Skip to content

ControlNet with Flux.1

LoRA

FluxControlNetPipeline is an implementation of ControlNet for Flux.1.

ControlNet was introduced in Adding Conditional Control to Text-to-Image Diffusion Models by Lvmin Zhang, Anyi Rao, and Maneesh Agrawala.

With a ControlNet model, you can provide an additional control image to condition and control Stable Diffusion generation. For example, if you provide a depth map, the ControlNet model generates an image that'll preserve the spatial information from the depth map. It is a more flexible and accurate way to control the image generation process.

The abstract from the paper is:

We present ControlNet, a neural network architecture to add spatial conditioning controls to large, pretrained text-to-image diffusion models. ControlNet locks the production-ready large diffusion models, and reuses their deep and robust encoding layers pretrained with billions of images as a strong backbone to learn a diverse set of conditional controls. The neural architecture is connected with "zero convolutions" (zero-initialized convolution layers) that progressively grow the parameters from zero and ensure that no harmful noise could affect the finetuning. We test various conditioning controls, eg, edges, depth, segmentation, human pose, etc, with Stable Diffusion, using single or multiple conditions, with or without prompts. We show that the training of ControlNets is robust with small (<50k) and large (>1m) datasets. Extensive results show that ControlNet may facilitate wider applications to control image diffusion models.

This controlnet code is implemented by The InstantX Team. You can find pre-trained checkpoints for Flux-ControlNet in the table below:

ControlNet type Developer Link
Canny The InstantX Team Link
Depth The InstantX Team Link
Union The InstantX Team Link

XLabs ControlNets are also supported, which was contributed by the XLabs team.

ControlNet type Developer Link
Canny The XLabs Team Link
Depth The XLabs Team Link
HED The XLabs Team Link

Tip

Make sure to check out the Schedulers guide to learn how to explore the tradeoff between scheduler speed and quality, and see the reuse components across pipelines section to learn how to efficiently load the same components into multiple pipelines.

mindone.diffusers.FluxControlNetPipeline

Bases: DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixin, FluxIPAdapterMixin

The Flux pipeline for text-to-image generation.

Reference: https://blackforestlabs.ai/announcing-black-forest-labs/

PARAMETER DESCRIPTION
transformer

Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.

TYPE: [`FluxTransformer2DModel`]

scheduler

A scheduler to be used in combination with transformer to denoise the encoded image latents.

TYPE: [`FlowMatchEulerDiscreteScheduler`]

vae

Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.

TYPE: [`AutoencoderKL`]

text_encoder

CLIP, specifically the clip-vit-large-patch14 variant.

TYPE: [`CLIPTextModel`]

text_encoder_2

T5, specifically the google/t5-v1_1-xxl variant.

TYPE: [`T5EncoderModel`]

tokenizer

Tokenizer of class CLIPTokenizer.

TYPE: `CLIPTokenizer`

tokenizer_2

Second Tokenizer of class T5TokenizerFast.

TYPE: `T5TokenizerFast`

Source code in mindone/diffusers/pipelines/flux/pipeline_flux_controlnet.py
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
class FluxControlNetPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixin, FluxIPAdapterMixin):
    r"""
    The Flux pipeline for text-to-image generation.

    Reference: https://blackforestlabs.ai/announcing-black-forest-labs/

    Args:
        transformer ([`FluxTransformer2DModel`]):
            Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
        scheduler ([`FlowMatchEulerDiscreteScheduler`]):
            A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        text_encoder ([`CLIPTextModel`]):
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
            the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
        text_encoder_2 ([`T5EncoderModel`]):
            [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
            the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
        tokenizer (`CLIPTokenizer`):
            Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
        tokenizer_2 (`T5TokenizerFast`):
            Second Tokenizer of class
            [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
    """

    model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->transformer->vae"
    _optional_components = ["image_encoder", "feature_extractor"]
    _callback_tensor_inputs = ["latents", "prompt_embeds", "control_image"]

    def __init__(
        self,
        scheduler: FlowMatchEulerDiscreteScheduler,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        text_encoder_2: T5EncoderModel,
        tokenizer_2: T5TokenizerFast,
        transformer: FluxTransformer2DModel,
        controlnet: Union[
            FluxControlNetModel, List[FluxControlNetModel], Tuple[FluxControlNetModel], FluxMultiControlNetModel
        ],
        image_encoder: CLIPVisionModelWithProjection = None,
        feature_extractor: CLIPImageProcessor = None,
    ):
        super().__init__()
        if isinstance(controlnet, (list, tuple)):
            controlnet = FluxMultiControlNetModel(controlnet)

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            text_encoder_2=text_encoder_2,
            tokenizer=tokenizer,
            tokenizer_2=tokenizer_2,
            transformer=transformer,
            scheduler=scheduler,
            controlnet=controlnet,
            image_encoder=image_encoder,
            feature_extractor=feature_extractor,
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
        # Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
        # by the patch size. So the vae scale factor is multiplied by the patch size to account for this
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
        self.tokenizer_max_length = (
            self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
        )
        self.default_sample_size = 128

    def _get_t5_prompt_embeds(
        self,
        prompt: Union[str, List[str]] = None,
        num_images_per_prompt: int = 1,
        max_sequence_length: int = 512,
        dtype: Optional[ms.Type] = None,
    ):
        dtype = dtype or self.text_encoder.dtype

        prompt = [prompt] if isinstance(prompt, str) else prompt
        batch_size = len(prompt)

        if isinstance(self, TextualInversionLoaderMixin):
            prompt = self.maybe_convert_prompt(prompt, self.tokenizer)

        text_inputs = self.tokenizer_2(
            prompt,
            padding="max_length",
            max_length=max_sequence_length,
            truncation=True,
            return_length=False,
            return_overflowing_tokens=False,
            return_tensors="np",
        )
        text_input_ids = text_inputs.input_ids
        untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="np").input_ids

        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not np.array_equal(
            text_input_ids, untruncated_ids
        ):
            removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
            logger.warning(
                "The following part of your input was truncated because `max_sequence_length` is set to "
                f" {max_sequence_length} tokens: {removed_text}"
            )

        prompt_embeds = self.text_encoder_2(ms.tensor(text_input_ids), output_hidden_states=False)[0]

        dtype = self.text_encoder_2.dtype
        prompt_embeds = prompt_embeds.to(dtype=dtype)

        _, seq_len, _ = prompt_embeds.shape

        # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.tile((1, num_images_per_prompt, 1))
        prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

        return prompt_embeds

    def _get_clip_prompt_embeds(
        self,
        prompt: Union[str, List[str]],
        num_images_per_prompt: int = 1,
    ):
        prompt = [prompt] if isinstance(prompt, str) else prompt
        batch_size = len(prompt)

        if isinstance(self, TextualInversionLoaderMixin):
            prompt = self.maybe_convert_prompt(prompt, self.tokenizer)

