Skip to content

ControlNet

ControlNet was introduced in Adding Conditional Control to Text-to-Image Diffusion Models by Lvmin Zhang, Anyi Rao, and Maneesh Agrawala.

With a ControlNet model, you can provide an additional control image to condition and control Stable Diffusion generation. For example, if you provide a depth map, the ControlNet model generates an image that'll preserve the spatial information from the depth map. It is a more flexible and accurate way to control the image generation process.

The abstract from the paper is:

We present ControlNet, a neural network architecture to add spatial conditioning controls to large, pretrained text-to-image diffusion models. ControlNet locks the production-ready large diffusion models, and reuses their deep and robust encoding layers pretrained with billions of images as a strong backbone to learn a diverse set of conditional controls. The neural architecture is connected with "zero convolutions" (zero-initialized convolution layers) that progressively grow the parameters from zero and ensure that no harmful noise could affect the finetuning. We test various conditioning controls, eg, edges, depth, segmentation, human pose, etc, with Stable Diffusion, using single or multiple conditions, with or without prompts. We show that the training of ControlNets is robust with small (<50k) and large (>1m) datasets. Extensive results show that ControlNet may facilitate wider applications to control image diffusion models.

This model was contributed by takuma104. ❤️

The original codebase can be found at lllyasviel/ControlNet, and you can find official ControlNet checkpoints on lllyasviel's Hub profile.

Tip

Make sure to check out the Schedulers guide to learn how to explore the tradeoff between scheduler speed and quality, and see the reuse components across pipelines section to learn how to efficiently load the same components into multiple pipelines.

mindone.diffusers.StableDiffusionControlNetPipeline

Bases: DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, LoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin

Pipeline for text-to-image generation using Stable Diffusion with ControlNet guidance.

This model inherits from [DiffusionPipeline]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).

The pipeline also inherits the following loading methods
  • [~loaders.TextualInversionLoaderMixin.load_textual_inversion] for loading textual inversion embeddings
  • [~loaders.LoraLoaderMixin.load_lora_weights] for loading LoRA weights
  • [~loaders.LoraLoaderMixin.save_lora_weights] for saving LoRA weights
  • [~loaders.FromSingleFileMixin.from_single_file] for loading .ckpt files
  • [~loaders.IPAdapterMixin.load_ip_adapter] for loading IP Adapters
PARAMETER DESCRIPTION
vae

Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.

TYPE: [`AutoencoderKL`]

text_encoder

Frozen text-encoder (clip-vit-large-patch14).

TYPE: [`~transformers.CLIPTextModel`]

tokenizer

A CLIPTokenizer to tokenize text.

TYPE: [`~transformers.CLIPTokenizer`]

unet

A UNet2DConditionModel to denoise the encoded image latents.

TYPE: [`UNet2DConditionModel`]

controlnet

Provides additional conditioning to the unet during the denoising process. If you set multiple ControlNets as a list, the outputs from each ControlNet are added together to create one combined additional conditioning.

TYPE: [`ControlNetModel`] or `List[ControlNetModel]`

scheduler

A scheduler to be used in combination with unet to denoise the encoded image latents. Can be one of [DDIMScheduler], [LMSDiscreteScheduler], or [PNDMScheduler].

TYPE: [`SchedulerMixin`]

safety_checker

Classification module that estimates whether generated images could be considered offensive or harmful. Please refer to the model card for more details about a model's potential harms.

TYPE: [`StableDiffusionSafetyChecker`]

feature_extractor

A CLIPImageProcessor to extract features from generated images; used as inputs to the safety_checker.

TYPE: [`~transformers.CLIPImageProcessor`]

Source code in mindone/diffusers/pipelines/controlnet/pipeline_controlnet.py
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
class StableDiffusionControlNetPipeline(
    DiffusionPipeline,
    StableDiffusionMixin,
    TextualInversionLoaderMixin,
    LoraLoaderMixin,
    IPAdapterMixin,
    FromSingleFileMixin,
):
    r"""
    Pipeline for text-to-image generation using Stable Diffusion with ControlNet guidance.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).

    The pipeline also inherits the following loading methods:
        - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
        - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
        - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
        - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
        - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
        text_encoder ([`~transformers.CLIPTextModel`]):
            Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
        tokenizer ([`~transformers.CLIPTokenizer`]):
            A `CLIPTokenizer` to tokenize text.
        unet ([`UNet2DConditionModel`]):
            A `UNet2DConditionModel` to denoise the encoded image latents.
        controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
            Provides additional conditioning to the `unet` during the denoising process. If you set multiple
            ControlNets as a list, the outputs from each ControlNet are added together to create one combined
            additional conditioning.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        safety_checker ([`StableDiffusionSafetyChecker`]):
            Classification module that estimates whether generated images could be considered offensive or harmful.
            Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
            about a model's potential harms.
        feature_extractor ([`~transformers.CLIPImageProcessor`]):
            A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
    """

    model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
    _optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
    _exclude_from_cpu_offload = ["safety_checker"]
    _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
        controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
        scheduler: KarrasDiffusionSchedulers,
        safety_checker: StableDiffusionSafetyChecker,
        feature_extractor: CLIPImageProcessor,
        image_encoder: CLIPVisionModelWithProjection = None,
        requires_safety_checker: bool = True,
    ):
        super().__init__()

        if safety_checker is None and requires_safety_checker:
            logger.warning(
                f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
                " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
                " results in services or applications open to the public. Both the diffusers team and Hugging Face"
                " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
                " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
                " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
            )

        if safety_checker is not None and feature_extractor is None:
            raise ValueError(
                "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
                " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
            )

        if isinstance(controlnet, (list, tuple)):
            controlnet = MultiControlNetModel(controlnet)

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            controlnet=controlnet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
            image_encoder=image_encoder,
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
        self.control_image_processor = VaeImageProcessor(
            vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
        )
        self.register_to_config(requires_safety_checker=requires_safety_checker)

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
    def _encode_prompt(
        self,
        prompt,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[ms.Tensor] = None,
        negative_prompt_embeds: Optional[ms.Tensor] = None,
        lora_scale: Optional[float] = None,
        **kwargs,
    ):
        deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."  # noqa: E501
        deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)

        prompt_embeds_tuple = self.encode_prompt(
            prompt=prompt,
            num_images_per_prompt=num_images_per_prompt,
            do_classifier_free_guidance=do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=lora_scale,
            **kwargs,
        )

        # concatenate for backwards comp
        prompt_embeds = ops.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])

        return prompt_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
    def encode_prompt(
        self,
        prompt,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[ms.Tensor] = None,
        negative_prompt_embeds: Optional[ms.Tensor] = None,
        lora_scale: Optional[float] = None,
        clip_skip: Optional[int] = None,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            lora_scale (`float`, *optional*):
                A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
        """
        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
        if lora_scale is not None and isinstance(self, LoraLoaderMixin):
            self._lora_scale = lora_scale

            # dynamically adjust the LoRA scale
            scale_lora_layers(self.text_encoder, lora_scale)

        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if prompt_embeds is None:
            # textual inversion: process multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                prompt = self.maybe_convert_prompt(prompt, self.tokenizer)

            text_inputs = self.tokenizer(
                prompt,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="np",
            )
            text_input_ids = text_inputs.input_ids
            untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="np").input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not np.array_equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {self.tokenizer.model_max_length} tokens: {removed_text}"
                )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = ms.Tensor(text_inputs.attention_mask)
            else:
                attention_mask = None

            if clip_skip is None:
                prompt_embeds = self.text_encoder(ms.Tensor(text_input_ids), attention_mask=attention_mask)
                prompt_embeds = prompt_embeds[0]
            else:
                prompt_embeds = self.text_encoder(
                    ms.Tensor(text_input_ids), attention_mask=attention_mask, output_hidden_states=True
                )
                # Access the `hidden_states` first, that contains a tuple of
                # all the hidden states from the encoder layers. Then index into
                # the tuple to access the hidden states from the desired layer.
                prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
                # We also need to apply the final LayerNorm here to not mess with the
                # representations. The `last_hidden_states` that we typically use for
                # obtaining the final prompt representations passes through the LayerNorm
                # layer.
                prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)

        if self.text_encoder is not None:
            prompt_embeds_dtype = self.text_encoder.dtype
        elif self.unet is not None:
            prompt_embeds_dtype = self.unet.dtype
        else:
            prompt_embeds_dtype = prompt_embeds.dtype

        prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype)

        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.tile((1, num_images_per_prompt, 1))
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif prompt is not None and type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

            # textual inversion: process multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)

            max_length = prompt_embeds.shape[1]
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="np",
            )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = ms.Tensor(uncond_input.attention_mask)
            else:
                attention_mask = None

            negative_prompt_embeds = self.text_encoder(
                ms.Tensor(uncond_input.input_ids),
                attention_mask=attention_mask,
            )
            negative_prompt_embeds = negative_prompt_embeds[0]

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

            negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype)

            negative_prompt_embeds = negative_prompt_embeds.tile((1, num_images_per_prompt, 1))
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

        if self.text_encoder is not None:
            if isinstance(self, LoraLoaderMixin):
                # Retrieve the original scale by scaling back the LoRA layers
                unscale_lora_layers(self.text_encoder, lora_scale)

        return prompt_embeds, negative_prompt_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
    def encode_image(self, image, num_images_per_prompt, output_hidden_states=None):
        dtype = next(self.image_encoder.get_parameters()).dtype

        if not isinstance(image, ms.Tensor):
            image = self.feature_extractor(image, return_tensors="np").pixel_values
            image = ms.Tensor(image)

        image = image.to(dtype=dtype)
        if output_hidden_states:
            image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True)[2][-2]
            image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_enc_hidden_states = self.image_encoder(ops.zeros_like(image), output_hidden_states=True)[2][-2]
            uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
                num_images_per_prompt, dim=0
            )
            return image_enc_hidden_states, uncond_image_enc_hidden_states
        else:
            image_embeds = self.image_encoder(image)[0]
            image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_embeds = ops.zeros_like(image_embeds)

            return image_embeds, uncond_image_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
    def prepare_ip_adapter_image_embeds(
        self, ip_adapter_image, ip_adapter_image_embeds, num_images_per_prompt, do_classifier_free_guidance
    ):
        if ip_adapter_image_embeds is None:
            if not isinstance(ip_adapter_image, list):
                ip_adapter_image = [ip_adapter_image]

            if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
                raise ValueError(
                    f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."  # noqa: E501
                )

            image_embeds = []
            for single_ip_adapter_image, image_proj_layer in zip(
                ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
            ):
                output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
                single_image_embeds, single_negative_image_embeds = self.encode_image(
                    single_ip_adapter_image, 1, output_hidden_state
                )
                single_image_embeds = ops.stack([single_image_embeds] * num_images_per_prompt, axis=0)
                single_negative_image_embeds = ops.stack([single_negative_image_embeds] * num_images_per_prompt, axis=0)

                if do_classifier_free_guidance:
                    single_image_embeds = ops.cat([single_negative_image_embeds, single_image_embeds])

                image_embeds.append(single_image_embeds)
        else:
            repeat_dims = [1]
            image_embeds = []
            for single_image_embeds in ip_adapter_image_embeds:
                if do_classifier_free_guidance:
                    single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
                    single_image_embeds = single_image_embeds.tile(
                        (num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])))
                    )
                    single_negative_image_embeds = single_negative_image_embeds.tile(
                        (num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:])))
                    )
                    single_image_embeds = ops.cat([single_negative_image_embeds, single_image_embeds])
                else:
                    single_image_embeds = single_image_embeds.tile(
                        (num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])))
                    )
                image_embeds.append(single_image_embeds)

        return image_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
    # FIXME: safechecker may convert results to black pictures without warning
    # warning here? or regist a forward hook to do so (not take effect in GRAPH_MODE)
    def run_safety_checker(self, image, dtype):
        if self.safety_checker is None:
            has_nsfw_concept = None
        else:
            if ops.is_tensor(image):
                feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
            else:
                feature_extractor_input = self.image_processor.numpy_to_pil(image)
            safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="np")
            image, has_nsfw_concept = self.safety_checker(
                images=image, clip_input=ms.Tensor(safety_checker_input.pixel_values).to(dtype)
            )

            # Warning for safety checker operations here as it couldn't been done in construct()
            if ops.any(has_nsfw_concept):
                logger.warning(
                    "Potential NSFW content was detected in one or more images. A black image will be returned instead."
                    " Try again with a different prompt and/or seed."
                )
        return image, has_nsfw_concept

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
    def decode_latents(self, latents):
        deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
        deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)

        latents = 1 / self.vae.config.scaling_factor * latents
        image = self.vae.decode(latents, return_dict=False)[0]
        image = (image / 2 + 0.5).clamp(0, 1)
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
        image = image.permute(0, 2, 3, 1).float().numpy()
        return image

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def check_inputs(
        self,
        prompt,
        image,
        callback_steps,
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
        ip_adapter_image=None,
        ip_adapter_image_embeds=None,
        controlnet_conditioning_scale=1.0,
        control_guidance_start=0.0,
        control_guidance_end=1.0,
        callback_on_step_end_tensor_inputs=None,
    ):
        if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"  # noqa: E501
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

        # Check `image`
        if isinstance(self.controlnet, ControlNetModel):
            self.check_image(image, prompt, prompt_embeds)
        elif isinstance(self.controlnet, MultiControlNetModel):
            if not isinstance(image, list):
                raise TypeError("For multiple controlnets: `image` must be type `list`")

