noise_pred_neg_src)
        noise_pred_target = noise_pred_uncond + guidance_scale * (noise_pred_target - noise_pred_uncond)
    else:
        noise_pred_source, noise_pred_target = noise_pred.chunk(2)

    # 8. Compute the mask from the absolute difference of predicted noise residuals
    # TODO: Consider smoothing mask guidance map
    mask_guidance_map = (
        ops.abs(noise_pred_target - noise_pred_source)
        .reshape(batch_size, num_maps_per_mask, *noise_pred_target.shape[-3:])
        .mean([1, 2])
    )
    clamp_magnitude = mask_guidance_map.mean() * mask_thresholding_ratio
    semantic_mask_image = mask_guidance_map.clamp(ms.Tensor(0), clamp_magnitude) / clamp_magnitude
    semantic_mask_image = ops.where(semantic_mask_image <= 0.5, ms.Tensor(0), ms.Tensor(1))
    mask_image = semantic_mask_image.asnumpy()

    # 9. Convert to Numpy array or PIL.
    if output_type == "pil":
        mask_image = self.image_processor.numpy_to_pil(mask_image)

    return mask_image

mindone.diffusers.StableDiffusionDiffEditPipeline.invert(prompt=None, image=None, num_inference_steps=50, inpaint_strength=0.8, guidance_scale=7.5, negative_prompt=None, generator=None, prompt_embeds=None, negative_prompt_embeds=None, decode_latents=False, output_type='pil', return_dict=False, callback=None, callback_steps=1, cross_attention_kwargs=None, lambda_auto_corr=20.0, lambda_kl=20.0, num_reg_steps=0, num_auto_corr_rolls=5)

Generate inverted latents given a prompt and image.

PARAMETER DESCRIPTION
prompt

The prompt or prompts to guide image generation. If not defined, you need to pass prompt_embeds.

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

image

Image or tensor representing an image batch to produce the inverted latents guided by prompt.

TYPE: `PIL.Image.Image` DEFAULT: None

inpaint_strength

Indicates extent of the noising process to run latent inversion. Must be between 0 and 1. When inpaint_strength is 1, the inversion process is run for the full number of iterations specified in num_inference_steps. image is used as a reference for the inversion process, and adding more noise increases inpaint_strength. If inpaint_strength is 0, no inpainting occurs.

TYPE: `float`, *optional*, defaults to 0.8 DEFAULT: 0.8

num_inference_steps

The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.

TYPE: `int`, *optional*, defaults to 50 DEFAULT: 50

guidance_scale

A higher guidance scale value encourages the model to generate images closely linked to the text prompt at the expense of lower image quality. Guidance scale is enabled when guidance_scale > 1.

TYPE: `float`, *optional*, defaults to 7.5 DEFAULT: 7.5

negative_prompt

The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass negative_prompt_embeds instead. Ignored when not using guidance (guidance_scale < 1).

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

generator

A np.random.Generator to make generation deterministic.

TYPE: `np.random.Generator`, *optional* DEFAULT: None

prompt_embeds

Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_prompt_embeds

Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, negative_prompt_embeds are generated from the negative_prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

decode_latents

Whether or not to decode the inverted latents into a generated image. Setting this argument to True decodes all inverted latents for each timestep into a list of generated images.

TYPE: `bool`, *optional*, defaults to `False` DEFAULT: False

output_type

The output format of the generated image. Choose between PIL.Image or np.array.

TYPE: `str`, *optional*, defaults to `"pil"` DEFAULT: 'pil'

return_dict

Whether or not to return a [~pipelines.stable_diffusion.DiffEditInversionPipelineOutput] instead of a plain tuple.

TYPE: `bool`, *optional*, defaults to `True` DEFAULT: False

callback

A function that calls every callback_steps steps during inference. The function is called with the following arguments: callback(step: int, timestep: int, latents: ms.Tensor).

TYPE: `Callable`, *optional* DEFAULT: None

callback_steps

The frequency at which the callback function is called. If not specified, the callback is called at every step.

TYPE: `int`, *optional*, defaults to 1 DEFAULT: 1

cross_attention_kwargs

A kwargs dictionary that if specified is passed along to the [~models.attention_processor.AttnProcessor] as defined in self.processor.

TYPE: `dict`, *optional* DEFAULT: None

lambda_auto_corr

Lambda parameter to control auto correction.

TYPE: `float`, *optional*, defaults to 20.0 DEFAULT: 20.0

lambda_kl

Lambda parameter to control Kullback-Leibler divergence output.

TYPE: `float`, *optional*, defaults to 20.0 DEFAULT: 20.0

num_reg_steps

Number of regularization loss steps.

TYPE: `int`, *optional*, defaults to 0 DEFAULT: 0

num_auto_corr_rolls

Number of auto correction roll steps.