        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer_max_length,
            truncation=True,
            return_overflowing_tokens=False,
            return_length=False,
            return_tensors="np",
        )

        text_input_ids = text_inputs.input_ids
        untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="np").input_ids
        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not np.array_equal(
            text_input_ids, untruncated_ids
        ):
            removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
            logger.warning(
                "The following part of your input was truncated because CLIP can only handle sequences up to"
                f" {self.tokenizer_max_length} tokens: {removed_text}"
            )
        prompt_embeds = self.text_encoder(ms.tensor(text_input_ids), output_hidden_states=False)

        # Use pooled output of CLIPTextModel
        prompt_embeds = prompt_embeds[1]
        prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype)

        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.tile((1, num_images_per_prompt))
        prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)

        return prompt_embeds

    def encode_prompt(
        self,
        prompt: Union[str, List[str]],
        prompt_2: Union[str, List[str]],
        num_images_per_prompt: int = 1,
        prompt_embeds: Optional[ms.Tensor] = None,
        pooled_prompt_embeds: Optional[ms.Tensor] = None,
        max_sequence_length: int = 512,
        lora_scale: Optional[float] = None,
    ):
        r"""

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
                used in all text-encoders
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            pooled_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
                If not provided, pooled text embeddings will be generated from `prompt` input argument.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
            lora_scale (`float`, *optional*):
                A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
        """
        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
        if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
            self._lora_scale = lora_scale

            # dynamically adjust the LoRA scale
            if self.text_encoder is not None:
                scale_lora_layers(self.text_encoder, lora_scale)
            if self.text_encoder_2 is not None:
                scale_lora_layers(self.text_encoder_2, lora_scale)

        prompt = [prompt] if isinstance(prompt, str) else prompt

        if prompt_embeds is None:
            prompt_2 = prompt_2 or prompt
            prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2

            # We only use the pooled prompt output from the CLIPTextModel
            pooled_prompt_embeds = self._get_clip_prompt_embeds(
                prompt=prompt,
                num_images_per_prompt=num_images_per_prompt,
            )
            prompt_embeds = self._get_t5_prompt_embeds(
                prompt=prompt_2,
                num_images_per_prompt=num_images_per_prompt,
                max_sequence_length=max_sequence_length,
            )

        if self.text_encoder is not None:
            if isinstance(self, FluxLoraLoaderMixin):
                # Retrieve the original scale by scaling back the LoRA layers
                unscale_lora_layers(self.text_encoder, lora_scale)

        if self.text_encoder_2 is not None:
            if isinstance(self, FluxLoraLoaderMixin):
                # Retrieve the original scale by scaling back the LoRA layers
                unscale_lora_layers(self.text_encoder_2, lora_scale)

        dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
        text_ids = mint.zeros((prompt_embeds.shape[1], 3)).to(dtype=dtype)

        return prompt_embeds, pooled_prompt_embeds, text_ids

    # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_image
    def encode_image(self, image, num_images_per_prompt):
        dtype = next(self.image_encoder.get_parameters()).dtype

        if not isinstance(image, ms.Tensor):
            image = self.feature_extractor(image, return_tensors="pt").pixel_values

        image = image.to(dtype=dtype)
        image_embeds = self.image_encoder(image)[0]
        image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
        return image_embeds

    # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.prepare_ip_adapter_image_embeds
    def prepare_ip_adapter_image_embeds(self, ip_adapter_image, ip_adapter_image_embeds, num_images_per_prompt):
        image_embeds = []
        if ip_adapter_image_embeds is None:
            if not isinstance(ip_adapter_image, list):
                ip_adapter_image = [ip_adapter_image]

            if len(ip_adapter_image) != self.transformer.encoder_hid_proj.num_ip_adapters:
                raise ValueError(
                    f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {self.transformer.encoder_hid_proj.num_ip_adapters} IP Adapters."  # noqa
                )

            for single_ip_adapter_image in ip_adapter_image:
                single_image_embeds = self.encode_image(single_ip_adapter_image, 1)
                image_embeds.append(single_image_embeds[None, :])
        else:
            if not isinstance(ip_adapter_image_embeds, list):
                ip_adapter_image_embeds = [ip_adapter_image_embeds]

            if len(ip_adapter_image_embeds) != self.transformer.encoder_hid_proj.num_ip_adapters:
                raise ValueError(
                    f"`ip_adapter_image_embeds` must have same length as the number of IP Adapters. Got {len(ip_adapter_image_embeds)} image embeds and {self.transformer.encoder_hid_proj.num_ip_adapters} IP Adapters."  # noqa
                )

            for single_image_embeds in ip_adapter_image_embeds:
                image_embeds.append(single_image_embeds)

        ip_adapter_image_embeds = []
        for single_image_embeds in image_embeds:
            single_image_embeds = mint.cat([single_image_embeds] * num_images_per_prompt, dim=0)
            ip_adapter_image_embeds.append(single_image_embeds)

        return ip_adapter_image_embeds

    def check_inputs(
        self,
        prompt,
        prompt_2,
        height,
        width,
        negative_prompt=None,
        negative_prompt_2=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
        pooled_prompt_embeds=None,
        negative_pooled_prompt_embeds=None,
        callback_on_step_end_tensor_inputs=None,
        max_sequence_length=None,
    ):
        if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
            logger.warning(
                f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
            )

        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"  # noqa E501
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt_2 is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
        elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
            raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )
        elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

        if prompt_embeds is not None and pooled_prompt_embeds is None:
            raise ValueError(
                "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."  # noqa E501
            )
        if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
            raise ValueError(
                "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."  # noqa
            )

        if max_sequence_length is not None and max_sequence_length > 512:
            raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")

    @staticmethod
    # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._prepare_latent_image_ids
    def _prepare_latent_image_ids(batch_size, height, width, dtype):
        latent_image_ids = mint.zeros((height, width, 3))
        # latent_image_ids[..., 1] = latent_image_ids[..., 1] + mint.arange(height)[:, None]
        latent_image_ids[..., 1] = latent_image_ids[..., 1] + mint.arange(height).expand_dims(axis=1)
        # latent_image_ids[..., 2] = latent_image_ids[..., 2] + mint.arange(width)[None, :]
        latent_image_ids[..., 2] = latent_image_ids[..., 2] + mint.arange(width).expand_dims(axis=0)

        latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape

        latent_image_ids = latent_image_ids.reshape(
            latent_image_id_height * latent_image_id_width, latent_image_id_channels
        )

        return latent_image_ids.to(dtype=dtype)

    @staticmethod
    # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._pack_latents
    def _pack_latents(latents, batch_size, num_channels_latents, height, width):
        latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
        latents = latents.permute(0, 2, 4, 1, 3, 5)
        latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)

        return latents

    @staticmethod
    # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._unpack_latents
    def _unpack_latents(latents, height, width, vae_scale_factor):
        batch_size, num_patches, channels = latents.shape