            # When `image` is a nested list:
            # (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
            elif any(isinstance(i, list) for i in image):
                transposed_image = [list(t) for t in zip(*image)]
                if len(transposed_image) != len(self.controlnet.nets):
                    raise ValueError(
                        f"For multiple controlnets: if you pass`image` as a list of list, each sublist must have the same length as the number of controlnets, but the sublists in `image` got {len(transposed_image)} images and {len(self.controlnet.nets)} ControlNets."  # noqa: E501
                    )
                for image_ in transposed_image:
                    self.check_image(image_, prompt, prompt_embeds)
            elif len(image) != len(self.controlnet.nets):
                raise ValueError(
                    f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets."  # noqa: E501
                )
            else:
                for image_ in image:
                    self.check_image(image_, prompt, prompt_embeds)
        else:
            assert False

        # Check `controlnet_conditioning_scale`
        if isinstance(self.controlnet, ControlNetModel):
            if not isinstance(controlnet_conditioning_scale, float):
                raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
        elif isinstance(self.controlnet, MultiControlNetModel):
            if isinstance(controlnet_conditioning_scale, list):
                if any(isinstance(i, list) for i in controlnet_conditioning_scale):
                    raise ValueError(
                        "A single batch of varying conditioning scale settings (e.g. [[1.0, 0.5], [0.2, 0.8]]) is not supported at the moment. "
                        "The conditioning scale must be fixed across the batch."
                    )
            elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
                self.controlnet.nets
            ):
                raise ValueError(
                    "For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
                    " the same length as the number of controlnets"
                )
        else:
            assert False

        if not isinstance(control_guidance_start, (tuple, list)):
            control_guidance_start = [control_guidance_start]

        if not isinstance(control_guidance_end, (tuple, list)):
            control_guidance_end = [control_guidance_end]

        if len(control_guidance_start) != len(control_guidance_end):
            raise ValueError(
                f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."  # noqa: E501
            )

        if isinstance(self.controlnet, MultiControlNetModel):
            if len(control_guidance_start) != len(self.controlnet.nets):
                raise ValueError(
                    f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}."  # noqa: E501
                )

        for start, end in zip(control_guidance_start, control_guidance_end):
            if start >= end:
                raise ValueError(
                    f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
                )
            if start < 0.0:
                raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
            if end > 1.0:
                raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")

        if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
            raise ValueError(
                "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."  # noqa: E501
            )

        if ip_adapter_image_embeds is not None:
            if not isinstance(ip_adapter_image_embeds, list):
                raise ValueError(
                    f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
                )
            elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
                raise ValueError(
                    f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
                )

    def check_image(self, image, prompt, prompt_embeds):
        image_is_pil = isinstance(image, PIL.Image.Image)
        image_is_tensor = isinstance(image, ms.Tensor)
        image_is_np = isinstance(image, np.ndarray)
        image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
        image_is_tensor_list = isinstance(image, list) and isinstance(image[0], ms.Tensor)
        image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)

        if (
            not image_is_pil
            and not image_is_tensor
            and not image_is_np
            and not image_is_pil_list
            and not image_is_tensor_list
            and not image_is_np_list
        ):
            raise TypeError(
                f"image must be passed and be one of PIL image, numpy array, mindspore tensor, list of PIL images, list of numpy arrays or list of mindspore tensors, but is {type(image)}"  # noqa: E501
            )

        if image_is_pil:
            image_batch_size = 1
        else:
            image_batch_size = len(image)

        if prompt is not None and isinstance(prompt, str):
            prompt_batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            prompt_batch_size = len(prompt)
        elif prompt_embeds is not None:
            prompt_batch_size = prompt_embeds.shape[0]

        if image_batch_size != 1 and image_batch_size != prompt_batch_size:
            raise ValueError(
                f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"  # noqa: E501
            )

    def prepare_image(
        self,
        image,
        width,
        height,
        batch_size,
        num_images_per_prompt,
        dtype,
        do_classifier_free_guidance=False,
        guess_mode=False,
    ):
        image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=ms.float32)
        image_batch_size = image.shape[0]

        if image_batch_size == 1:
            repeat_by = batch_size
        else:
            # image batch size is the same as prompt batch size
            repeat_by = num_images_per_prompt

        image = image.repeat_interleave(repeat_by, dim=0)

        image = image.to(dtype)

        if do_classifier_free_guidance and not guess_mode:
            image = ops.cat([image] * 2)

        return image

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
    def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, generator, latents=None):
        shape = (
            batch_size,
            num_channels_latents,
            int(height) // self.vae_scale_factor,
            int(width) // self.vae_scale_factor,
        )
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(shape, generator=generator, dtype=dtype)
        else:
            latents = latents.to(dtype)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        # wtf? The above line changes the dtype of latents from fp16 to fp32, so we need a casting.
        latents = latents.to(dtype=dtype)
        return latents

    # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
    def get_guidance_scale_embedding(
        self, w: ms.Tensor, embedding_dim: int = 512, dtype: ms.Type = ms.float32
    ) -> ms.Tensor:
        """
        See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298

        Args:
            w (`mindspore.Tensor`):
                Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
            embedding_dim (`int`, *optional*, defaults to 512):
                Dimension of the embeddings to generate.
            dtype (`mindspore.dtype`, *optional*, defaults to `mindspore.float32`):
                Data type of the generated embeddings.

        Returns:
            `mindspore.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
        """
        assert len(w.shape) == 1
        w = w * 1000.0

        half_dim = embedding_dim // 2
        emb = ops.log(ms.tensor(10000.0)) / (half_dim - 1)
        emb = ops.exp(ops.arange(half_dim, dtype=dtype) * -emb)
        emb = w.to(dtype)[:, None] * emb[None, :]
        emb = ops.cat([ops.sin(emb), ops.cos(emb)], axis=1)
        if embedding_dim % 2 == 1:  # zero pad
            emb = ops.pad(emb, (0, 1))
        assert emb.shape == (w.shape[0], embedding_dim)
        return emb

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def clip_skip(self):
        return self._clip_skip

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None

    @property
    def cross_attention_kwargs(self):
        return self._cross_attention_kwargs

    @property
    def num_timesteps(self):
        return self._num_timesteps

    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        image: PipelineImageInput = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        timesteps: List[int] = None,
        sigmas: List[float] = None,
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
        latents: Optional[ms.Tensor] = None,
        prompt_embeds: Optional[ms.Tensor] = None,
        negative_prompt_embeds: Optional[ms.Tensor] = None,
        ip_adapter_image: Optional[PipelineImageInput] = None,
        ip_adapter_image_embeds: Optional[List[ms.Tensor]] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = False,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
        guess_mode: bool = False,
        control_guidance_start: Union[float, List[float]] = 0.0,
        control_guidance_end: Union[float, List[float]] = 1.0,
        clip_skip: Optional[int] = None,
        callback_on_step_end: Optional[
            Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
        ] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        **kwargs,
    ):
        r"""
        The call function to the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
            image (`ms.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[ms.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
                    `List[List[ms.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
                The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
                specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
                as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
                width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
                images must be passed as a list such that each element of the list can be correctly batched for input
                to a single ControlNet. When `prompt` is a list, and if a list of images is passed for a single
                ControlNet, each will be paired with each prompt in the `prompt` list. This also applies to multiple
                ControlNets, where a list of image lists can be passed to batch for each prompt and each ControlNet.
            height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            timesteps (`List[int]`, *optional*):
                Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
                in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
                passed will be used. Must be in descending order.
            sigmas (`List[float]`, *optional*):
                Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
                their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
                will be used.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
            generator (`np.random.Generator` or `List[np.random.Generator]`, *optional*):
                A [`np.random.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
            latents (`ms.Tensor`, *optional*):
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor is generated by sampling using the supplied random `generator`.
            prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument.
            negative_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
            ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
            ip_adapter_image_embeds (`List[ms.Tensor]`, *optional*):
                Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
                IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
                contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
                provided, embeddings are computed from the `ip_adapter_image` input argument.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
                A function that calls every `callback_steps` steps during inference. The function is called with the
                following arguments: `callback(step: int, timestep: int, latents: ms.Tensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function is called. If not specified, the callback is called at
                every step.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
                The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
                to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
                the corresponding scale as a list.
            guess_mode (`bool`, *optional*, defaults to `False`):
                The ControlNet encoder tries to recognize the content of the input image even if you remove all
                prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
            control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
                The percentage of total steps at which the ControlNet starts applying.
            control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
                The percentage of total steps at which the ControlNet stops applying.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
            callback_on_step_end (`Callable`, *optional*):
                A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
                each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
                DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
                list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
                `._callback_tensor_inputs` attribute of your pipeline class.

        Examples:

        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
                otherwise a `tuple` is returned where the first element is a list with the generated images and the
                second element is a list of `bool`s indicating whether the corresponding generated image contains
                "not-safe-for-work" (nsfw) content.
        """

        callback = kwargs.pop("callback", None)
        callback_steps = kwargs.pop("callback_steps", None)

        if callback is not None:
            deprecate(
                "callback",
                "1.0.0",
                "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
            )
        if callback_steps is not None:
            deprecate(
                "callback_steps",
                "1.0.0",
                "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
            )

        if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
            callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs

        controlnet = self.controlnet

        # align format for control guidance
        if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
            control_guidance_start = len(control_guidance_end) * [control_guidance_start]
        elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
            control_guidance_end = len(control_guidance_start) * [control_guidance_end]
        elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
            mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
            control_guidance_start, control_guidance_end = (
                mult * [control_guidance_start],
                mult * [control_guidance_end],
            )

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            image,
            callback_steps,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
            ip_adapter_image,
            ip_adapter_image_embeds,
            controlnet_conditioning_scale,
            control_guidance_start,
            control_guidance_end,
            callback_on_step_end_tensor_inputs,
        )

        self._guidance_scale = guidance_scale
        self._clip_skip = clip_skip
        self._cross_attention_kwargs = cross_attention_kwargs

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
            controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)

        global_pool_conditions = (
            controlnet.config.global_pool_conditions
            if isinstance(controlnet, ControlNetModel)
            else controlnet.nets[0].config.global_pool_conditions
        )
        guess_mode = guess_mode or global_pool_conditions

        # 3. Encode input prompt
        text_encoder_lora_scale = (
            self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
        )
        prompt_embeds, negative_prompt_embeds = self.encode_prompt(
            prompt,
            num_images_per_prompt,
            self.do_classifier_free_guidance,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=text_encoder_lora_scale,
            clip_skip=self.clip_skip,
        )
        # For classifier free guidance, we need to do two forward passes.
        # Here we concatenate the unconditional and text embeddings into a single batch
        # to avoid doing two forward passes
        if self.do_classifier_free_guidance:
            prompt_embeds = ops.cat([negative_prompt_embeds, prompt_embeds])

        if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
            image_embeds = self.prepare_ip_adapter_image_embeds(
                ip_adapter_image,
                ip_adapter_image_embeds,
                batch_size * num_images_per_prompt,
                self.do_classifier_free_guidance,
            )

        # 4. Prepare image
        if isinstance(controlnet, ControlNetModel):
            image = self.prepare_image(
                image=image,
                width=width,
                height=height,
                batch_size=batch_size * num_images_per_prompt,
                num_images_per_prompt=num_images_per_prompt,
                dtype=controlnet.dtype,
                do_classifier_free_guidance=self.do_classifier_free_guidance,
                guess_mode=guess_mode,
            )
            height, width = image.shape[-2:]
        elif isinstance(controlnet, MultiControlNetModel):
            images = []

            # Nested lists as ControlNet condition
            if isinstance(image[0], list):
                # Transpose the nested image list
                image = [list(t) for t in zip(*image)]

            for image_ in image:
                image_ = self.prepare_image(
                    image=image_,
                    width=width,
                    height=height,
                    batch_size=batch_size * num_images_per_prompt,
                    num_images_per_prompt=num_images_per_prompt,
                    dtype=controlnet.dtype,
                    do_classifier_free_guidance=self.do_classifier_free_guidance,
                    guess_mode=guess_mode,
                )

                images.append(image_)

            image = images
            height, width = image[0].shape[-2:]
        else:
            assert False

        # 5. Prepare timesteps
        timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, timesteps, sigmas)
        self._num_timesteps = len(timesteps)

        # 6. Prepare latent variables
        num_channels_latents = self.unet.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            generator,
            latents,
        )

        # 6.5 Optionally get Guidance Scale Embedding
        timestep_cond = None
        if self.unet.config.time_cond_proj_dim is not None:
            guidance_scale_tensor = ms.Tensor(self.guidance_scale - 1).tile((batch_size * num_images_per_prompt,))
            timestep_cond = self.get_guidance_scale_embedding(
                guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
            ).to(latents.dtype)

        # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 7.1 Add image embeds for IP-Adapter
        added_cond_kwargs = (
            {"image_embeds": image_embeds}
            if ip_adapter_image is not None or ip_adapter_image_embeds is not None
            else None
        )

        # 7.2 Create tensor stating which controlnets to keep
        controlnet_keep = []
        for i in range(len(timesteps)):
            keeps = [
                1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
                for s, e in zip(control_guidance_start, control_guidance_end)
            ]
            controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)