TYPE: `int`, *optional*, defaults to 5 DEFAULT: 5

RETURNS DESCRIPTION

[~pipelines.stable_diffusion.pipeline_stable_diffusion_diffedit.DiffEditInversionPipelineOutput] or

tuple: If return_dict is True, [~pipelines.stable_diffusion.pipeline_stable_diffusion_diffedit.DiffEditInversionPipelineOutput] is returned, otherwise a tuple is returned where the first element is the inverted latents tensors ordered by increasing noise, and the second is the corresponding decoded images if decode_latents is True, otherwise None.

Source code in mindone/diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
def invert(
    self,
    prompt: Optional[Union[str, List[str]]] = None,
    image: Union[ms.Tensor, PIL.Image.Image] = None,
    num_inference_steps: int = 50,
    inpaint_strength: float = 0.8,
    guidance_scale: float = 7.5,
    negative_prompt: Optional[Union[str, List[str]]] = None,
    generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
    prompt_embeds: Optional[ms.Tensor] = None,
    negative_prompt_embeds: Optional[ms.Tensor] = None,
    decode_latents: bool = False,
    output_type: Optional[str] = "pil",
    return_dict: bool = False,
    callback: Optional[Callable[[int, int, ms.Tensor], None]] = None,
    callback_steps: Optional[int] = 1,
    cross_attention_kwargs: Optional[Dict[str, Any]] = None,
    lambda_auto_corr: float = 20.0,
    lambda_kl: float = 20.0,
    num_reg_steps: int = 0,
    num_auto_corr_rolls: int = 5,
):
    r"""
    Generate inverted latents given a prompt and image.

    Args:
        prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
        image (`PIL.Image.Image`):
            `Image` or tensor representing an image batch to produce the inverted latents guided by `prompt`.
        inpaint_strength (`float`, *optional*, defaults to 0.8):
            Indicates extent of the noising process to run latent inversion. Must be between 0 and 1. When
            `inpaint_strength` is 1, the inversion process is run for the full number of iterations specified in
            `num_inference_steps`. `image` is used as a reference for the inversion process, and adding more noise
            increases `inpaint_strength`. If `inpaint_strength` is 0, no inpainting occurs.
        num_inference_steps (`int`, *optional*, defaults to 50):
            The number of denoising steps. More denoising steps usually lead to a higher quality image at the
            expense of slower inference.
        guidance_scale (`float`, *optional*, defaults to 7.5):
            A higher guidance scale value encourages the model to generate images closely linked to the text
            `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
        negative_prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts to guide what to not include in image generation. If not defined, you need to
            pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
        generator (`np.random.Generator`, *optional*):
            A [`np.random.Generator`](https://numpy.org/doc/stable/reference/random/generator.html) to make
            generation deterministic.
        prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
            provided, text embeddings are generated from the `prompt` input argument.
        negative_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
            not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
        decode_latents (`bool`, *optional*, defaults to `False`):
            Whether or not to decode the inverted latents into a generated image. Setting this argument to `True`
            decodes all inverted latents for each timestep into a list of generated images.
        output_type (`str`, *optional*, defaults to `"pil"`):
            The output format of the generated image. Choose between `PIL.Image` or `np.array`.
        return_dict (`bool`, *optional*, defaults to `True`):
            Whether or not to return a [`~pipelines.stable_diffusion.DiffEditInversionPipelineOutput`] instead of a
            plain tuple.
        callback (`Callable`, *optional*):
            A function that calls every `callback_steps` steps during inference. The function is called with the
            following arguments: `callback(step: int, timestep: int, latents: ms.Tensor)`.
        callback_steps (`int`, *optional*, defaults to 1):
            The frequency at which the `callback` function is called. If not specified, the callback is called at
            every step.
        cross_attention_kwargs (`dict`, *optional*):
            A kwargs dictionary that if specified is passed along to the
            [`~models.attention_processor.AttnProcessor`] as defined in
            [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
        lambda_auto_corr (`float`, *optional*, defaults to 20.0):
            Lambda parameter to control auto correction.
        lambda_kl (`float`, *optional*, defaults to 20.0):
            Lambda parameter to control Kullback-Leibler divergence output.
        num_reg_steps (`int`, *optional*, defaults to 0):
            Number of regularization loss steps.
        num_auto_corr_rolls (`int`, *optional*, defaults to 5):
            Number of auto correction roll steps.