        # VAE applies 8x compression on images but we must also account for packing which requires
        # latent height and width to be divisible by 2.
        height = 2 * (int(height) // (vae_scale_factor * 2))
        width = 2 * (int(width) // (vae_scale_factor * 2))

        latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
        latents = latents.permute(0, 3, 1, 4, 2, 5)

        latents = latents.reshape(batch_size, channels // (2 * 2), height, width)

        return latents

    # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.prepare_latents
    def prepare_latents(
        self,
        batch_size,
        num_channels_latents,
        height,
        width,
        dtype,
        generator,
        latents=None,
    ):
        # VAE applies 8x compression on images but we must also account for packing which requires
        # latent height and width to be divisible by 2.
        height = 2 * (int(height) // (self.vae_scale_factor * 2))
        width = 2 * (int(width) // (self.vae_scale_factor * 2))

        shape = (batch_size, num_channels_latents, height, width)

        if latents is not None:
            latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, dtype)
            return latents.to(dtype=dtype), latent_image_ids

        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        latents = randn_tensor(shape, generator=generator, dtype=dtype)
        latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)

        latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, dtype)

        return latents, latent_image_ids

    # Copied from diffusers.pipelines.controlnet_sd3.pipeline_stable_diffusion_3_controlnet.StableDiffusion3ControlNetPipeline.prepare_image
    def prepare_image(
        self,
        image,
        width,
        height,
        batch_size,
        num_images_per_prompt,
        dtype,
        do_classifier_free_guidance=False,
        guess_mode=False,
    ):
        if isinstance(image, ms.Tensor):
            pass
        else:
            image = self.image_processor.preprocess(image, height=height, width=width)

        image_batch_size = image.shape[0]

        if image_batch_size == 1:
            repeat_by = batch_size
        else:
            # image batch size is the same as prompt batch size
            repeat_by = num_images_per_prompt

        image = image.repeat_interleave(repeat_by, dim=0)

        image = image.to(dtype=dtype)

        if do_classifier_free_guidance and not guess_mode:
            image = mint.cat([image] * 2)

        return image

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def joint_attention_kwargs(self):
        return self._joint_attention_kwargs

    @property
    def num_timesteps(self):
        return self._num_timesteps

    @property
    def interrupt(self):
        return self._interrupt

    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        prompt_2: Optional[Union[str, List[str]]] = None,
        negative_prompt: Union[str, List[str]] = None,
        negative_prompt_2: Optional[Union[str, List[str]]] = None,
        true_cfg_scale: float = 1.0,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 28,
        sigmas: Optional[List[float]] = None,
        guidance_scale: float = 7.0,
        control_guidance_start: Union[float, List[float]] = 0.0,
        control_guidance_end: Union[float, List[float]] = 1.0,
        control_image: PipelineImageInput = None,
        control_mode: Optional[Union[int, List[int]]] = None,
        controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
        num_images_per_prompt: Optional[int] = 1,
        generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
        latents: Optional[ms.Tensor] = None,
        prompt_embeds: Optional[ms.Tensor] = None,
        pooled_prompt_embeds: Optional[ms.Tensor] = None,
        ip_adapter_image: Optional[PipelineImageInput] = None,
        ip_adapter_image_embeds: Optional[List[ms.Tensor]] = None,
        negative_ip_adapter_image: Optional[PipelineImageInput] = None,
        negative_ip_adapter_image_embeds: Optional[List[ms.Tensor]] = None,
        negative_prompt_embeds: Optional[ms.Tensor] = None,
        negative_pooled_prompt_embeds: Optional[ms.Tensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = False,
        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        max_sequence_length: int = 512,
    ):
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
                instead.
            prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
                will be used instead
            height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The height in pixels of the generated image. This is set to 1024 by default for the best results.
            width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The width in pixels of the generated image. This is set to 1024 by default for the best results.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            sigmas (`List[float]`, *optional*):
                Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
                their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
                will be used.
            guidance_scale (`float`, *optional*, defaults to 7.0):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
                The percentage of total steps at which the ControlNet starts applying.
            control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
                The percentage of total steps at which the ControlNet stops applying.
            control_image (`ms.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[ms.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
                    `List[List[ms.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
                The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
                specified as `ms.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
                as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
                width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
                images must be passed as a list such that each element of the list can be correctly batched for input
                to a single ControlNet.
            controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
                The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
                to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
                the corresponding scale as a list.
            control_mode (`int` or `List[int]`,, *optional*, defaults to None):
                The control mode when applying ControlNet-Union.
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            generator (`np.random.Generator` or `List[np.random.Generator]`, *optional*):
                One or a list of [np.random.Generator(s)](https://numpy.org/doc/stable/reference/random/generator.html)
                to make generation deterministic.
            latents (`ms.Tensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            pooled_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
                If not provided, pooled text embeddings will be generated from `prompt` input argument.
            ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
            ip_adapter_image_embeds (`List[ms.Tensor]`, *optional*):
                Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
                IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
                provided, embeddings are computed from the `ip_adapter_image` input argument.
            negative_ip_adapter_image:
                (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
            negative_ip_adapter_image_embeds (`List[ms.Tensor]`, *optional*):
                Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
                IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
                provided, embeddings are computed from the `ip_adapter_image` input argument.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
            joint_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            callback_on_step_end (`Callable`, *optional*):
                A function that calls at the end of each denoising steps during the inference. The function is called
                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
                `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
                `._callback_tensor_inputs` attribute of your pipeline class.
            max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.

        Examples:

        Returns:
            [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
            is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
            images.
        """

        height = height or self.default_sample_size * self.vae_scale_factor
        width = width or self.default_sample_size * self.vae_scale_factor

        if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
            control_guidance_start = len(control_guidance_end) * [control_guidance_start]
        elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
            control_guidance_end = len(control_guidance_start) * [control_guidance_end]
        elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
            mult = len(self.controlnet.nets) if isinstance(self.controlnet, FluxMultiControlNetModel) else 1
            control_guidance_start, control_guidance_end = (
                mult * [control_guidance_start],
                mult * [control_guidance_end],
            )

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            prompt_2,
            height,
            width,
            negative_prompt=negative_prompt,
            negative_prompt_2=negative_prompt_2,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
            callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
            max_sequence_length=max_sequence_length,
        )

        self._guidance_scale = guidance_scale
        self._joint_attention_kwargs = joint_attention_kwargs
        self._interrupt = False

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        dtype = self.transformer.dtype

        # 3. Prepare text embeddings
        lora_scale = self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
        do_true_cfg = true_cfg_scale > 1 and negative_prompt is not None
        (
            prompt_embeds,
            pooled_prompt_embeds,
            text_ids,
        ) = self.encode_prompt(
            prompt=prompt,
            prompt_2=prompt_2,
            prompt_embeds=prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            num_images_per_prompt=num_images_per_prompt,
            max_sequence_length=max_sequence_length,
            lora_scale=lora_scale,
        )
        if do_true_cfg:
            (
                negative_prompt_embeds,
                negative_pooled_prompt_embeds,
                _,
            ) = self.encode_prompt(
                prompt=negative_prompt,
                prompt_2=negative_prompt_2,
                prompt_embeds=negative_prompt_embeds,
                pooled_prompt_embeds=negative_pooled_prompt_embeds,
                num_images_per_prompt=num_images_per_prompt,
                max_sequence_length=max_sequence_length,
                lora_scale=lora_scale,
            )