        # 8. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # Relevant thread:
                # https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
                # expand the latents if we are doing classifier free guidance
                latent_model_input = ops.cat([latents] * 2) if self.do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # controlnet(s) inference
                if guess_mode and self.do_classifier_free_guidance:
                    # Infer ControlNet only for the conditional batch.
                    control_model_input = latents
                    control_model_input = self.scheduler.scale_model_input(control_model_input, t)
                    controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
                else:
                    control_model_input = latent_model_input
                    controlnet_prompt_embeds = prompt_embeds

                if isinstance(controlnet_keep[i], list):
                    cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
                else:
                    controlnet_cond_scale = controlnet_conditioning_scale
                    if isinstance(controlnet_cond_scale, list):
                        controlnet_cond_scale = controlnet_cond_scale[0]
                    cond_scale = controlnet_cond_scale * controlnet_keep[i]

                down_block_res_samples, mid_block_res_sample = self.controlnet(
                    control_model_input,
                    t,
                    encoder_hidden_states=controlnet_prompt_embeds,
                    controlnet_cond=image,
                    conditioning_scale=cond_scale,
                    guess_mode=guess_mode,
                    return_dict=False,
                )

                if guess_mode and self.do_classifier_free_guidance:
                    # Infered ControlNet only for the conditional batch.
                    # To apply the output of ControlNet to both the unconditional and conditional batches,
                    # add 0 to the unconditional batch to keep it unchanged.
                    down_block_res_samples = [ops.cat([ops.zeros_like(d), d]) for d in down_block_res_samples]
                    mid_block_res_sample = ops.cat([ops.zeros_like(mid_block_res_sample), mid_block_res_sample])

                # predict the noise residual
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    timestep_cond=timestep_cond,
                    cross_attention_kwargs=self.cross_attention_kwargs,
                    down_block_additional_residuals=ms.mutable(down_block_res_samples),
                    mid_block_additional_residual=mid_block_res_sample,
                    added_cond_kwargs=ms.mutable(added_cond_kwargs) if added_cond_kwargs else added_cond_kwargs,
                    return_dict=False,
                )[0]

                # perform guidance
                if self.do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)

        if not output_type == "latent":
            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
            image, has_nsfw_concept = self.run_safety_checker(image, prompt_embeds.dtype)
        else:
            image = latents
            has_nsfw_concept = None

        if has_nsfw_concept is None:
            do_denormalize = [True] * image.shape[0]
        else:
            do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]

        image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)

        if not return_dict:
            return (image, has_nsfw_concept)

        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)

mindone.diffusers.StableDiffusionControlNetPipeline.__call__(prompt=None, image=None, height=None, width=None, num_inference_steps=50, timesteps=None, sigmas=None, guidance_scale=7.5, negative_prompt=None, num_images_per_prompt=1, eta=0.0, generator=None, latents=None, prompt_embeds=None, negative_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, output_type='pil', return_dict=False, cross_attention_kwargs=None, controlnet_conditioning_scale=1.0, guess_mode=False, control_guidance_start=0.0, control_guidance_end=1.0, clip_skip=None, callback_on_step_end=None, callback_on_step_end_tensor_inputs=['latents'], **kwargs)

The call function to the pipeline for generation.

PARAMETER DESCRIPTION
prompt

The prompt or prompts to guide image generation. If not defined, you need to pass prompt_embeds.

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

image
`List[List[ms.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):

The ControlNet input condition to provide guidance to the unet for generation. If the type is specified as torch.Tensor, it is passed to ControlNet as is. PIL.Image.Image can also be accepted as an image. The dimensions of the output image defaults to image's dimensions. If height and/or width are passed, image is resized accordingly. If multiple ControlNets are specified in init, images must be passed as a list such that each element of the list can be correctly batched for input to a single ControlNet. When prompt is a list, and if a list of images is passed for a single ControlNet, each will be paired with each prompt in the prompt list. This also applies to multiple ControlNets, where a list of image lists can be passed to batch for each prompt and each ControlNet.

TYPE: `ms.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[ms.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`, DEFAULT: None

height

The height in pixels of the generated image.

TYPE: `int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor` DEFAULT: None

width

The width in pixels of the generated image.

TYPE: `int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor` DEFAULT: None

num_inference_steps

The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.

TYPE: `int`, *optional*, defaults to 50 DEFAULT: 50

timesteps

Custom timesteps to use for the denoising process with schedulers which support a timesteps argument in their set_timesteps method. If not defined, the default behavior when num_inference_steps is passed will be used. Must be in descending order.

TYPE: `List[int]`, *optional* DEFAULT: None

sigmas

Custom sigmas to use for the denoising process with schedulers which support a sigmas argument in their set_timesteps method. If not defined, the default behavior when num_inference_steps is passed will be used.

TYPE: `List[float]`, *optional* DEFAULT: None

guidance_scale

A higher guidance scale value encourages the model to generate images closely linked to the text prompt at the expense of lower image quality. Guidance scale is enabled when guidance_scale > 1.

TYPE: `float`, *optional*, defaults to 7.5 DEFAULT: 7.5

negative_prompt

The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass negative_prompt_embeds instead. Ignored when not using guidance (guidance_scale < 1).

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

num_images_per_prompt

The number of images to generate per prompt.

TYPE: `int`, *optional*, defaults to 1 DEFAULT: 1

eta

Corresponds to parameter eta (η) from the DDIM paper. Only applies to the [~schedulers.DDIMScheduler], and is ignored in other schedulers.

TYPE: `float`, *optional*, defaults to 0.0 DEFAULT: 0.0

generator

A np.random.Generator to make generation deterministic.

TYPE: `np.random.Generator` or `List[np.random.Generator]`, *optional* DEFAULT: None

latents

Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random generator.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

prompt_embeds

Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_prompt_embeds

Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, negative_prompt_embeds are generated from the negative_prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

ip_adapter_image

(PipelineImageInput, optional): Optional image input to work with IP Adapters.

TYPE: Optional[PipelineImageInput] DEFAULT: None

ip_adapter_image_embeds

Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters. Each element should be a tensor of shape (batch_size, num_images, emb_dim). It should contain the negative image embedding if do_classifier_free_guidance is set to True. If not provided, embeddings are computed from the ip_adapter_image input argument.

TYPE: `List[ms.Tensor]`, *optional* DEFAULT: None

output_type

The output format of the generated image. Choose between PIL.Image or np.array.

TYPE: `str`, *optional*, defaults to `"pil"` DEFAULT: 'pil'

return_dict

Whether or not to return a [~pipelines.stable_diffusion.StableDiffusionPipelineOutput] instead of a plain tuple.

TYPE: `bool`, *optional*, defaults to `False` DEFAULT: False

callback

A function that calls every callback_steps steps during inference. The function is called with the following arguments: callback(step: int, timestep: int, latents: ms.Tensor).

TYPE: `Callable`, *optional*

callback_steps

The frequency at which the callback function is called. If not specified, the callback is called at every step.

TYPE: `int`, *optional*, defaults to 1

cross_attention_kwargs

A kwargs dictionary that if specified is passed along to the [AttentionProcessor] as defined in self.processor.

TYPE: `dict`, *optional* DEFAULT: None

controlnet_conditioning_scale

The outputs of the ControlNet are multiplied by controlnet_conditioning_scale before they are added to the residual in the original unet. If multiple ControlNets are specified in init, you can set the corresponding scale as a list.

TYPE: `float` or `List[float]`, *optional*, defaults to 1.0 DEFAULT: 1.0

guess_mode

The ControlNet encoder tries to recognize the content of the input image even if you remove all prompts. A guidance_scale value between 3.0 and 5.0 is recommended.

TYPE: `bool`, *optional*, defaults to `False` DEFAULT: False

control_guidance_start

The percentage of total steps at which the ControlNet starts applying.

TYPE: `float` or `List[float]`, *optional*, defaults to 0.0 DEFAULT: 0.0

control_guidance_end

The percentage of total steps at which the ControlNet stops applying.

TYPE: `float` or `List[float]`, *optional*, defaults to 1.0 DEFAULT: 1.0

clip_skip

Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings.

TYPE: `int`, *optional* DEFAULT: None

callback_on_step_end

A function or a subclass of PipelineCallback or MultiPipelineCallbacks that is called at the end of each denoising step during the inference. with the following arguments: callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict). callback_kwargs will include a list of all tensors as specified by callback_on_step_end_tensor_inputs.

TYPE: `Callable`, *optional* DEFAULT: None

callback_on_step_end_tensor_inputs

The list of tensor inputs for the callback_on_step_end function. The tensors specified in the list will be passed as callback_kwargs argument. You will only be able to include variables listed in the ._callback_tensor_inputs attribute of your pipeline class.

TYPE: `List`, *optional* DEFAULT: ['latents']

RETURNS DESCRIPTION

[~pipelines.stable_diffusion.StableDiffusionPipelineOutput] or tuple: If return_dict is True, [~pipelines.stable_diffusion.StableDiffusionPipelineOutput] is returned, otherwise a tuple is returned where the first element is a list with the generated images and the second element is a list of bools indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content.

Source code in mindone/diffusers/pipelines/controlnet/pipeline_controlnet.py
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
def __call__(
    self,
    prompt: Union[str, List[str]] = None,
    image: PipelineImageInput = None,
    height: Optional[int] = None,
    width: Optional[int] = None,
    num_inference_steps: int = 50,
    timesteps: List[int] = None,
    sigmas: List[float] = None,
    guidance_scale: float = 7.5,
    negative_prompt: Optional[Union[str, List[str]]] = None,
    num_images_per_prompt: Optional[int] = 1,
    eta: float = 0.0,
    generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
    latents: Optional[ms.Tensor] = None,
    prompt_embeds: Optional[ms.Tensor] = None,
    negative_prompt_embeds: Optional[ms.Tensor] = None,
    ip_adapter_image: Optional[PipelineImageInput] = None,
    ip_adapter_image_embeds: Optional[List[ms.Tensor]] = None,
    output_type: Optional[str] = "pil",
    return_dict: bool = False,
    cross_attention_kwargs: Optional[Dict[str, Any]] = None,
    controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
    guess_mode: bool = False,
    control_guidance_start: Union[float, List[float]] = 0.0,
    control_guidance_end: Union[float, List[float]] = 1.0,
    clip_skip: Optional[int] = None,
    callback_on_step_end: Optional[
        Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
    ] = None,
    callback_on_step_end_tensor_inputs: List[str] = ["latents"],
    **kwargs,
):
    r"""
    The call function to the pipeline for generation.

    Args:
        prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
        image (`ms.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[ms.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
                `List[List[ms.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
            The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
            specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
            as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
            width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
            images must be passed as a list such that each element of the list can be correctly batched for input
            to a single ControlNet. When `prompt` is a list, and if a list of images is passed for a single
            ControlNet, each will be paired with each prompt in the `prompt` list. This also applies to multiple
            ControlNets, where a list of image lists can be passed to batch for each prompt and each ControlNet.
        height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
            The height in pixels of the generated image.
        width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
            The width in pixels of the generated image.
        num_inference_steps (`int`, *optional*, defaults to 50):
            The number of denoising steps. More denoising steps usually lead to a higher quality image at the
            expense of slower inference.
        timesteps (`List[int]`, *optional*):
            Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
            in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
            passed will be used. Must be in descending order.
        sigmas (`List[float]`, *optional*):
            Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
            their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
            will be used.
        guidance_scale (`float`, *optional*, defaults to 7.5):
            A higher guidance scale value encourages the model to generate images closely linked to the text
            `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
        negative_prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts to guide what to not include in image generation. If not defined, you need to
            pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
        num_images_per_prompt (`int`, *optional*, defaults to 1):
            The number of images to generate per prompt.
        eta (`float`, *optional*, defaults to 0.0):
            Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
            to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
        generator (`np.random.Generator` or `List[np.random.Generator]`, *optional*):
            A [`np.random.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
            generation deterministic.
        latents (`ms.Tensor`, *optional*):
            Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
            generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
            tensor is generated by sampling using the supplied random `generator`.
        prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
            provided, text embeddings are generated from the `prompt` input argument.
        negative_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
            not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
        ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
        ip_adapter_image_embeds (`List[ms.Tensor]`, *optional*):
            Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
            IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
            contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
            provided, embeddings are computed from the `ip_adapter_image` input argument.
        output_type (`str`, *optional*, defaults to `"pil"`):
            The output format of the generated image. Choose between `PIL.Image` or `np.array`.
        return_dict (`bool`, *optional*, defaults to `False`):
            Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
            plain tuple.
        callback (`Callable`, *optional*):
            A function that calls every `callback_steps` steps during inference. The function is called with the
            following arguments: `callback(step: int, timestep: int, latents: ms.Tensor)`.
        callback_steps (`int`, *optional*, defaults to 1):
            The frequency at which the `callback` function is called. If not specified, the callback is called at
            every step.
        cross_attention_kwargs (`dict`, *optional*):
            A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
            [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
        controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
            The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
            to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
            the corresponding scale as a list.
        guess_mode (`bool`, *optional*, defaults to `False`):
            The ControlNet encoder tries to recognize the content of the input image even if you remove all
            prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
        control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
            The percentage of total steps at which the ControlNet starts applying.
        control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
            The percentage of total steps at which the ControlNet stops applying.
        clip_skip (`int`, *optional*):
            Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
            the output of the pre-final layer will be used for computing the prompt embeddings.
        callback_on_step_end (`Callable`, *optional*):
            A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
            each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
            DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
            list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
        callback_on_step_end_tensor_inputs (`List`, *optional*):
            The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
            will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
            `._callback_tensor_inputs` attribute of your pipeline class.