    Examples:

    Returns:
        [`~pipelines.stable_diffusion.pipeline_stable_diffusion_diffedit.DiffEditInversionPipelineOutput`] or
        `tuple`:
            If `return_dict` is `True`,
            [`~pipelines.stable_diffusion.pipeline_stable_diffusion_diffedit.DiffEditInversionPipelineOutput`] is
            returned, otherwise a `tuple` is returned where the first element is the inverted latents tensors
            ordered by increasing noise, and the second is the corresponding decoded images if `decode_latents` is
            `True`, otherwise `None`.
    """

    # 1. Check inputs
    self.check_inputs(
        prompt,
        inpaint_strength,
        callback_steps,
        negative_prompt,
        prompt_embeds,
        negative_prompt_embeds,
    )

    if image is None:
        raise ValueError("`image` input cannot be undefined.")

    # 2. Define call parameters
    if prompt is not None and isinstance(prompt, str):
        batch_size = 1
    elif prompt is not None and isinstance(prompt, list):
        batch_size = len(prompt)
    else:
        batch_size = prompt_embeds.shape[0]
    if cross_attention_kwargs is None:
        cross_attention_kwargs = {}

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    do_classifier_free_guidance = guidance_scale > 1.0

    # 3. Preprocess image
    image = self.image_processor.preprocess(image)

    # 4. Prepare latent variables
    num_images_per_prompt = 1
    latents = self.prepare_image_latents(image, batch_size * num_images_per_prompt, self.vae.dtype, generator)

    # 5. Encode input prompt
    prompt_embeds, negative_prompt_embeds = self.encode_prompt(
        prompt,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt,
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=negative_prompt_embeds,
    )
    # For classifier free guidance, we need to do two forward passes.
    # Here we concatenate the unconditional and text embeddings into a single batch
    # to avoid doing two forward passes
    if do_classifier_free_guidance:
        prompt_embeds = ops.cat([negative_prompt_embeds, prompt_embeds])

    # 6. Prepare timesteps
    self.inverse_scheduler.set_timesteps(num_inference_steps)
    timesteps, num_inference_steps = self.get_inverse_timesteps(num_inference_steps, inpaint_strength)

    # 7. Noising loop where we obtain the intermediate noised latent image for each timestep.
    num_warmup_steps = len(timesteps) - num_inference_steps * self.inverse_scheduler.order
    inverted_latents = []
    with self.progress_bar(total=num_inference_steps) as progress_bar:
        for i, t in enumerate(timesteps):
            # expand the latents if we are doing classifier free guidance
            latent_model_input = ops.cat([latents] * 2) if do_classifier_free_guidance else latents
            latent_model_input = self.inverse_scheduler.scale_model_input(latent_model_input, t)

            # predict the noise residual
            noise_pred = self.unet(
                latent_model_input,
                t,
                encoder_hidden_states=prompt_embeds,
                cross_attention_kwargs=cross_attention_kwargs,
            )[0]

            # perform guidance
            if do_classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

            # regularization of the noise prediction (not in original code or paper but borrowed from Pix2PixZero)
            if num_reg_steps > 0:
                raise NotImplementedError("Regularization of the noise prediction is not yet supported.")

            # compute the previous noisy sample x_t -> x_t-1
            latents = self.inverse_scheduler.step(noise_pred, t, latents)[0]
            inverted_latents.append(latents)

            # call the callback, if provided
            if i == len(timesteps) - 1 or (
                (i + 1) > num_warmup_steps and (i + 1) % self.inverse_scheduler.order == 0
            ):
                progress_bar.update()
                if callback is not None and i % callback_steps == 0:
                    step_idx = i // getattr(self.scheduler, "order", 1)
                    callback(step_idx, t, latents)

    assert len(inverted_latents) == len(timesteps)
    latents = ops.stack(list(reversed(inverted_latents)), 1)

    # 8. Post-processing
    image = None
    if decode_latents:
        image = self.decode_latents(latents.flatten(start_dim=0, end_dim=1))

    # 9. Convert to PIL.
    if decode_latents and output_type == "pil":
        image = self.image_processor.numpy_to_pil(image)

    if not return_dict:
        return (latents, image)

    return DiffEditInversionPipelineOutput(latents=latents, images=image)

mindone.diffusers.pipelines.stable_diffusion.StableDiffusionPipelineOutput dataclass

Bases: BaseOutput

Output class for Stable Diffusion pipelines.

Source code in mindone/diffusers/pipelines/stable_diffusion/pipeline_output.py
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
@dataclass
class StableDiffusionPipelineOutput(BaseOutput):
    """
    Output class for Stable Diffusion pipelines.

    Args:
        images (`List[PIL.Image.Image]` or `np.ndarray`)
            List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
            num_channels)`.
        nsfw_content_detected (`List[bool]`)
            List indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content or
            `None` if safety checking could not be performed.
    """

    images: Union[List[PIL.Image.Image], np.ndarray]
    nsfw_content_detected: Optional[List[bool]]