        # 3. Prepare control image
        num_channels_latents = self.transformer.config.in_channels // 4
        if isinstance(self.controlnet, FluxControlNetModel):
            control_image = self.prepare_image(
                image=control_image,
                width=width,
                height=height,
                batch_size=batch_size * num_images_per_prompt,
                num_images_per_prompt=num_images_per_prompt,
                dtype=self.vae.dtype,
            )
            height, width = control_image.shape[-2:]

            # xlab controlnet has a input_hint_block and instantx controlnet does not
            controlnet_blocks_repeat = False if self.controlnet.input_hint_block is None else True
            if self.controlnet.input_hint_block is None:
                # vae encode
                control_image = retrieve_latents(self.vae, self.vae.encode(control_image)[0], generator=generator)
                control_image = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor

                # pack
                height_control_image, width_control_image = control_image.shape[2:]
                control_image = self._pack_latents(
                    control_image,
                    batch_size * num_images_per_prompt,
                    num_channels_latents,
                    height_control_image,
                    width_control_image,
                )

            # Here we ensure that `control_mode` has the same length as the control_image.
            if control_mode is not None:
                if not isinstance(control_mode, int):
                    raise ValueError(" For `FluxControlNet`, `control_mode` should be an `int` or `None`")
                control_mode = ms.tensor(control_mode).to(dtype=ms.int64)
                control_mode = control_mode.view(-1, 1).broadcast_to((control_image.shape[0], 1))

        elif isinstance(self.controlnet, FluxMultiControlNetModel):
            control_images = []
            # xlab controlnet has a input_hint_block and instantx controlnet does not
            controlnet_blocks_repeat = False if self.controlnet.nets[0].input_hint_block is None else True
            for i, control_image_ in enumerate(control_image):
                control_image_ = self.prepare_image(
                    image=control_image_,
                    width=width,
                    height=height,
                    batch_size=batch_size * num_images_per_prompt,
                    num_images_per_prompt=num_images_per_prompt,
                    dtype=self.vae.dtype,
                )
                height, width = control_image_.shape[-2:]

                if self.controlnet.nets[0].input_hint_block is None:
                    # vae encode
                    control_image_ = retrieve_latents(self.vae, self.vae.encode(control_image_)[0], generator=generator)
                    control_image_ = (control_image_ - self.vae.config.shift_factor) * self.vae.config.scaling_factor

                    # pack
                    height_control_image, width_control_image = control_image_.shape[2:]
                    control_image_ = self._pack_latents(
                        control_image_,
                        batch_size * num_images_per_prompt,
                        num_channels_latents,
                        height_control_image,
                        width_control_image,
                    )
                control_images.append(control_image_)

            control_image = control_images

            # Here we ensure that `control_mode` has the same length as the control_image.
            if isinstance(control_mode, list) and len(control_mode) != len(control_image):
                raise ValueError(
                    "For Multi-ControlNet, `control_mode` must be a list of the same "
                    + " length as the number of controlnets (control images) specified"
                )
            if not isinstance(control_mode, list):
                control_mode = [control_mode] * len(control_image)
            # set control mode
            control_modes = []
            for cmode in control_mode:
                if cmode is None:
                    cmode = -1
                control_mode = ms.tensor(cmode).broadcast_to((control_images[0].shape[0],)).to(dtype=ms.int64)
                control_modes.append(control_mode)
            control_mode = control_modes

        # 4. Prepare latent variables
        num_channels_latents = self.transformer.config.in_channels // 4
        latents, latent_image_ids = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            generator,
            latents,
        )

        # 5. Prepare timesteps
        sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
        image_seq_len = latents.shape[1]
        mu = calculate_shift(
            image_seq_len,
            self.scheduler.config.get("base_image_seq_len", 256),
            self.scheduler.config.get("max_image_seq_len", 4096),
            self.scheduler.config.get("base_shift", 0.5),
            self.scheduler.config.get("max_shift", 1.15),
        )
        timesteps, num_inference_steps = retrieve_timesteps(
            self.scheduler,
            num_inference_steps,
            sigmas=sigmas,
            mu=mu,
        )

        num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
        self._num_timesteps = len(timesteps)

        # 6. Create tensor stating which controlnets to keep
        controlnet_keep = []
        for i in range(len(timesteps)):
            keeps = [
                1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
                for s, e in zip(control_guidance_start, control_guidance_end)
            ]
            controlnet_keep.append(keeps[0] if isinstance(self.controlnet, FluxControlNetModel) else keeps)

        if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) and (
            negative_ip_adapter_image is None and negative_ip_adapter_image_embeds is None
        ):
            negative_ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
        elif (ip_adapter_image is None and ip_adapter_image_embeds is None) and (
            negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None
        ):
            ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)

        if self.joint_attention_kwargs is None:
            self._joint_attention_kwargs = {}

        image_embeds = None
        negative_image_embeds = None
        if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
            image_embeds = self.prepare_ip_adapter_image_embeds(
                ip_adapter_image,
                ip_adapter_image_embeds,
                batch_size * num_images_per_prompt,
            )
        if negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None:
            negative_image_embeds = self.prepare_ip_adapter_image_embeds(
                negative_ip_adapter_image,
                negative_ip_adapter_image_embeds,
                batch_size * num_images_per_prompt,
            )

        # 7. Denoising loop
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                if self.interrupt:
                    continue

                if image_embeds is not None:
                    self._joint_attention_kwargs["ip_adapter_image_embeds"] = image_embeds
                # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
                timestep = t.broadcast_to((latents.shape[0],)).to(latents.dtype)

                if isinstance(self.controlnet, FluxMultiControlNetModel):
                    use_guidance = self.controlnet.nets[0].config.guidance_embeds
                else:
                    use_guidance = self.controlnet.config.guidance_embeds

                guidance = ms.tensor([guidance_scale]) if use_guidance else None
                guidance = guidance.broadcast_to((latents.shape[0],)) if guidance is not None else None

                if isinstance(controlnet_keep[i], list):
                    cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
                else:
                    controlnet_cond_scale = controlnet_conditioning_scale
                    if isinstance(controlnet_cond_scale, list):
                        controlnet_cond_scale = controlnet_cond_scale[0]
                    cond_scale = controlnet_cond_scale * controlnet_keep[i]