    Examples:

    Returns:
        [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
            If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
            otherwise a `tuple` is returned where the first element is a list with the generated images and the
            second element is a list of `bool`s indicating whether the corresponding generated image contains
            "not-safe-for-work" (nsfw) content.
    """

    callback = kwargs.pop("callback", None)
    callback_steps = kwargs.pop("callback_steps", None)

    if callback is not None:
        deprecate(
            "callback",
            "1.0.0",
            "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
        )
    if callback_steps is not None:
        deprecate(
            "callback_steps",
            "1.0.0",
            "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
        )

    if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
        callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs

    controlnet = self.controlnet

    # align format for control guidance
    if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
        control_guidance_start = len(control_guidance_end) * [control_guidance_start]
    elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
        control_guidance_end = len(control_guidance_start) * [control_guidance_end]
    elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
        mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
        control_guidance_start, control_guidance_end = (
            mult * [control_guidance_start],
            mult * [control_guidance_end],
        )

    # 1. Check inputs. Raise error if not correct
    self.check_inputs(
        prompt,
        image,
        callback_steps,
        negative_prompt,
        prompt_embeds,
        negative_prompt_embeds,
        ip_adapter_image,
        ip_adapter_image_embeds,
        controlnet_conditioning_scale,
        control_guidance_start,
        control_guidance_end,
        callback_on_step_end_tensor_inputs,
    )

    self._guidance_scale = guidance_scale
    self._clip_skip = clip_skip
    self._cross_attention_kwargs = cross_attention_kwargs

    # 2. Define call parameters
    if prompt is not None and isinstance(prompt, str):
        batch_size = 1
    elif prompt is not None and isinstance(prompt, list):
        batch_size = len(prompt)
    else:
        batch_size = prompt_embeds.shape[0]

    if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
        controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)

    global_pool_conditions = (
        controlnet.config.global_pool_conditions
        if isinstance(controlnet, ControlNetModel)
        else controlnet.nets[0].config.global_pool_conditions
    )
    guess_mode = guess_mode or global_pool_conditions

    # 3. Encode input prompt
    text_encoder_lora_scale = (
        self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
    )
    prompt_embeds, negative_prompt_embeds = self.encode_prompt(
        prompt,
        num_images_per_prompt,
        self.do_classifier_free_guidance,
        negative_prompt,
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=negative_prompt_embeds,
        lora_scale=text_encoder_lora_scale,
        clip_skip=self.clip_skip,
    )
    # For classifier free guidance, we need to do two forward passes.
    # Here we concatenate the unconditional and text embeddings into a single batch
    # to avoid doing two forward passes
    if self.do_classifier_free_guidance:
        prompt_embeds = ops.cat([negative_prompt_embeds, prompt_embeds])

    if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
        image_embeds = self.prepare_ip_adapter_image_embeds(
            ip_adapter_image,
            ip_adapter_image_embeds,
            batch_size * num_images_per_prompt,
            self.do_classifier_free_guidance,
        )

    # 4. Prepare image
    if isinstance(controlnet, ControlNetModel):
        image = self.prepare_image(
            image=image,
            width=width,
            height=height,
            batch_size=batch_size * num_images_per_prompt,
            num_images_per_prompt=num_images_per_prompt,
            dtype=controlnet.dtype,
            do_classifier_free_guidance=self.do_classifier_free_guidance,
            guess_mode=guess_mode,
        )
        height, width = image.shape[-2:]
    elif isinstance(controlnet, MultiControlNetModel):
        images = []

        # Nested lists as ControlNet condition
        if isinstance(image[0], list):
            # Transpose the nested image list
            image = [list(t) for t in zip(*image)]

        for image_ in image:
            image_ = self.prepare_image(
                image=image_,
                width=width,
                height=height,
                batch_size=batch_size * num_images_per_prompt,
                num_images_per_prompt=num_images_per_prompt,
                dtype=controlnet.dtype,
                do_classifier_free_guidance=self.do_classifier_free_guidance,
                guess_mode=guess_mode,
            )

            images.append(image_)

        image = images
        height, width = image[0].shape[-2:]
    else:
        assert False

    # 5. Prepare timesteps
    timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, timesteps, sigmas)
    self._num_timesteps = len(timesteps)

    # 6. Prepare latent variables
    num_channels_latents = self.unet.config.in_channels
    latents = self.prepare_latents(
        batch_size * num_images_per_prompt,
        num_channels_latents,
        height,
        width,
        prompt_embeds.dtype,
        generator,
        latents,
    )

    # 6.5 Optionally get Guidance Scale Embedding
    timestep_cond = None
    if self.unet.config.time_cond_proj_dim is not None:
        guidance_scale_tensor = ms.Tensor(self.guidance_scale - 1).tile((batch_size * num_images_per_prompt,))
        timestep_cond = self.get_guidance_scale_embedding(
            guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
        ).to(latents.dtype)

    # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
    extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

    # 7.1 Add image embeds for IP-Adapter
    added_cond_kwargs = (
        {"image_embeds": image_embeds}
        if ip_adapter_image is not None or ip_adapter_image_embeds is not None
        else None
    )

    # 7.2 Create tensor stating which controlnets to keep
    controlnet_keep = []
    for i in range(len(timesteps)):
        keeps = [
            1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
            for s, e in zip(control_guidance_start, control_guidance_end)
        ]
        controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)

    # 8. Denoising loop
    num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
    with self.progress_bar(total=num_inference_steps) as progress_bar:
        for i, t in enumerate(timesteps):
            # Relevant thread:
            # https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
            # expand the latents if we are doing classifier free guidance
            latent_model_input = ops.cat([latents] * 2) if self.do_classifier_free_guidance else latents
            latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

            # controlnet(s) inference
            if guess_mode and self.do_classifier_free_guidance:
                # Infer ControlNet only for the conditional batch.
                control_model_input = latents
                control_model_input = self.scheduler.scale_model_input(control_model_input, t)
                controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
            else:
                control_model_input = latent_model_input
                controlnet_prompt_embeds = prompt_embeds

            if isinstance(controlnet_keep[i], list):
                cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
            else:
                controlnet_cond_scale = controlnet_conditioning_scale
                if isinstance(controlnet_cond_scale, list):
                    controlnet_cond_scale = controlnet_cond_scale[0]
                cond_scale = controlnet_cond_scale * controlnet_keep[i]

            down_block_res_samples, mid_block_res_sample = self.controlnet(
                control_model_input,
                t,
                encoder_hidden_states=controlnet_prompt_embeds,
                controlnet_cond=image,
                conditioning_scale=cond_scale,
                guess_mode=guess_mode,
                return_dict=False,
            )

            if guess_mode and self.do_classifier_free_guidance:
                # Infered ControlNet only for the conditional batch.
                # To apply the output of ControlNet to both the unconditional and conditional batches,
                # add 0 to the unconditional batch to keep it unchanged.
                down_block_res_samples = [ops.cat([ops.zeros_like(d), d]) for d in down_block_res_samples]
                mid_block_res_sample = ops.cat([ops.zeros_like(mid_block_res_sample), mid_block_res_sample])

            # predict the noise residual
            noise_pred = self.unet(
                latent_model_input,
                t,
                encoder_hidden_states=prompt_embeds,
                timestep_cond=timestep_cond,
                cross_attention_kwargs=self.cross_attention_kwargs,
                down_block_additional_residuals=ms.mutable(down_block_res_samples),
                mid_block_additional_residual=mid_block_res_sample,
                added_cond_kwargs=ms.mutable(added_cond_kwargs) if added_cond_kwargs else added_cond_kwargs,
                return_dict=False,
            )[0]

            # perform guidance
            if self.do_classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)

            # compute the previous noisy sample x_t -> x_t-1
            latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

            if callback_on_step_end is not None:
                callback_kwargs = {}
                for k in callback_on_step_end_tensor_inputs:
                    callback_kwargs[k] = locals()[k]
                callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                latents = callback_outputs.pop("latents", latents)
                prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

            # call the callback, if provided
            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                progress_bar.update()
                if callback is not None and i % callback_steps == 0:
                    step_idx = i // getattr(self.scheduler, "order", 1)
                    callback(step_idx, t, latents)

    if not output_type == "latent":
        image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
        image, has_nsfw_concept = self.run_safety_checker(image, prompt_embeds.dtype)
    else:
        image = latents
        has_nsfw_concept = None

    if has_nsfw_concept is None:
        do_denormalize = [True] * image.shape[0]
    else:
        do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]

    image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)

    if not return_dict:
        return (image, has_nsfw_concept)

    return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)

mindone.diffusers.StableDiffusionControlNetPipeline.encode_prompt(prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, lora_scale=None, clip_skip=None)

Encodes the prompt into text encoder hidden states.

PARAMETER DESCRIPTION
prompt

prompt to be encoded

TYPE: `str` or `List[str]`, *optional*

num_images_per_prompt

number of images that should be generated per prompt

TYPE: `int`

do_classifier_free_guidance

whether to use classifier free guidance or not

TYPE: `bool`

negative_prompt

The prompt or prompts not to guide the image generation. If not defined, one has to pass negative_prompt_embeds instead. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1).

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

prompt_embeds

Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_prompt_embeds

Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

lora_scale

A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.

TYPE: `float`, *optional* DEFAULT: None

clip_skip

Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings.

TYPE: `int`, *optional* DEFAULT: None

Source code in mindone/diffusers/pipelines/controlnet/pipeline_controlnet.py
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
def encode_prompt(
    self,
    prompt,
    num_images_per_prompt,
    do_classifier_free_guidance,
    negative_prompt=None,
    prompt_embeds: Optional[ms.Tensor] = None,
    negative_prompt_embeds: Optional[ms.Tensor] = None,
    lora_scale: Optional[float] = None,
    clip_skip: Optional[int] = None,
):
    r"""
    Encodes the prompt into text encoder hidden states.

    Args:
        prompt (`str` or `List[str]`, *optional*):
            prompt to be encoded
        num_images_per_prompt (`int`):
            number of images that should be generated per prompt
        do_classifier_free_guidance (`bool`):
            whether to use classifier free guidance or not
        negative_prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts not to guide the image generation. If not defined, one has to pass
            `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
            less than `1`).
        prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
            provided, text embeddings will be generated from `prompt` input argument.
        negative_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
            weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
            argument.
        lora_scale (`float`, *optional*):
            A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
        clip_skip (`int`, *optional*):
            Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
            the output of the pre-final layer will be used for computing the prompt embeddings.
    """
    # set lora scale so that monkey patched LoRA
    # function of text encoder can correctly access it
    if lora_scale is not None and isinstance(self, LoraLoaderMixin):
        self._lora_scale = lora_scale

        # dynamically adjust the LoRA scale
        scale_lora_layers(self.text_encoder, lora_scale)

    if prompt is not None and isinstance(prompt, str):
        batch_size = 1
    elif prompt is not None and isinstance(prompt, list):
        batch_size = len(prompt)
    else:
        batch_size = prompt_embeds.shape[0]

    if prompt_embeds is None:
        # textual inversion: process multi-vector tokens if necessary
        if isinstance(self, TextualInversionLoaderMixin):
            prompt = self.maybe_convert_prompt(prompt, self.tokenizer)

        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
            truncation=True,
            return_tensors="np",
        )
        text_input_ids = text_inputs.input_ids
        untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="np").input_ids

        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not np.array_equal(
            text_input_ids, untruncated_ids
        ):
            removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
            logger.warning(
                "The following part of your input was truncated because CLIP can only handle sequences up to"
                f" {self.tokenizer.model_max_length} tokens: {removed_text}"
            )

        if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
            attention_mask = ms.Tensor(text_inputs.attention_mask)
        else:
            attention_mask = None

        if clip_skip is None:
            prompt_embeds = self.text_encoder(ms.Tensor(text_input_ids), attention_mask=attention_mask)
            prompt_embeds = prompt_embeds[0]
        else:
            prompt_embeds = self.text_encoder(
                ms.Tensor(text_input_ids), attention_mask=attention_mask, output_hidden_states=True
            )
            # Access the `hidden_states` first, that contains a tuple of
            # all the hidden states from the encoder layers. Then index into
            # the tuple to access the hidden states from the desired layer.
            prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
            # We also need to apply the final LayerNorm here to not mess with the
            # representations. The `last_hidden_states` that we typically use for
            # obtaining the final prompt representations passes through the LayerNorm
            # layer.
            prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)

    if self.text_encoder is not None:
        prompt_embeds_dtype = self.text_encoder.dtype
    elif self.unet is not None:
        prompt_embeds_dtype = self.unet.dtype
    else:
        prompt_embeds_dtype = prompt_embeds.dtype

    prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype)

    bs_embed, seq_len, _ = prompt_embeds.shape
    # duplicate text embeddings for each generation per prompt, using mps friendly method
    prompt_embeds = prompt_embeds.tile((1, num_images_per_prompt, 1))
    prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

    # get unconditional embeddings for classifier free guidance
    if do_classifier_free_guidance and negative_prompt_embeds is None:
        uncond_tokens: List[str]
        if negative_prompt is None:
            uncond_tokens = [""] * batch_size
        elif prompt is not None and type(prompt) is not type(negative_prompt):
            raise TypeError(
                f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                f" {type(prompt)}."
            )
        elif isinstance(negative_prompt, str):
            uncond_tokens = [negative_prompt]
        elif batch_size != len(negative_prompt):
            raise ValueError(
                f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                " the batch size of `prompt`."
            )
        else:
            uncond_tokens = negative_prompt

        # textual inversion: process multi-vector tokens if necessary
        if isinstance(self, TextualInversionLoaderMixin):
            uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)

        max_length = prompt_embeds.shape[1]
        uncond_input = self.tokenizer(
            uncond_tokens,
            padding="max_length",
            max_length=max_length,
            truncation=True,
            return_tensors="np",
        )

        if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
            attention_mask = ms.Tensor(uncond_input.attention_mask)
        else:
            attention_mask = None

        negative_prompt_embeds = self.text_encoder(
            ms.Tensor(uncond_input.input_ids),
            attention_mask=attention_mask,
        )
        negative_prompt_embeds = negative_prompt_embeds[0]

    if do_classifier_free_guidance:
        # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
        seq_len = negative_prompt_embeds.shape[1]

        negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype)

        negative_prompt_embeds = negative_prompt_embeds.tile((1, num_images_per_prompt, 1))
        negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

    if self.text_encoder is not None:
        if isinstance(self, LoraLoaderMixin):
            # Retrieve the original scale by scaling back the LoRA layers
            unscale_lora_layers(self.text_encoder, lora_scale)

    return prompt_embeds, negative_prompt_embeds

mindone.diffusers.StableDiffusionControlNetPipeline.get_guidance_scale_embedding(w, embedding_dim=512, dtype=ms.float32)

See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298

PARAMETER DESCRIPTION
w

Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.

TYPE: `mindspore.Tensor`

embedding_dim

Dimension of the embeddings to generate.

TYPE: `int`, *optional*, defaults to 512 DEFAULT: 512

dtype

Data type of the generated embeddings.

TYPE: `mindspore.dtype`, *optional*, defaults to `mindspore.float32` DEFAULT: float32

RETURNS DESCRIPTION
Tensor

mindspore.Tensor: Embedding vectors with shape (len(w), embedding_dim).

Source code in mindone/diffusers/pipelines/controlnet/pipeline_controlnet.py
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
def get_guidance_scale_embedding(
    self, w: ms.Tensor, embedding_dim: int = 512, dtype: ms.Type = ms.float32
) -> ms.Tensor:
    """
    See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298

    Args:
        w (`mindspore.Tensor`):
            Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
        embedding_dim (`int`, *optional*, defaults to 512):
            Dimension of the embeddings to generate.
        dtype (`mindspore.dtype`, *optional*, defaults to `mindspore.float32`):
            Data type of the generated embeddings.

    Returns:
        `mindspore.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
    """
    assert len(w.shape) == 1
    w = w * 1000.0

    half_dim = embedding_dim // 2
    emb = ops.log(ms.tensor(10000.0)) / (half_dim - 1)
    emb = ops.exp(ops.arange(half_dim, dtype=dtype) * -emb)
    emb = w.to(dtype)[:, None] * emb[None, :]
    emb = ops.cat([ops.sin(emb), ops.cos(emb)], axis=1)
    if embedding_dim % 2 == 1:  # zero pad
        emb = ops.pad(emb, (0, 1))
    assert emb.shape == (w.shape[0], embedding_dim)
    return emb

mindone.diffusers.StableDiffusionControlNetImg2ImgPipeline

Bases: DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, LoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin

Pipeline for image-to-image generation using Stable Diffusion with ControlNet guidance.

This model inherits from [DiffusionPipeline]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).

The pipeline also inherits the following loading methods
  • [~loaders.TextualInversionLoaderMixin.load_textual_inversion] for loading textual inversion embeddings
  • [~loaders.LoraLoaderMixin.load_lora_weights] for loading LoRA weights
  • [~loaders.LoraLoaderMixin.save_lora_weights] for saving LoRA weights
  • [~loaders.FromSingleFileMixin.from_single_file] for loading .ckpt files
  • [~loaders.IPAdapterMixin.load_ip_adapter] for loading IP Adapters
PARAMETER DESCRIPTION
vae

Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.

TYPE: [`AutoencoderKL`]

text_encoder

Frozen text-encoder (clip-vit-large-patch14).

TYPE: [`~transformers.CLIPTextModel`]

tokenizer

A CLIPTokenizer to tokenize text.

TYPE: [`~transformers.CLIPTokenizer`]

unet

A UNet2DConditionModel to denoise the encoded image latents.

TYPE: [`UNet2DConditionModel`]

controlnet

Provides additional conditioning to the unet during the denoising process. If you set multiple ControlNets as a list, the outputs from each ControlNet are added together to create one combined additional conditioning.

TYPE: [`ControlNetModel`] or `List[ControlNetModel]`

scheduler

A scheduler to be used in combination with unet to denoise the encoded image latents. Can be one of [DDIMScheduler], [LMSDiscreteScheduler], or [PNDMScheduler].

TYPE: [`SchedulerMixin`]

safety_checker

Classification module that estimates whether generated images could be considered offensive or harmful. Please refer to the model card for more details about a model's potential harms.

TYPE: [`StableDiffusionSafetyChecker`]

feature_extractor

A CLIPImageProcessor to extract features from generated images; used as inputs to the safety_checker.

TYPE: [`~transformers.CLIPImageProcessor`]

Source code in mindone/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
class StableDiffusionControlNetImg2ImgPipeline(
    DiffusionPipeline,
    StableDiffusionMixin,
    TextualInversionLoaderMixin,
    LoraLoaderMixin,
    IPAdapterMixin,
    FromSingleFileMixin,
):
    r"""
    Pipeline for image-to-image generation using Stable Diffusion with ControlNet guidance.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).

    The pipeline also inherits the following loading methods:
        - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
        - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
        - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
        - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
        - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
        text_encoder ([`~transformers.CLIPTextModel`]):
            Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
        tokenizer ([`~transformers.CLIPTokenizer`]):
            A `CLIPTokenizer` to tokenize text.
        unet ([`UNet2DConditionModel`]):
            A `UNet2DConditionModel` to denoise the encoded image latents.
        controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
            Provides additional conditioning to the `unet` during the denoising process. If you set multiple
            ControlNets as a list, the outputs from each ControlNet are added together to create one combined
            additional conditioning.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        safety_checker ([`StableDiffusionSafetyChecker`]):
            Classification module that estimates whether generated images could be considered offensive or harmful.
            Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
            about a model's potential harms.
        feature_extractor ([`~transformers.CLIPImageProcessor`]):
            A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
    """

    model_cpu_offload_seq = "text_encoder->unet->vae"
    _optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
    _exclude_from_cpu_offload = ["safety_checker"]
    _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
        controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
        scheduler: KarrasDiffusionSchedulers,
        safety_checker: StableDiffusionSafetyChecker,
        feature_extractor: CLIPImageProcessor,
        image_encoder: CLIPVisionModelWithProjection = None,
        requires_safety_checker: bool = True,
    ):
        super().__init__()

        if safety_checker is None and requires_safety_checker:
            logger.warning(
                f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
                " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
                " results in services or applications open to the public. Both the diffusers team and Hugging Face"
                " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
                " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
                " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
            )

        if safety_checker is not None and feature_extractor is None:
            raise ValueError(
                "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
                " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
            )

        if isinstance(controlnet, (list, tuple)):
            controlnet = MultiControlNetModel(controlnet)

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            controlnet=controlnet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
            image_encoder=image_encoder,
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
        self.control_image_processor = VaeImageProcessor(
            vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
        )
        self.register_to_config(requires_safety_checker=requires_safety_checker)

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
    def _encode_prompt(
        self,
        prompt,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[ms.Tensor] = None,
        negative_prompt_embeds: Optional[ms.Tensor] = None,
        lora_scale: Optional[float] = None,
        **kwargs,
    ):
        deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."  # noqa: E501
        deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)

        prompt_embeds_tuple = self.encode_prompt(
            prompt=prompt,
            num_images_per_prompt=num_images_per_prompt,
            do_classifier_free_guidance=do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=lora_scale,
            **kwargs,
        )

        # concatenate for backwards comp
        prompt_embeds = ops.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])

        return prompt_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
    def encode_prompt(
        self,
        prompt,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[ms.Tensor] = None,
        negative_prompt_embeds: Optional[ms.Tensor] = None,
        lora_scale: Optional[float] = None,
        clip_skip: Optional[int] = None,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            lora_scale (`float`, *optional*):
                A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
        """
        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
        if lora_scale is not None and isinstance(self, LoraLoaderMixin):
            self._lora_scale = lora_scale

            # dynamically adjust the LoRA scale
            scale_lora_layers(self.text_encoder, lora_scale)

        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if prompt_embeds is None:
            # textual inversion: process multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                prompt = self.maybe_convert_prompt(prompt, self.tokenizer)

            text_inputs = self.tokenizer(
                prompt,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="np",
            )
            text_input_ids = text_inputs.input_ids
            untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="np").input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not np.array_equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {self.tokenizer.model_max_length} tokens: {removed_text}"
                )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = ms.Tensor(text_inputs.attention_mask)
            else:
                attention_mask = None

            if clip_skip is None:
                prompt_embeds = self.text_encoder(ms.Tensor(text_input_ids), attention_mask=attention_mask)
                prompt_embeds = prompt_embeds[0]
            else:
                prompt_embeds = self.text_encoder(
                    ms.Tensor(text_input_ids), attention_mask=attention_mask, output_hidden_states=True
                )
                # Access the `hidden_states` first, that contains a tuple of
                # all the hidden states from the encoder layers. Then index into
                # the tuple to access the hidden states from the desired layer.
                prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
                # We also need to apply the final LayerNorm here to not mess with the
                # representations. The `last_hidden_states` that we typically use for
                # obtaining the final prompt representations passes through the LayerNorm
                # layer.
                prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)

        if self.text_encoder is not None:
            prompt_embeds_dtype = self.text_encoder.dtype
        elif self.unet is not None:
            prompt_embeds_dtype = self.unet.dtype
        else:
            prompt_embeds_dtype = prompt_embeds.dtype

        prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype)

        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.tile((1, num_images_per_prompt, 1))
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif prompt is not None and type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

            # textual inversion: process multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)

            max_length = prompt_embeds.shape[1]
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="np",
            )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = ms.Tensor(uncond_input.attention_mask)
            else:
                attention_mask = None

            negative_prompt_embeds = self.text_encoder(
                ms.Tensor(uncond_input.input_ids),
                attention_mask=attention_mask,
            )
            negative_prompt_embeds = negative_prompt_embeds[0]

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

            negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype)

            negative_prompt_embeds = negative_prompt_embeds.tile((1, num_images_per_prompt, 1))
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

        if self.text_encoder is not None:
            if isinstance(self, LoraLoaderMixin):
                # Retrieve the original scale by scaling back the LoRA layers
                unscale_lora_layers(self.text_encoder, lora_scale)

        return prompt_embeds, negative_prompt_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
    def encode_image(self, image, num_images_per_prompt, output_hidden_states=None):
        dtype = next(self.image_encoder.get_parameters()).dtype

        if not isinstance(image, ms.Tensor):
            image = self.feature_extractor(image, return_tensors="np").pixel_values
            image = ms.Tensor(image)

        image = image.to(dtype=dtype)
        if output_hidden_states:
            image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True)[2][-2]
            image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_enc_hidden_states = self.image_encoder(ops.zeros_like(image), output_hidden_states=True)[2][-2]
            uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
                num_images_per_prompt, dim=0
            )
            return image_enc_hidden_states, uncond_image_enc_hidden_states
        else:
            image_embeds = self.image_encoder(image)[0]
            image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_embeds = ops.zeros_like(image_embeds)

            return image_embeds, uncond_image_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
    def prepare_ip_adapter_image_embeds(
        self, ip_adapter_image, ip_adapter_image_embeds, num_images_per_prompt, do_classifier_free_guidance
    ):
        if ip_adapter_image_embeds is None:
            if not isinstance(ip_adapter_image, list):
                ip_adapter_image = [ip_adapter_image]

            if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
                raise ValueError(
                    f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."  # noqa: E501
                )

            image_embeds = []
            for single_ip_adapter_image, image_proj_layer in zip(
                ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
            ):
                output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
                single_image_embeds, single_negative_image_embeds = self.encode_image(
                    single_ip_adapter_image, 1, output_hidden_state
                )
                single_image_embeds = ops.stack([single_image_embeds] * num_images_per_prompt, axis=0)
                single_negative_image_embeds = ops.stack([single_negative_image_embeds] * num_images_per_prompt, axis=0)

                if do_classifier_free_guidance:
                    single_image_embeds = ops.cat([single_negative_image_embeds, single_image_embeds])

                image_embeds.append(single_image_embeds)
        else:
            repeat_dims = [1]
            image_embeds = []
            for single_image_embeds in ip_adapter_image_embeds:
                if do_classifier_free_guidance:
                    single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
                    single_image_embeds = single_image_embeds.tile(
                        (num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])))
                    )
                    single_negative_image_embeds = single_negative_image_embeds.tile(
                        (num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:])))
                    )
                    single_image_embeds = ops.cat([single_negative_image_embeds, single_image_embeds])
                else:
                    single_image_embeds = single_image_embeds.tile(
                        (num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])))
                    )
                image_embeds.append(single_image_embeds)

        return image_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
    def run_safety_checker(self, image, dtype):
        if self.safety_checker is None:
            has_nsfw_concept = None
        else:
            if ops.is_tensor(image):
                feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
            else:
                feature_extractor_input = self.image_processor.numpy_to_pil(image)
            safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="np")
            image, has_nsfw_concept = self.safety_checker(
                images=image, clip_input=ms.Tensor(safety_checker_input.pixel_values).to(dtype)
            )

            # Warning for safety checker operations here as it couldn't been done in construct()
            if ops.any(has_nsfw_concept):
                logger.warning(
                    "Potential NSFW content was detected in one or more images. A black image will be returned instead."
                    " Try again with a different prompt and/or seed."
                )
        return image, has_nsfw_concept

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
    def decode_latents(self, latents):
        deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
        deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)

        latents = 1 / self.vae.config.scaling_factor * latents
        image = self.vae.decode(latents, return_dict=False)[0]
        image = (image / 2 + 0.5).clamp(0, 1)
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
        image = image.permute(0, 2, 3, 1).float().numpy()
        return image

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def check_inputs(
        self,
        prompt,
        image,
        callback_steps,
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
        ip_adapter_image=None,
        ip_adapter_image_embeds=None,
        controlnet_conditioning_scale=1.0,
        control_guidance_start=0.0,
        control_guidance_end=1.0,
        callback_on_step_end_tensor_inputs=None,
    ):
        if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"  # noqa: E501
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