                # controlnet
                controlnet_block_samples, controlnet_single_block_samples = self.controlnet(
                    hidden_states=latents,
                    controlnet_cond=control_image,
                    controlnet_mode=control_mode,
                    conditioning_scale=cond_scale,
                    timestep=timestep / 1000,
                    guidance=guidance,
                    pooled_projections=pooled_prompt_embeds,
                    encoder_hidden_states=prompt_embeds,
                    txt_ids=text_ids,
                    img_ids=latent_image_ids,
                    joint_attention_kwargs=self.joint_attention_kwargs,
                    return_dict=False,
                )

                guidance = ms.tensor([guidance_scale]) if self.transformer.config.guidance_embeds else None
                guidance = guidance.broadcast_to((latents.shape[0],)) if guidance is not None else None

                noise_pred = self.transformer(
                    hidden_states=latents,
                    timestep=timestep / 1000,
                    guidance=guidance,
                    pooled_projections=pooled_prompt_embeds,
                    encoder_hidden_states=prompt_embeds,
                    controlnet_block_samples=ms.mutable(controlnet_block_samples),
                    controlnet_single_block_samples=controlnet_single_block_samples,
                    txt_ids=text_ids,
                    img_ids=latent_image_ids,
                    joint_attention_kwargs=self.joint_attention_kwargs,
                    return_dict=False,
                    controlnet_blocks_repeat=controlnet_blocks_repeat,
                )[0]

                if do_true_cfg:
                    if negative_image_embeds is not None:
                        self._joint_attention_kwargs["ip_adapter_image_embeds"] = negative_image_embeds
                    neg_noise_pred = self.transformer(
                        hidden_states=latents,
                        timestep=timestep / 1000,
                        guidance=guidance,
                        pooled_projections=negative_pooled_prompt_embeds,
                        encoder_hidden_states=negative_prompt_embeds,
                        controlnet_block_samples=controlnet_block_samples,
                        controlnet_single_block_samples=controlnet_single_block_samples,
                        txt_ids=text_ids,
                        img_ids=latent_image_ids,
                        joint_attention_kwargs=self.joint_attention_kwargs,
                        return_dict=False,
                        controlnet_blocks_repeat=controlnet_blocks_repeat,
                    )[0]
                    noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    control_image = callback_outputs.pop("control_image", control_image)

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()

        if output_type == "latent":
            image = latents

        else:
            latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
            latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor

            image = self.vae.decode(latents, return_dict=False)[0]
            image = self.image_processor.postprocess(image, output_type=output_type)

        if not return_dict:
            return (image,)

        return FluxPipelineOutput(images=image)

mindone.diffusers.FluxControlNetPipeline.__call__(prompt=None, prompt_2=None, negative_prompt=None, negative_prompt_2=None, true_cfg_scale=1.0, height=None, width=None, num_inference_steps=28, sigmas=None, guidance_scale=7.0, control_guidance_start=0.0, control_guidance_end=1.0, control_image=None, control_mode=None, controlnet_conditioning_scale=1.0, num_images_per_prompt=1, generator=None, latents=None, prompt_embeds=None, pooled_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, negative_ip_adapter_image=None, negative_ip_adapter_image_embeds=None, negative_prompt_embeds=None, negative_pooled_prompt_embeds=None, output_type='pil', return_dict=False, joint_attention_kwargs=None, callback_on_step_end=None, callback_on_step_end_tensor_inputs=['latents'], max_sequence_length=512)

Function invoked when calling the pipeline for generation.

PARAMETER DESCRIPTION
prompt

The prompt or prompts to guide the image generation. If not defined, one has to pass prompt_embeds. instead.

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

prompt_2

The prompt or prompts to be sent to tokenizer_2 and text_encoder_2. If not defined, prompt is will be used instead

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

height

The height in pixels of the generated image. This is set to 1024 by default for the best results.

TYPE: `int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor DEFAULT: None

width

The width in pixels of the generated image. This is set to 1024 by default for the best results.

TYPE: `int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor DEFAULT: None

num_inference_steps

The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.

TYPE: `int`, *optional*, defaults to 50 DEFAULT: 28

sigmas

Custom sigmas to use for the denoising process with schedulers which support a sigmas argument in their set_timesteps method. If not defined, the default behavior when num_inference_steps is passed will be used.

TYPE: `List[float]`, *optional* DEFAULT: None

guidance_scale

Guidance scale as defined in Classifier-Free Diffusion Guidance. guidance_scale is defined as w of equation 2. of Imagen Paper. Guidance scale is enabled by setting guidance_scale > 1. Higher guidance scale encourages to generate images that are closely linked to the text prompt, usually at the expense of lower image quality.

TYPE: `float`, *optional*, defaults to 7.0 DEFAULT: 7.0

control_guidance_start

The percentage of total steps at which the ControlNet starts applying.

TYPE: `float` or `List[float]`, *optional*, defaults to 0.0 DEFAULT: 0.0

control_guidance_end

The percentage of total steps at which the ControlNet stops applying.

TYPE: `float` or `List[float]`, *optional*, defaults to 1.0 DEFAULT: 1.0

control_image
`List[List[ms.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):

The ControlNet input condition to provide guidance to the unet for generation. If the type is specified as ms.Tensor, it is passed to ControlNet as is. PIL.Image.Image can also be accepted as an image. The dimensions of the output image defaults to image's dimensions. If height and/or width are passed, image is resized accordingly. If multiple ControlNets are specified in init, images must be passed as a list such that each element of the list can be correctly batched for input to a single ControlNet.

TYPE: `ms.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[ms.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`, DEFAULT: None

controlnet_conditioning_scale

The outputs of the ControlNet are multiplied by controlnet_conditioning_scale before they are added to the residual in the original unet. If multiple ControlNets are specified in init, you can set the corresponding scale as a list.

TYPE: `float` or `List[float]`, *optional*, defaults to 1.0 DEFAULT: 1.0

control_mode

The control mode when applying ControlNet-Union.

TYPE: `int` or `List[int]`,, *optional*, defaults to None DEFAULT: None

num_images_per_prompt

The number of images to generate per prompt.

TYPE: `int`, *optional*, defaults to 1 DEFAULT: 1

generator

One or a list of np.random.Generator(s) to make generation deterministic.

TYPE: `np.random.Generator` or `List[np.random.Generator]`, *optional* DEFAULT: None

latents

Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random generator.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

prompt_embeds

Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

pooled_prompt_embeds

Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated from prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

ip_adapter_image

(PipelineImageInput, optional): Optional image input to work with IP Adapters.

TYPE: Optional[PipelineImageInput] DEFAULT: None

ip_adapter_image_embeds

Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters. Each element should be a tensor of shape (batch_size, num_images, emb_dim). If not provided, embeddings are computed from the ip_adapter_image input argument.

TYPE: `List[ms.Tensor]`, *optional* DEFAULT: None

negative_ip_adapter_image

(PipelineImageInput, optional): Optional image input to work with IP Adapters.

TYPE: Optional[PipelineImageInput] DEFAULT: None

negative_ip_adapter_image_embeds

Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters. Each element should be a tensor of shape (batch_size, num_images, emb_dim). If not provided, embeddings are computed from the ip_adapter_image input argument.

TYPE: `List[ms.Tensor]`, *optional* DEFAULT: None

output_type

The output format of the generate image. Choose between PIL: PIL.Image.Image or np.array.

TYPE: `str`, *optional*, defaults to `"pil"` DEFAULT: 'pil'

return_dict

Whether or not to return a [~pipelines.flux.FluxPipelineOutput] instead of a plain tuple.

TYPE: `bool`, *optional*, defaults to `False` DEFAULT: False

joint_attention_kwargs

A kwargs dictionary that if specified is passed along to the AttentionProcessor as defined under self.processor in diffusers.models.attention_processor.

TYPE: `dict`, *optional* DEFAULT: None

callback_on_step_end

A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict). callback_kwargs will include a list of all tensors as specified by callback_on_step_end_tensor_inputs.