        # `prompt` needs more sophisticated handling when there are multiple
        # conditionings.
        if isinstance(self.controlnet, MultiControlNetModel):
            if isinstance(prompt, list):
                logger.warning(
                    f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}"
                    " prompts. The conditionings will be fixed across the prompts."
                )

        # Check `image`
        if isinstance(self.controlnet, ControlNetModel):
            self.check_image(image, prompt, prompt_embeds)
        elif isinstance(self.controlnet, MultiControlNetModel):
            if not isinstance(image, list):
                raise TypeError("For multiple controlnets: `image` must be type `list`")

            # When `image` is a nested list:
            # (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
            elif any(isinstance(i, list) for i in image):
                raise ValueError("A single batch of multiple conditionings are supported at the moment.")
            elif len(image) != len(self.controlnet.nets):
                raise ValueError(
                    f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets."  # noqa: E501
                )

            for image_ in image:
                self.check_image(image_, prompt, prompt_embeds)
        else:
            assert False

        # Check `controlnet_conditioning_scale`
        if isinstance(self.controlnet, ControlNetModel):
            if not isinstance(controlnet_conditioning_scale, float):
                raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
        elif isinstance(self.controlnet, MultiControlNetModel):
            if isinstance(controlnet_conditioning_scale, list):
                if any(isinstance(i, list) for i in controlnet_conditioning_scale):
                    raise ValueError("A single batch of multiple conditionings are supported at the moment.")
            elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
                self.controlnet.nets
            ):
                raise ValueError(
                    "For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
                    " the same length as the number of controlnets"
                )
        else:
            assert False

        if len(control_guidance_start) != len(control_guidance_end):
            raise ValueError(
                f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."  # noqa: E501
            )

        if isinstance(self.controlnet, MultiControlNetModel):
            if len(control_guidance_start) != len(self.controlnet.nets):
                raise ValueError(
                    f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}."  # noqa: E501
                )

        for start, end in zip(control_guidance_start, control_guidance_end):
            if start >= end:
                raise ValueError(
                    f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
                )
            if start < 0.0:
                raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
            if end > 1.0:
                raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")

        if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
            raise ValueError(
                "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."  # noqa: E501
            )

        if ip_adapter_image_embeds is not None:
            if not isinstance(ip_adapter_image_embeds, list):
                raise ValueError(
                    f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
                )
            elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
                raise ValueError(
                    f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
                )

    # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image
    def check_image(self, image, prompt, prompt_embeds):
        image_is_pil = isinstance(image, PIL.Image.Image)
        image_is_tensor = isinstance(image, ms.Tensor)
        image_is_np = isinstance(image, np.ndarray)
        image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
        image_is_tensor_list = isinstance(image, list) and isinstance(image[0], ms.Tensor)
        image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)

        if (
            not image_is_pil
            and not image_is_tensor
            and not image_is_np
            and not image_is_pil_list
            and not image_is_tensor_list
            and not image_is_np_list
        ):
            raise TypeError(
                f"image must be passed and be one of PIL image, numpy array, mindspore tensor, list of PIL images, list of numpy arrays or list of mindspore tensors, but is {type(image)}"  # noqa: E501
            )

        if image_is_pil:
            image_batch_size = 1
        else:
            image_batch_size = len(image)

        if prompt is not None and isinstance(prompt, str):
            prompt_batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            prompt_batch_size = len(prompt)
        elif prompt_embeds is not None:
            prompt_batch_size = prompt_embeds.shape[0]

        if image_batch_size != 1 and image_batch_size != prompt_batch_size:
            raise ValueError(
                f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"  # noqa: E501
            )

    # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image
    def prepare_control_image(
        self,
        image,
        width,
        height,
        batch_size,
        num_images_per_prompt,
        dtype,
        do_classifier_free_guidance=False,
        guess_mode=False,
    ):
        image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=ms.float32)
        image_batch_size = image.shape[0]

        if image_batch_size == 1:
            repeat_by = batch_size
        else:
            # image batch size is the same as prompt batch size
            repeat_by = num_images_per_prompt

        image = image.repeat_interleave(repeat_by, dim=0)

        image = image.to(dtype)

        if do_classifier_free_guidance and not guess_mode:
            image = ops.cat([image] * 2)

        return image

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
    def get_timesteps(self, num_inference_steps, strength):
        # get the original timestep using init_timestep
        init_timestep = min(int(num_inference_steps * strength), num_inference_steps)

        t_start = max(num_inference_steps - init_timestep, 0)
        timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
        if hasattr(self.scheduler, "set_begin_index"):
            self.scheduler.set_begin_index(t_start * self.scheduler.order)

        return timesteps, num_inference_steps - t_start

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.prepare_latents
    def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, generator=None):
        if not isinstance(image, (ms.Tensor, PIL.Image.Image, list)):
            raise ValueError(
                f"`image` has to be of type `mindspore.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
            )

        image = image.to(dtype=dtype)

        batch_size = batch_size * num_images_per_prompt

        if image.shape[1] == 4:
            init_latents = image

        else:
            if isinstance(generator, list) and len(generator) != batch_size:
                raise ValueError(
                    f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                    f" size of {batch_size}. Make sure the batch size matches the length of the generators."
                )

            elif isinstance(generator, list):
                init_latents = [
                    retrieve_latents(self.vae, self.vae.encode(image[i : i + 1])[0], generator)
                    for i in range(batch_size)
                ]
                init_latents = ops.cat(init_latents, axis=0)
            else:
                init_latents = retrieve_latents(self.vae, self.vae.encode(image)[0], generator)

            init_latents = self.vae.config.scaling_factor * init_latents

        if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
            # expand init_latents for batch_size
            deprecation_message = (
                f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial"
                " images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
                " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
                " your script to pass as many initial images as text prompts to suppress this warning."
            )
            deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
            additional_image_per_prompt = batch_size // init_latents.shape[0]
            init_latents = ops.cat([init_latents] * additional_image_per_prompt, axis=0)
        elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
            raise ValueError(
                f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
            )
        else:
            init_latents = ops.cat([init_latents], axis=0)

        shape = init_latents.shape
        noise = randn_tensor(shape, generator=generator, dtype=dtype)

        # get latents
        init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
        latents = init_latents

        return latents

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def clip_skip(self):
        return self._clip_skip

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1

    @property
    def cross_attention_kwargs(self):
        return self._cross_attention_kwargs

    @property
    def num_timesteps(self):
        return self._num_timesteps

    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        image: PipelineImageInput = None,
        control_image: PipelineImageInput = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        strength: float = 0.8,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
        latents: Optional[ms.Tensor] = None,
        prompt_embeds: Optional[ms.Tensor] = None,
        negative_prompt_embeds: Optional[ms.Tensor] = None,
        ip_adapter_image: Optional[PipelineImageInput] = None,
        ip_adapter_image_embeds: Optional[List[ms.Tensor]] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = False,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        controlnet_conditioning_scale: Union[float, List[float]] = 0.8,
        guess_mode: bool = False,
        control_guidance_start: Union[float, List[float]] = 0.0,
        control_guidance_end: Union[float, List[float]] = 1.0,
        clip_skip: Optional[int] = None,
        callback_on_step_end: Optional[
            Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
        ] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        **kwargs,
    ):
        r"""
        The call function to the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
            image (`ms.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[ms.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
                    `List[List[ms.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
                The initial image to be used as the starting point for the image generation process. Can also accept
                image latents as `image`, and if passing latents directly they are not encoded again.
            control_image (`ms.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[ms.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
                    `List[List[ms.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
                The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
                specified as `ms.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
                as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
                width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
                images must be passed as a list such that each element of the list can be correctly batched for input
                to a single ControlNet.
            height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
                The width in pixels of the generated image.
            strength (`float`, *optional*, defaults to 0.8):
                Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
                starting point and more noise is added the higher the `strength`. The number of denoising steps depends
                on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
                process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
                essentially ignores `image`.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
            generator (`np.random.Generator` or `List[np.random.Generator]`, *optional*):
                A [`np.random.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
            latents (`ms.Tensor`, *optional*):
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor is generated by sampling using the supplied random `generator`.
            prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument.
            negative_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
            ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
            ip_adapter_image_embeds (`List[ms.Tensor]`, *optional*):
                Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
                IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
                contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
                provided, embeddings are computed from the `ip_adapter_image` input argument.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
                The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
                to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
                the corresponding scale as a list.
            guess_mode (`bool`, *optional*, defaults to `False`):
                The ControlNet encoder tries to recognize the content of the input image even if you remove all
                prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
            control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
                The percentage of total steps at which the ControlNet starts applying.
            control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
                The percentage of total steps at which the ControlNet stops applying.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
            callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
                A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
                each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
                DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
                list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
                `._callback_tensor_inputs` attribute of your pipeline class.

        Examples:

        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
                otherwise a `tuple` is returned where the first element is a list with the generated images and the
                second element is a list of `bool`s indicating whether the corresponding generated image contains
                "not-safe-for-work" (nsfw) content.
        """

        callback = kwargs.pop("callback", None)
        callback_steps = kwargs.pop("callback_steps", None)

        if callback is not None:
            deprecate(
                "callback",
                "1.0.0",
                "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
            )
        if callback_steps is not None:
            deprecate(
                "callback_steps",
                "1.0.0",
                "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
            )

        if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
            callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs

        controlnet = self.controlnet

        # align format for control guidance
        if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
            control_guidance_start = len(control_guidance_end) * [control_guidance_start]
        elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
            control_guidance_end = len(control_guidance_start) * [control_guidance_end]
        elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
            mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
            control_guidance_start, control_guidance_end = (
                mult * [control_guidance_start],
                mult * [control_guidance_end],
            )

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            control_image,
            callback_steps,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
            ip_adapter_image,
            ip_adapter_image_embeds,
            controlnet_conditioning_scale,
            control_guidance_start,
            control_guidance_end,
            callback_on_step_end_tensor_inputs,
        )

        self._guidance_scale = guidance_scale
        self._clip_skip = clip_skip
        self._cross_attention_kwargs = cross_attention_kwargs

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
            controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)

        global_pool_conditions = (
            controlnet.config.global_pool_conditions
            if isinstance(controlnet, ControlNetModel)
            else controlnet.nets[0].config.global_pool_conditions
        )
        guess_mode = guess_mode or global_pool_conditions

        # 3. Encode input prompt
        text_encoder_lora_scale = (
            self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
        )
        prompt_embeds, negative_prompt_embeds = self.encode_prompt(
            prompt,
            num_images_per_prompt,
            self.do_classifier_free_guidance,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=text_encoder_lora_scale,
            clip_skip=self.clip_skip,
        )
        # For classifier free guidance, we need to do two forward passes.
        # Here we concatenate the unconditional and text embeddings into a single batch
        # to avoid doing two forward passes
        if self.do_classifier_free_guidance:
            prompt_embeds = ops.cat([negative_prompt_embeds, prompt_embeds])

        if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
            image_embeds = self.prepare_ip_adapter_image_embeds(
                ip_adapter_image,
                ip_adapter_image_embeds,
                batch_size * num_images_per_prompt,
                self.do_classifier_free_guidance,
            )

        # 4. Prepare image
        image = self.image_processor.preprocess(image, height=height, width=width).to(dtype=ms.float32)

        # 5. Prepare controlnet_conditioning_image
        if isinstance(controlnet, ControlNetModel):
            control_image = self.prepare_control_image(
                image=control_image,
                width=width,
                height=height,
                batch_size=batch_size * num_images_per_prompt,
                num_images_per_prompt=num_images_per_prompt,
                dtype=controlnet.dtype,
                do_classifier_free_guidance=self.do_classifier_free_guidance,
                guess_mode=guess_mode,
            )
        elif isinstance(controlnet, MultiControlNetModel):
            control_images = []

            for control_image_ in control_image:
                control_image_ = self.prepare_control_image(
                    image=control_image_,
                    width=width,
                    height=height,
                    batch_size=batch_size * num_images_per_prompt,
                    num_images_per_prompt=num_images_per_prompt,
                    dtype=controlnet.dtype,
                    do_classifier_free_guidance=self.do_classifier_free_guidance,
                    guess_mode=guess_mode,
                )

                control_images.append(control_image_)

            control_image = control_images
        else:
            assert False

        # 5. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps)
        timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength)
        latent_timestep = timesteps[:1].tile((batch_size * num_images_per_prompt,))
        self._num_timesteps = len(timesteps)

        # 6. Prepare latent variables
        if latents is None:
            latents = self.prepare_latents(
                image,
                latent_timestep,
                batch_size,
                num_images_per_prompt,
                prompt_embeds.dtype,
                generator,
            )

        # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 7.1 Add image embeds for IP-Adapter
        added_cond_kwargs = (
            {"image_embeds": image_embeds}
            if ip_adapter_image is not None or ip_adapter_image_embeds is not None
            else None
        )

        # 7.2 Create tensor stating which controlnets to keep
        controlnet_keep = []
        for i in range(len(timesteps)):
            keeps = [
                1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
                for s, e in zip(control_guidance_start, control_guidance_end)
            ]
            controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)

        # we're popping the `scale` instead of getting it because otherwise `scale` will be propagated
        # to the unet and will raise RuntimeError.
        lora_scale = self.cross_attention_kwargs.pop("scale", None) if self.cross_attention_kwargs is not None else None
        if lora_scale is not None:
            # weight the lora layers by setting `lora_scale` for each PEFT layer
            scale_lora_layers(self.unet, lora_scale)

        # 8. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = ops.cat([latents] * 2) if self.do_classifier_free_guidance else latents
                # TODO: method of scheduler should not change the dtype of input.
                #  Remove the casting after cuiyushi confirm that.
                tmp_dtype = latent_model_input.dtype
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
                latent_model_input = latent_model_input.to(tmp_dtype)

                # controlnet(s) inference
                if guess_mode and self.do_classifier_free_guidance:
                    # Infer ControlNet only for the conditional batch.
                    control_model_input = latents
                    control_model_input = self.scheduler.scale_model_input(control_model_input, t)
                    controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
                else:
                    control_model_input = latent_model_input
                    controlnet_prompt_embeds = prompt_embeds

                if isinstance(controlnet_keep[i], list):
                    cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
                else:
                    controlnet_cond_scale = controlnet_conditioning_scale
                    if isinstance(controlnet_cond_scale, list):
                        controlnet_cond_scale = controlnet_cond_scale[0]
                    cond_scale = controlnet_cond_scale * controlnet_keep[i]

                down_block_res_samples, mid_block_res_sample = self.controlnet(
                    control_model_input,
                    t,
                    encoder_hidden_states=controlnet_prompt_embeds,
                    controlnet_cond=control_image,
                    conditioning_scale=cond_scale,
                    guess_mode=guess_mode,
                    return_dict=False,
                )

                if guess_mode and self.do_classifier_free_guidance:
                    # Infered ControlNet only for the conditional batch.
                    # To apply the output of ControlNet to both the unconditional and conditional batches,
                    # add 0 to the unconditional batch to keep it unchanged.
                    down_block_res_samples = [ops.cat([ops.zeros_like(d), d]) for d in down_block_res_samples]
                    mid_block_res_sample = ops.cat([ops.zeros_like(mid_block_res_sample), mid_block_res_sample])

                # predict the noise residual
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    cross_attention_kwargs=self.cross_attention_kwargs,
                    down_block_additional_residuals=ms.mutable(down_block_res_samples),
                    mid_block_additional_residual=mid_block_res_sample,
                    added_cond_kwargs=added_cond_kwargs,
                    return_dict=False,
                )[0]

                # perform guidance
                if self.do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                # TODO: method of scheduler should not change the dtype of input.
                #  Remove the casting after cuiyushi confirm that.
                tmp_dtype = latents.dtype
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
                latents = latents.to(tmp_dtype)

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)

        if lora_scale is not None:
            # remove `lora_scale` from each PEFT layer
            unscale_lora_layers(self.unet, lora_scale)

        if not output_type == "latent":
            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
            image, has_nsfw_concept = self.run_safety_checker(image, prompt_embeds.dtype)
        else:
            image = latents
            has_nsfw_concept = None

        if has_nsfw_concept is None:
            do_denormalize = [True] * image.shape[0]
        else:
            do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]

        image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)

        if not return_dict:
            return (image, has_nsfw_concept)

        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)

mindone.diffusers.StableDiffusionControlNetImg2ImgPipeline.__call__(prompt=None, image=None, control_image=None, height=None, width=None, strength=0.8, num_inference_steps=50, guidance_scale=7.5, negative_prompt=None, num_images_per_prompt=1, eta=0.0, generator=None, latents=None, prompt_embeds=None, negative_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, output_type='pil', return_dict=False, cross_attention_kwargs=None, controlnet_conditioning_scale=0.8, guess_mode=False, control_guidance_start=0.0, control_guidance_end=1.0, clip_skip=None, callback_on_step_end=None, callback_on_step_end_tensor_inputs=['latents'], **kwargs)

The call function to the pipeline for generation.

PARAMETER DESCRIPTION
prompt

The prompt or prompts to guide image generation. If not defined, you need to pass prompt_embeds.

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

image
`List[List[ms.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):

The initial image to be used as the starting point for the image generation process. Can also accept image latents as image, and if passing latents directly they are not encoded again.

TYPE: `ms.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[ms.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`, DEFAULT: None

control_image
`List[List[ms.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):

The ControlNet input condition to provide guidance to the unet for generation. If the type is specified as ms.Tensor, it is passed to ControlNet as is. PIL.Image.Image can also be accepted as an image. The dimensions of the output image defaults to image's dimensions. If height and/or width are passed, image is resized accordingly. If multiple ControlNets are specified in init, images must be passed as a list such that each element of the list can be correctly batched for input to a single ControlNet.

TYPE: `ms.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[ms.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`, DEFAULT: None

height

The height in pixels of the generated image.

TYPE: `int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor` DEFAULT: None

width

The width in pixels of the generated image.

TYPE: `int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor` DEFAULT: None

strength

Indicates extent to transform the reference image. Must be between 0 and 1. image is used as a starting point and more noise is added the higher the strength. The number of denoising steps depends on the amount of noise initially added. When strength is 1, added noise is maximum and the denoising process runs for the full number of iterations specified in num_inference_steps. A value of 1 essentially ignores image.

TYPE: `float`, *optional*, defaults to 0.8 DEFAULT: 0.8

num_inference_steps

The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.

TYPE: `int`, *optional*, defaults to 50 DEFAULT: 50

guidance_scale

A higher guidance scale value encourages the model to generate images closely linked to the text prompt at the expense of lower image quality. Guidance scale is enabled when guidance_scale > 1.

TYPE: `float`, *optional*, defaults to 7.5 DEFAULT: 7.5

negative_prompt

The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass negative_prompt_embeds instead. Ignored when not using guidance (guidance_scale < 1).

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

num_images_per_prompt

The number of images to generate per prompt.

TYPE: `int`, *optional*, defaults to 1 DEFAULT: 1

eta

Corresponds to parameter eta (η) from the DDIM paper. Only applies to the [~schedulers.DDIMScheduler], and is ignored in other schedulers.

TYPE: `float`, *optional*, defaults to 0.0 DEFAULT: 0.0

generator

A np.random.Generator to make generation deterministic.

TYPE: `np.random.Generator` or `List[np.random.Generator]`, *optional* DEFAULT: None

latents

Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random generator.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

prompt_embeds

Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_prompt_embeds

Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, negative_prompt_embeds are generated from the negative_prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

ip_adapter_image

(PipelineImageInput, optional): Optional image input to work with IP Adapters.

TYPE: Optional[PipelineImageInput] DEFAULT: None

ip_adapter_image_embeds

Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters. Each element should be a tensor of shape (batch_size, num_images, emb_dim). It should contain the negative image embedding if do_classifier_free_guidance is set to True. If not provided, embeddings are computed from the ip_adapter_image input argument.

TYPE: `List[ms.Tensor]`, *optional* DEFAULT: None

output_type

The output format of the generated image. Choose between PIL.Image or np.array.

TYPE: `str`, *optional*, defaults to `"pil"` DEFAULT: 'pil'

return_dict

Whether or not to return a [~pipelines.stable_diffusion.StableDiffusionPipelineOutput] instead of a plain tuple.

TYPE: `bool`, *optional*, defaults to `False` DEFAULT: False

cross_attention_kwargs

A kwargs dictionary that if specified is passed along to the [AttentionProcessor] as defined in self.processor.

TYPE: `dict`, *optional* DEFAULT: None

controlnet_conditioning_scale

The outputs of the ControlNet are multiplied by controlnet_conditioning_scale before they are added to the residual in the original unet. If multiple ControlNets are specified in init, you can set the corresponding scale as a list.

TYPE: `float` or `List[float]`, *optional*, defaults to 1.0 DEFAULT: 0.8

guess_mode

The ControlNet encoder tries to recognize the content of the input image even if you remove all prompts. A guidance_scale value between 3.0 and 5.0 is recommended.

TYPE: `bool`, *optional*, defaults to `False` DEFAULT: False

control_guidance_start

The percentage of total steps at which the ControlNet starts applying.

TYPE: `float` or `List[float]`, *optional*, defaults to 0.0 DEFAULT: 0.0

control_guidance_end

The percentage of total steps at which the ControlNet stops applying.

TYPE: `float` or `List[float]`, *optional*, defaults to 1.0 DEFAULT: 1.0

clip_skip

Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings.

TYPE: `int`, *optional* DEFAULT: None

callback_on_step_end

A function or a subclass of PipelineCallback or MultiPipelineCallbacks that is called at the end of each denoising step during the inference. with the following arguments: callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict). callback_kwargs will include a list of all tensors as specified by callback_on_step_end_tensor_inputs.

TYPE: `Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional* DEFAULT: None

callback_on_step_end_tensor_inputs

The list of tensor inputs for the callback_on_step_end function. The tensors specified in the list will be passed as callback_kwargs argument. You will only be able to include variables listed in the ._callback_tensor_inputs attribute of your pipeline class.

TYPE: `List`, *optional* DEFAULT: ['latents']

RETURNS DESCRIPTION

[~pipelines.stable_diffusion.StableDiffusionPipelineOutput] or tuple: If return_dict is True, [~pipelines.stable_diffusion.StableDiffusionPipelineOutput] is returned, otherwise a tuple is returned where the first element is a list with the generated images and the second element is a list of bools indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content.

Source code in mindone/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
def __call__(
    self,
    prompt: Union[str, List[str]] = None,
    image: PipelineImageInput = None,
    control_image: PipelineImageInput = None,
    height: Optional[int] = None,
    width: Optional[int] = None,
    strength: float = 0.8,
    num_inference_steps: int = 50,
    guidance_scale: float = 7.5,
    negative_prompt: Optional[Union[str, List[str]]] = None,
    num_images_per_prompt: Optional[int] = 1,
    eta: float = 0.0,
    generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
    latents: Optional[ms.Tensor] = None,
    prompt_embeds: Optional[ms.Tensor] = None,
    negative_prompt_embeds: Optional[ms.Tensor] = None,
    ip_adapter_image: Optional[PipelineImageInput] = None,
    ip_adapter_image_embeds: Optional[List[ms.Tensor]] = None,
    output_type: Optional[str] = "pil",
    return_dict: bool = False,
    cross_attention_kwargs: Optional[Dict[str, Any]] = None,
    controlnet_conditioning_scale: Union[float, List[float]] = 0.8,
    guess_mode: bool = False,
    control_guidance_start: Union[float, List[float]] = 0.0,
    control_guidance_end: Union[float, List[float]] = 1.0,
    clip_skip: Optional[int] = None,
    callback_on_step_end: Optional[
        Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
    ] = None,
    callback_on_step_end_tensor_inputs: List[str] = ["latents"],
    **kwargs,
):
    r"""
    The call function to the pipeline for generation.

    Args:
        prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
        image (`ms.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[ms.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
                `List[List[ms.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
            The initial image to be used as the starting point for the image generation process. Can also accept
            image latents as `image`, and if passing latents directly they are not encoded again.
        control_image (`ms.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[ms.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
                `List[List[ms.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
            The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
            specified as `ms.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
            as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
            width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
            images must be passed as a list such that each element of the list can be correctly batched for input
            to a single ControlNet.
        height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
            The height in pixels of the generated image.
        width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
            The width in pixels of the generated image.
        strength (`float`, *optional*, defaults to 0.8):
            Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
            starting point and more noise is added the higher the `strength`. The number of denoising steps depends
            on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
            process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
            essentially ignores `image`.
        num_inference_steps (`int`, *optional*, defaults to 50):
            The number of denoising steps. More denoising steps usually lead to a higher quality image at the
            expense of slower inference.
        guidance_scale (`float`, *optional*, defaults to 7.5):
            A higher guidance scale value encourages the model to generate images closely linked to the text
            `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
        negative_prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts to guide what to not include in image generation. If not defined, you need to
            pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
        num_images_per_prompt (`int`, *optional*, defaults to 1):
            The number of images to generate per prompt.
        eta (`float`, *optional*, defaults to 0.0):
            Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
            to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
        generator (`np.random.Generator` or `List[np.random.Generator]`, *optional*):
            A [`np.random.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
            generation deterministic.
        latents (`ms.Tensor`, *optional*):
            Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
            generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
            tensor is generated by sampling using the supplied random `generator`.
        prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
            provided, text embeddings are generated from the `prompt` input argument.
        negative_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
            not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
        ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
        ip_adapter_image_embeds (`List[ms.Tensor]`, *optional*):
            Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
            IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
            contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
            provided, embeddings are computed from the `ip_adapter_image` input argument.
        output_type (`str`, *optional*, defaults to `"pil"`):
            The output format of the generated image. Choose between `PIL.Image` or `np.array`.
        return_dict (`bool`, *optional*, defaults to `False`):
            Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
            plain tuple.
        cross_attention_kwargs (`dict`, *optional*):
            A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
            [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
        controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
            The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
            to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
            the corresponding scale as a list.
        guess_mode (`bool`, *optional*, defaults to `False`):
            The ControlNet encoder tries to recognize the content of the input image even if you remove all
            prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
        control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
            The percentage of total steps at which the ControlNet starts applying.
        control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
            The percentage of total steps at which the ControlNet stops applying.
        clip_skip (`int`, *optional*):
            Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
            the output of the pre-final layer will be used for computing the prompt embeddings.
        callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
            A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
            each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
            DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
            list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
        callback_on_step_end_tensor_inputs (`List`, *optional*):
            The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
            will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
            `._callback_tensor_inputs` attribute of your pipeline class.