TYPE: `Callable`, *optional* DEFAULT: None

callback_on_step_end_tensor_inputs

The list of tensor inputs for the callback_on_step_end function. The tensors specified in the list will be passed as callback_kwargs argument. You will only be able to include variables listed in the ._callback_tensor_inputs attribute of your pipeline class.

TYPE: `List`, *optional* DEFAULT: ['latents']

max_sequence_length

Maximum sequence length to use with the prompt.

TYPE: `int` defaults to 512 DEFAULT: 512

RETURNS DESCRIPTION

[~pipelines.flux.FluxPipelineOutput] or tuple: [~pipelines.flux.FluxPipelineOutput] if return_dict

is True, otherwise a tuple. When returning a tuple, the first element is a list with the generated

images.

Source code in mindone/diffusers/pipelines/flux/pipeline_flux_controlnet.py
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
def __call__(
    self,
    prompt: Union[str, List[str]] = None,
    prompt_2: Optional[Union[str, List[str]]] = None,
    negative_prompt: Union[str, List[str]] = None,
    negative_prompt_2: Optional[Union[str, List[str]]] = None,
    true_cfg_scale: float = 1.0,
    height: Optional[int] = None,
    width: Optional[int] = None,
    num_inference_steps: int = 28,
    sigmas: Optional[List[float]] = None,
    guidance_scale: float = 7.0,
    control_guidance_start: Union[float, List[float]] = 0.0,
    control_guidance_end: Union[float, List[float]] = 1.0,
    control_image: PipelineImageInput = None,
    control_mode: Optional[Union[int, List[int]]] = None,
    controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
    num_images_per_prompt: Optional[int] = 1,
    generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
    latents: Optional[ms.Tensor] = None,
    prompt_embeds: Optional[ms.Tensor] = None,
    pooled_prompt_embeds: Optional[ms.Tensor] = None,
    ip_adapter_image: Optional[PipelineImageInput] = None,
    ip_adapter_image_embeds: Optional[List[ms.Tensor]] = None,
    negative_ip_adapter_image: Optional[PipelineImageInput] = None,
    negative_ip_adapter_image_embeds: Optional[List[ms.Tensor]] = None,
    negative_prompt_embeds: Optional[ms.Tensor] = None,
    negative_pooled_prompt_embeds: Optional[ms.Tensor] = None,
    output_type: Optional[str] = "pil",
    return_dict: bool = False,
    joint_attention_kwargs: Optional[Dict[str, Any]] = None,
    callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
    callback_on_step_end_tensor_inputs: List[str] = ["latents"],
    max_sequence_length: int = 512,
):
    r"""
    Function invoked when calling the pipeline for generation.

    Args:
        prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
            instead.
        prompt_2 (`str` or `List[str]`, *optional*):
            The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
            will be used instead
        height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
            The height in pixels of the generated image. This is set to 1024 by default for the best results.
        width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
            The width in pixels of the generated image. This is set to 1024 by default for the best results.
        num_inference_steps (`int`, *optional*, defaults to 50):
            The number of denoising steps. More denoising steps usually lead to a higher quality image at the
            expense of slower inference.
        sigmas (`List[float]`, *optional*):
            Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
            their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
            will be used.
        guidance_scale (`float`, *optional*, defaults to 7.0):
            Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
            `guidance_scale` is defined as `w` of equation 2. of [Imagen
            Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
            1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
            usually at the expense of lower image quality.
        control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
            The percentage of total steps at which the ControlNet starts applying.
        control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
            The percentage of total steps at which the ControlNet stops applying.
        control_image (`ms.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[ms.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
                `List[List[ms.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
            The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
            specified as `ms.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
            as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
            width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
            images must be passed as a list such that each element of the list can be correctly batched for input
            to a single ControlNet.
        controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
            The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
            to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
            the corresponding scale as a list.
        control_mode (`int` or `List[int]`,, *optional*, defaults to None):
            The control mode when applying ControlNet-Union.
        num_images_per_prompt (`int`, *optional*, defaults to 1):
            The number of images to generate per prompt.
        generator (`np.random.Generator` or `List[np.random.Generator]`, *optional*):
            One or a list of [np.random.Generator(s)](https://numpy.org/doc/stable/reference/random/generator.html)
            to make generation deterministic.
        latents (`ms.Tensor`, *optional*):
            Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
            generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
            tensor will ge generated by sampling using the supplied random `generator`.
        prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
            provided, text embeddings will be generated from `prompt` input argument.
        pooled_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
            If not provided, pooled text embeddings will be generated from `prompt` input argument.
        ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
        ip_adapter_image_embeds (`List[ms.Tensor]`, *optional*):
            Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
            IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
            provided, embeddings are computed from the `ip_adapter_image` input argument.
        negative_ip_adapter_image:
            (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
        negative_ip_adapter_image_embeds (`List[ms.Tensor]`, *optional*):
            Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
            IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
            provided, embeddings are computed from the `ip_adapter_image` input argument.
        output_type (`str`, *optional*, defaults to `"pil"`):
            The output format of the generate image. Choose between
            [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
        return_dict (`bool`, *optional*, defaults to `False`):
            Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
        joint_attention_kwargs (`dict`, *optional*):
            A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
            `self.processor` in
            [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
        callback_on_step_end (`Callable`, *optional*):
            A function that calls at the end of each denoising steps during the inference. The function is called
            with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
            callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
            `callback_on_step_end_tensor_inputs`.
        callback_on_step_end_tensor_inputs (`List`, *optional*):
            The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
            will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
            `._callback_tensor_inputs` attribute of your pipeline class.
        max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.

    Examples:

    Returns:
        [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
        is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
        images.
    """

    height = height or self.default_sample_size * self.vae_scale_factor
    width = width or self.default_sample_size * self.vae_scale_factor

    if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
        control_guidance_start = len(control_guidance_end) * [control_guidance_start]
    elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
        control_guidance_end = len(control_guidance_start) * [control_guidance_end]
    elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
        mult = len(self.controlnet.nets) if isinstance(self.controlnet, FluxMultiControlNetModel) else 1
        control_guidance_start, control_guidance_end = (
            mult * [control_guidance_start],
            mult * [control_guidance_end],
        )

    # 1. Check inputs. Raise error if not correct
    self.check_inputs(
        prompt,
        prompt_2,
        height,
        width,
        negative_prompt=negative_prompt,
        negative_prompt_2=negative_prompt_2,
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=negative_prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
        callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
        max_sequence_length=max_sequence_length,
    )

    self._guidance_scale = guidance_scale
    self._joint_attention_kwargs = joint_attention_kwargs
    self._interrupt = False

    # 2. Define call parameters
    if prompt is not None and isinstance(prompt, str):
        batch_size = 1
    elif prompt is not None and isinstance(prompt, list):
        batch_size = len(prompt)
    else:
        batch_size = prompt_embeds.shape[0]

    dtype = self.transformer.dtype

    # 3. Prepare text embeddings
    lora_scale = self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
    do_true_cfg = true_cfg_scale > 1 and negative_prompt is not None
    (
        prompt_embeds,
        pooled_prompt_embeds,
        text_ids,
    ) = self.encode_prompt(
        prompt=prompt,
        prompt_2=prompt_2,
        prompt_embeds=prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        num_images_per_prompt=num_images_per_prompt,
        max_sequence_length=max_sequence_length,
        lora_scale=lora_scale,
    )
    if do_true_cfg:
        (
            negative_prompt_embeds,
            negative_pooled_prompt_embeds,
            _,
        ) = self.encode_prompt(
            prompt=negative_prompt,
            prompt_2=negative_prompt_2,
            prompt_embeds=negative_prompt_embeds,
            pooled_prompt_embeds=negative_pooled_prompt_embeds,
            num_images_per_prompt=num_images_per_prompt,
            max_sequence_length=max_sequence_length,
            lora_scale=lora_scale,
        )

    # 3. Prepare control image
    num_channels_latents = self.transformer.config.in_channels // 4
    if isinstance(self.controlnet, FluxControlNetModel):
        control_image = self.prepare_image(
            image=control_image,
            width=width,
            height=height,
            batch_size=batch_size * num_images_per_prompt,
            num_images_per_prompt=num_images_per_prompt,
            dtype=self.vae.dtype,
        )
        height, width = control_image.shape[-2:]

        # xlab controlnet has a input_hint_block and instantx controlnet does not
        controlnet_blocks_repeat = False if self.controlnet.input_hint_block is None else True
        if self.controlnet.input_hint_block is None:
            # vae encode
            control_image = retrieve_latents(self.vae, self.vae.encode(control_image)[0], generator=generator)
            control_image = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor

            # pack
            height_control_image, width_control_image = control_image.shape[2:]
            control_image = self._pack_latents(
                control_image,
                batch_size * num_images_per_prompt,
                num_channels_latents,
                height_control_image,
                width_control_image,
            )

        # Here we ensure that `control_mode` has the same length as the control_image.
        if control_mode is not None:
            if not isinstance(control_mode, int):
                raise ValueError(" For `FluxControlNet`, `control_mode` should be an `int` or `None`")
            control_mode = ms.tensor(control_mode).to(dtype=ms.int64)
            control_mode = control_mode.view(-1, 1).broadcast_to((control_image.shape[0], 1))

    elif isinstance(self.controlnet, FluxMultiControlNetModel):
        control_images = []
        # xlab controlnet has a input_hint_block and instantx controlnet does not
        controlnet_blocks_repeat = False if self.controlnet.nets[0].input_hint_block is None else True
        for i, control_image_ in enumerate(control_image):
            control_image_ = self.prepare_image(
                image=control_image_,
                width=width,
                height=height,
                batch_size=batch_size * num_images_per_prompt,
                num_images_per_prompt=num_images_per_prompt,
                dtype=self.vae.dtype,
            )
            height, width = control_image_.shape[-2:]

            if self.controlnet.nets[0].input_hint_block is None:
                # vae encode
                control_image_ = retrieve_latents(self.vae, self.vae.encode(control_image_)[0], generator=generator)
                control_image_ = (control_image_ - self.vae.config.shift_factor) * self.vae.config.scaling_factor

                # pack
                height_control_image, width_control_image = control_image_.shape[2:]
                control_image_ = self._pack_latents(
                    control_image_,
                    batch_size * num_images_per_prompt,
                    num_channels_latents,
                    height_control_image,
                    width_control_image,
                )
            control_images.append(control_image_)

        control_image = control_images

        # Here we ensure that `control_mode` has the same length as the control_image.
        if isinstance(control_mode, list) and len(control_mode) != len(control_image):
            raise ValueError(
                "For Multi-ControlNet, `control_mode` must be a list of the same "
                + " length as the number of controlnets (control images) specified"
            )
        if not isinstance(control_mode, list):
            control_mode = [control_mode] * len(control_image)
        # set control mode
        control_modes = []
        for cmode in control_mode:
            if cmode is None:
                cmode = -1
            control_mode = ms.tensor(cmode).broadcast_to((control_images[0].shape[0],)).to(dtype=ms.int64)
            control_modes.append(control_mode)
        control_mode = control_modes

    # 4. Prepare latent variables
    num_channels_latents = self.transformer.config.in_channels // 4
    latents, latent_image_ids = self.prepare_latents(
        batch_size * num_images_per_prompt,
        num_channels_latents,
        height,
        width,
        prompt_embeds.dtype,
        generator,
        latents,
    )

    # 5. Prepare timesteps
    sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
    image_seq_len = latents.shape[1]
    mu = calculate_shift(
        image_seq_len,
        self.scheduler.config.get("base_image_seq_len", 256),
        self.scheduler.config.get("max_image_seq_len", 4096),
        self.scheduler.config.get("base_shift", 0.5),
        self.scheduler.config.get("max_shift", 1.15),
    )
    timesteps, num_inference_steps = retrieve_timesteps(
        self.scheduler,
        num_inference_steps,
        sigmas=sigmas,
        mu=mu,
    )

    num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
    self._num_timesteps = len(timesteps)

    # 6. Create tensor stating which controlnets to keep
    controlnet_keep = []
    for i in range(len(timesteps)):
        keeps = [
            1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
            for s, e in zip(control_guidance_start, control_guidance_end)
        ]
        controlnet_keep.append(keeps[0] if isinstance(self.controlnet, FluxControlNetModel) else keeps)

    if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) and (
        negative_ip_adapter_image is None and negative_ip_adapter_image_embeds is None
    ):
        negative_ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
    elif (ip_adapter_image is None and ip_adapter_image_embeds is None) and (
        negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None
    ):
        ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)

    if self.joint_attention_kwargs is None:
        self._joint_attention_kwargs = {}

    image_embeds = None
    negative_image_embeds = None
    if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
        image_embeds = self.prepare_ip_adapter_image_embeds(
            ip_adapter_image,
            ip_adapter_image_embeds,
            batch_size * num_images_per_prompt,
        )
    if negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None:
        negative_image_embeds = self.prepare_ip_adapter_image_embeds(
            negative_ip_adapter_image,
            negative_ip_adapter_image_embeds,
            batch_size * num_images_per_prompt,
        )

    # 7. Denoising loop
    with self.progress_bar(total=num_inference_steps) as progress_bar:
        for i, t in enumerate(timesteps):
            if self.interrupt:
                continue

            if image_embeds is not None:
                self._joint_attention_kwargs["ip_adapter_image_embeds"] = image_embeds
            # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
            timestep = t.broadcast_to((latents.shape[0],)).to(latents.dtype)

            if isinstance(self.controlnet, FluxMultiControlNetModel):
                use_guidance = self.controlnet.nets[0].config.guidance_embeds
            else:
                use_guidance = self.controlnet.config.guidance_embeds

            guidance = ms.tensor([guidance_scale]) if use_guidance else None
            guidance = guidance.broadcast_to((latents.shape[0],)) if guidance is not None else None

            if isinstance(controlnet_keep[i], list):
                cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
            else:
                controlnet_cond_scale = controlnet_conditioning_scale
                if isinstance(controlnet_cond_scale, list):
                    controlnet_cond_scale = controlnet_cond_scale[0]
                cond_scale = controlnet_cond_scale * controlnet_keep[i]

            # controlnet
            controlnet_block_samples, controlnet_single_block_samples = self.controlnet(
                hidden_states=latents,
                controlnet_cond=control_image,
                controlnet_mode=control_mode,
                conditioning_scale=cond_scale,
                timestep=timestep / 1000,
                guidance=guidance,
                pooled_projections=pooled_prompt_embeds,
                encoder_hidden_states=prompt_embeds,
                txt_ids=text_ids,
                img_ids=latent_image_ids,
                joint_attention_kwargs=self.joint_attention_kwargs,
                return_dict=False,
            )

            guidance = ms.tensor([guidance_scale]) if self.transformer.config.guidance_embeds else None
            guidance = guidance.broadcast_to((latents.shape[0],)) if guidance is not None else None

            noise_pred = self.transformer(
                hidden_states=latents,
                timestep=timestep / 1000,
                guidance=guidance,
                pooled_projections=pooled_prompt_embeds,
                encoder_hidden_states=prompt_embeds,
                controlnet_block_samples=ms.mutable(controlnet_block_samples),
                controlnet_single_block_samples=controlnet_single_block_samples,
                txt_ids=text_ids,
                img_ids=latent_image_ids,
                joint_attention_kwargs=self.joint_attention_kwargs,
                return_dict=False,
                controlnet_blocks_repeat=controlnet_blocks_repeat,
            )[0]

            if do_true_cfg:
                if negative_image_embeds is not None:
                    self._joint_attention_kwargs["ip_adapter_image_embeds"] = negative_image_embeds
                neg_noise_pred = self.transformer(
                    hidden_states=latents,
                    timestep=timestep / 1000,
                    guidance=guidance,
                    pooled_projections=negative_pooled_prompt_embeds,
                    encoder_hidden_states=negative_prompt_embeds,
                    controlnet_block_samples=controlnet_block_samples,
                    controlnet_single_block_samples=controlnet_single_block_samples,
                    txt_ids=text_ids,
                    img_ids=latent_image_ids,
                    joint_attention_kwargs=self.joint_attention_kwargs,
                    return_dict=False,
                    controlnet_blocks_repeat=controlnet_blocks_repeat,
                )[0]
                noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)

            # compute the previous noisy sample x_t -> x_t-1
            latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]

            if callback_on_step_end is not None:
                callback_kwargs = {}
                for k in callback_on_step_end_tensor_inputs:
                    callback_kwargs[k] = locals()[k]
                callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                latents = callback_outputs.pop("latents", latents)
                prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                control_image = callback_outputs.pop("control_image", control_image)

            # call the callback, if provided
            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                progress_bar.update()

    if output_type == "latent":
        image = latents

    else:
        latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
        latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor

        image = self.vae.decode(latents, return_dict=False)[0]
        image = self.image_processor.postprocess(image, output_type=output_type)

    if not return_dict:
        return (image,)

    return FluxPipelineOutput(images=image)

mindone.diffusers.FluxControlNetPipeline.encode_prompt(prompt, prompt_2, num_images_per_prompt=1, prompt_embeds=None, pooled_prompt_embeds=None, max_sequence_length=512, lora_scale=None)

PARAMETER DESCRIPTION
prompt

prompt to be encoded

TYPE: `str` or `List[str]`, *optional*

prompt_2

The prompt or prompts to be sent to the tokenizer_2 and text_encoder_2. If not defined, prompt is used in all text-encoders

TYPE: `str` or `List[str]`, *optional*

num_images_per_prompt

number of images that should be generated per prompt

TYPE: `int` DEFAULT: 1

prompt_embeds

Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

pooled_prompt_embeds

Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated from prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

clip_skip

Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings.

TYPE: `int`, *optional*

lora_scale

A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.

TYPE: `float`, *optional* DEFAULT: None

Source code in mindone/diffusers/pipelines/flux/pipeline_flux_controlnet.py
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
def encode_prompt(
    self,
    prompt: Union[str, List[str]],
    prompt_2: Union[str, List[str]],
    num_images_per_prompt: int = 1,
    prompt_embeds: Optional[ms.Tensor] = None,
    pooled_prompt_embeds: Optional[ms.Tensor] = None,
    max_sequence_length: int = 512,
    lora_scale: Optional[float] = None,
):
    r"""

    Args:
        prompt (`str` or `List[str]`, *optional*):
            prompt to be encoded
        prompt_2 (`str` or `List[str]`, *optional*):
            The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
            used in all text-encoders
        num_images_per_prompt (`int`):
            number of images that should be generated per prompt
        prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
            provided, text embeddings will be generated from `prompt` input argument.
        pooled_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
            If not provided, pooled text embeddings will be generated from `prompt` input argument.
        clip_skip (`int`, *optional*):
            Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
            the output of the pre-final layer will be used for computing the prompt embeddings.
        lora_scale (`float`, *optional*):
            A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
    """
    # set lora scale so that monkey patched LoRA
    # function of text encoder can correctly access it
    if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
        self._lora_scale = lora_scale

        # dynamically adjust the LoRA scale
        if self.text_encoder is not None:
            scale_lora_layers(self.text_encoder, lora_scale)
        if self.text_encoder_2 is not None:
            scale_lora_layers(self.text_encoder_2, lora_scale)

    prompt = [prompt] if isinstance(prompt, str) else prompt

    if prompt_embeds is None:
        prompt_2 = prompt_2 or prompt
        prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2

        # We only use the pooled prompt output from the CLIPTextModel
        pooled_prompt_embeds = self._get_clip_prompt_embeds(
            prompt=prompt,
            num_images_per_prompt=num_images_per_prompt,
        )
        prompt_embeds = self._get_t5_prompt_embeds(
            prompt=prompt_2,
            num_images_per_prompt=num_images_per_prompt,
            max_sequence_length=max_sequence_length,
        )

    if self.text_encoder is not None:
        if isinstance(self, FluxLoraLoaderMixin):
            # Retrieve the original scale by scaling back the LoRA layers
            unscale_lora_layers(self.text_encoder, lora_scale)

    if self.text_encoder_2 is not None:
        if isinstance(self, FluxLoraLoaderMixin):
            # Retrieve the original scale by scaling back the LoRA layers
            unscale_lora_layers(self.text_encoder_2, lora_scale)

    dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
    text_ids = mint.zeros((prompt_embeds.shape[1], 3)).to(dtype=dtype)

    return prompt_embeds, pooled_prompt_embeds, text_ids

mindone.diffusers.pipelines.flux.pipeline_output.FluxPipelineOutput dataclass

Bases: BaseOutput

Output class for Stable Diffusion pipelines.

Source code in mindone/diffusers/pipelines/flux/pipeline_output.py
14
15
16
17
18
19
20
21
22
23
24
25
@dataclass
class FluxPipelineOutput(BaseOutput):
    """
    Output class for Stable Diffusion pipelines.

    Args:
        images (`List[PIL.Image.Image]` or `np.ndarray`)
            List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
            num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
    """

    images: Union[List[PIL.Image.Image], np.ndarray]