    Examples:

    Returns:
        [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
            If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
            otherwise a `tuple` is returned where the first element is a list with the generated images and the
            second element is a list of `bool`s indicating whether the corresponding generated image contains
            "not-safe-for-work" (nsfw) content.
    """

    callback = kwargs.pop("callback", None)
    callback_steps = kwargs.pop("callback_steps", None)

    if callback is not None:
        deprecate(
            "callback",
            "1.0.0",
            "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
        )
    if callback_steps is not None:
        deprecate(
            "callback_steps",
            "1.0.0",
            "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
        )

    if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
        callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs

    controlnet = self.controlnet

    # align format for control guidance
    if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
        control_guidance_start = len(control_guidance_end) * [control_guidance_start]
    elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
        control_guidance_end = len(control_guidance_start) * [control_guidance_end]
    elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
        mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
        control_guidance_start, control_guidance_end = (
            mult * [control_guidance_start],
            mult * [control_guidance_end],
        )

    # 1. Check inputs. Raise error if not correct
    self.check_inputs(
        prompt,
        control_image,
        callback_steps,
        negative_prompt,
        prompt_embeds,
        negative_prompt_embeds,
        ip_adapter_image,
        ip_adapter_image_embeds,
        controlnet_conditioning_scale,
        control_guidance_start,
        control_guidance_end,
        callback_on_step_end_tensor_inputs,
    )

    self._guidance_scale = guidance_scale
    self._clip_skip = clip_skip
    self._cross_attention_kwargs = cross_attention_kwargs

    # 2. Define call parameters
    if prompt is not None and isinstance(prompt, str):
        batch_size = 1
    elif prompt is not None and isinstance(prompt, list):
        batch_size = len(prompt)
    else:
        batch_size = prompt_embeds.shape[0]

    if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
        controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)

    global_pool_conditions = (
        controlnet.config.global_pool_conditions
        if isinstance(controlnet, ControlNetModel)
        else controlnet.nets[0].config.global_pool_conditions
    )
    guess_mode = guess_mode or global_pool_conditions

    # 3. Encode input prompt
    text_encoder_lora_scale = (
        self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
    )
    prompt_embeds, negative_prompt_embeds = self.encode_prompt(
        prompt,
        num_images_per_prompt,
        self.do_classifier_free_guidance,
        negative_prompt,
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=negative_prompt_embeds,
        lora_scale=text_encoder_lora_scale,
        clip_skip=self.clip_skip,
    )
    # For classifier free guidance, we need to do two forward passes.
    # Here we concatenate the unconditional and text embeddings into a single batch
    # to avoid doing two forward passes
    if self.do_classifier_free_guidance:
        prompt_embeds = ops.cat([negative_prompt_embeds, prompt_embeds])

    if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
        image_embeds = self.prepare_ip_adapter_image_embeds(
            ip_adapter_image,
            ip_adapter_image_embeds,
            batch_size * num_images_per_prompt,
            self.do_classifier_free_guidance,
        )

    # 4. Prepare image
    image = self.image_processor.preprocess(image, height=height, width=width).to(dtype=ms.float32)

    # 5. Prepare controlnet_conditioning_image
    if isinstance(controlnet, ControlNetModel):
        control_image = self.prepare_control_image(
            image=control_image,
            width=width,
            height=height,
            batch_size=batch_size * num_images_per_prompt,
            num_images_per_prompt=num_images_per_prompt,
            dtype=controlnet.dtype,
            do_classifier_free_guidance=self.do_classifier_free_guidance,
            guess_mode=guess_mode,
        )
    elif isinstance(controlnet, MultiControlNetModel):
        control_images = []

        for control_image_ in control_image:
            control_image_ = self.prepare_control_image(
                image=control_image_,
                width=width,
                height=height,
                batch_size=batch_size * num_images_per_prompt,
                num_images_per_prompt=num_images_per_prompt,
                dtype=controlnet.dtype,
                do_classifier_free_guidance=self.do_classifier_free_guidance,
                guess_mode=guess_mode,
            )

            control_images.append(control_image_)

        control_image = control_images
    else:
        assert False

    # 5. Prepare timesteps
    self.scheduler.set_timesteps(num_inference_steps)
    timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength)
    latent_timestep = timesteps[:1].tile((batch_size * num_images_per_prompt,))
    self._num_timesteps = len(timesteps)

    # 6. Prepare latent variables
    if latents is None:
        latents = self.prepare_latents(
            image,
            latent_timestep,
            batch_size,
            num_images_per_prompt,
            prompt_embeds.dtype,
            generator,
        )

    # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
    extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

    # 7.1 Add image embeds for IP-Adapter
    added_cond_kwargs = (
        {"image_embeds": image_embeds}
        if ip_adapter_image is not None or ip_adapter_image_embeds is not None
        else None
    )

    # 7.2 Create tensor stating which controlnets to keep
    controlnet_keep = []
    for i in range(len(timesteps)):
        keeps = [
            1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
            for s, e in zip(control_guidance_start, control_guidance_end)
        ]
        controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)

    # we're popping the `scale` instead of getting it because otherwise `scale` will be propagated
    # to the unet and will raise RuntimeError.
    lora_scale = self.cross_attention_kwargs.pop("scale", None) if self.cross_attention_kwargs is not None else None
    if lora_scale is not None:
        # weight the lora layers by setting `lora_scale` for each PEFT layer
        scale_lora_layers(self.unet, lora_scale)

    # 8. Denoising loop
    num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
    with self.progress_bar(total=num_inference_steps) as progress_bar:
        for i, t in enumerate(timesteps):
            # expand the latents if we are doing classifier free guidance
            latent_model_input = ops.cat([latents] * 2) if self.do_classifier_free_guidance else latents
            # TODO: method of scheduler should not change the dtype of input.
            #  Remove the casting after cuiyushi confirm that.
            tmp_dtype = latent_model_input.dtype
            latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
            latent_model_input = latent_model_input.to(tmp_dtype)

            # controlnet(s) inference
            if guess_mode and self.do_classifier_free_guidance:
                # Infer ControlNet only for the conditional batch.
                control_model_input = latents
                control_model_input = self.scheduler.scale_model_input(control_model_input, t)
                controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
            else:
                control_model_input = latent_model_input
                controlnet_prompt_embeds = prompt_embeds

            if isinstance(controlnet_keep[i], list):
                cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
            else:
                controlnet_cond_scale = controlnet_conditioning_scale
                if isinstance(controlnet_cond_scale, list):
                    controlnet_cond_scale = controlnet_cond_scale[0]
                cond_scale = controlnet_cond_scale * controlnet_keep[i]

            down_block_res_samples, mid_block_res_sample = self.controlnet(
                control_model_input,
                t,
                encoder_hidden_states=controlnet_prompt_embeds,
                controlnet_cond=control_image,
                conditioning_scale=cond_scale,
                guess_mode=guess_mode,
                return_dict=False,
            )

            if guess_mode and self.do_classifier_free_guidance:
                # Infered ControlNet only for the conditional batch.
                # To apply the output of ControlNet to both the unconditional and conditional batches,
                # add 0 to the unconditional batch to keep it unchanged.
                down_block_res_samples = [ops.cat([ops.zeros_like(d), d]) for d in down_block_res_samples]
                mid_block_res_sample = ops.cat([ops.zeros_like(mid_block_res_sample), mid_block_res_sample])

            # predict the noise residual
            noise_pred = self.unet(
                latent_model_input,
                t,
                encoder_hidden_states=prompt_embeds,
                cross_attention_kwargs=self.cross_attention_kwargs,
                down_block_additional_residuals=ms.mutable(down_block_res_samples),
                mid_block_additional_residual=mid_block_res_sample,
                added_cond_kwargs=added_cond_kwargs,
                return_dict=False,
            )[0]

            # perform guidance
            if self.do_classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

            # compute the previous noisy sample x_t -> x_t-1
            # TODO: method of scheduler should not change the dtype of input.
            #  Remove the casting after cuiyushi confirm that.
            tmp_dtype = latents.dtype
            latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
            latents = latents.to(tmp_dtype)

            if callback_on_step_end is not None:
                callback_kwargs = {}
                for k in callback_on_step_end_tensor_inputs:
                    callback_kwargs[k] = locals()[k]
                callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                latents = callback_outputs.pop("latents", latents)
                prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

            # call the callback, if provided
            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                progress_bar.update()
                if callback is not None and i % callback_steps == 0:
                    step_idx = i // getattr(self.scheduler, "order", 1)
                    callback(step_idx, t, latents)

    if lora_scale is not None:
        # remove `lora_scale` from each PEFT layer
        unscale_lora_layers(self.unet, lora_scale)

    if not output_type == "latent":
        image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
        image, has_nsfw_concept = self.run_safety_checker(image, prompt_embeds.dtype)
    else:
        image = latents
        has_nsfw_concept = None

    if has_nsfw_concept is None:
        do_denormalize = [True] * image.shape[0]
    else:
        do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]

    image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)

    if not return_dict:
        return (image, has_nsfw_concept)

    return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)

mindone.diffusers.StableDiffusionControlNetImg2ImgPipeline.encode_prompt(prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, lora_scale=None, clip_skip=None)

Encodes the prompt into text encoder hidden states.

PARAMETER DESCRIPTION
prompt

prompt to be encoded

TYPE: `str` or `List[str]`, *optional*

num_images_per_prompt

number of images that should be generated per prompt

TYPE: `int`

do_classifier_free_guidance

whether to use classifier free guidance or not

TYPE: `bool`

negative_prompt

The prompt or prompts not to guide the image generation. If not defined, one has to pass negative_prompt_embeds instead. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1).

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

prompt_embeds

Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_prompt_embeds

Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

lora_scale

A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.

TYPE: `float`, *optional* DEFAULT: None

clip_skip

Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings.

TYPE: `int`, *optional* DEFAULT: None

Source code in mindone/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
def encode_prompt(
    self,
    prompt,
    num_images_per_prompt,
    do_classifier_free_guidance,
    negative_prompt=None,
    prompt_embeds: Optional[ms.Tensor] = None,
    negative_prompt_embeds: Optional[ms.Tensor] = None,
    lora_scale: Optional[float] = None,
    clip_skip: Optional[int] = None,
):
    r"""
    Encodes the prompt into text encoder hidden states.

    Args:
        prompt (`str` or `List[str]`, *optional*):
            prompt to be encoded
        num_images_per_prompt (`int`):
            number of images that should be generated per prompt
        do_classifier_free_guidance (`bool`):
            whether to use classifier free guidance or not
        negative_prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts not to guide the image generation. If not defined, one has to pass
            `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
            less than `1`).
        prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
            provided, text embeddings will be generated from `prompt` input argument.
        negative_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
            weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
            argument.
        lora_scale (`float`, *optional*):
            A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
        clip_skip (`int`, *optional*):
            Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
            the output of the pre-final layer will be used for computing the prompt embeddings.
    """
    # set lora scale so that monkey patched LoRA
    # function of text encoder can correctly access it
    if lora_scale is not None and isinstance(self, LoraLoaderMixin):
        self._lora_scale = lora_scale

        # dynamically adjust the LoRA scale
        scale_lora_layers(self.text_encoder, lora_scale)

    if prompt is not None and isinstance(prompt, str):
        batch_size = 1
    elif prompt is not None and isinstance(prompt, list):
        batch_size = len(prompt)
    else:
        batch_size = prompt_embeds.shape[0]

    if prompt_embeds is None:
        # textual inversion: process multi-vector tokens if necessary
        if isinstance(self, TextualInversionLoaderMixin):
            prompt = self.maybe_convert_prompt(prompt, self.tokenizer)

        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
            truncation=True,
            return_tensors="np",
        )
        text_input_ids = text_inputs.input_ids
        untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="np").input_ids

        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not np.array_equal(
            text_input_ids, untruncated_ids
        ):
            removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
            logger.warning(
                "The following part of your input was truncated because CLIP can only handle sequences up to"
                f" {self.tokenizer.model_max_length} tokens: {removed_text}"
            )

        if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
            attention_mask = ms.Tensor(text_inputs.attention_mask)
        else:
            attention_mask = None

        if clip_skip is None:
            prompt_embeds = self.text_encoder(ms.Tensor(text_input_ids), attention_mask=attention_mask)
            prompt_embeds = prompt_embeds[0]
        else:
            prompt_embeds = self.text_encoder(
                ms.Tensor(text_input_ids), attention_mask=attention_mask, output_hidden_states=True
            )
            # Access the `hidden_states` first, that contains a tuple of
            # all the hidden states from the encoder layers. Then index into
            # the tuple to access the hidden states from the desired layer.
            prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
            # We also need to apply the final LayerNorm here to not mess with the
            # representations. The `last_hidden_states` that we typically use for
            # obtaining the final prompt representations passes through the LayerNorm
            # layer.
            prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)

    if self.text_encoder is not None:
        prompt_embeds_dtype = self.text_encoder.dtype
    elif self.unet is not None:
        prompt_embeds_dtype = self.unet.dtype
    else:
        prompt_embeds_dtype = prompt_embeds.dtype

    prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype)

    bs_embed, seq_len, _ = prompt_embeds.shape
    # duplicate text embeddings for each generation per prompt, using mps friendly method
    prompt_embeds = prompt_embeds.tile((1, num_images_per_prompt, 1))
    prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

    # get unconditional embeddings for classifier free guidance
    if do_classifier_free_guidance and negative_prompt_embeds is None:
        uncond_tokens: List[str]
        if negative_prompt is None:
            uncond_tokens = [""] * batch_size
        elif prompt is not None and type(prompt) is not type(negative_prompt):
            raise TypeError(
                f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                f" {type(prompt)}."
            )
        elif isinstance(negative_prompt, str):
            uncond_tokens = [negative_prompt]
        elif batch_size != len(negative_prompt):
            raise ValueError(
                f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                " the batch size of `prompt`."
            )
        else:
            uncond_tokens = negative_prompt

        # textual inversion: process multi-vector tokens if necessary
        if isinstance(self, TextualInversionLoaderMixin):
            uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)

        max_length = prompt_embeds.shape[1]
        uncond_input = self.tokenizer(
            uncond_tokens,
            padding="max_length",
            max_length=max_length,
            truncation=True,
            return_tensors="np",
        )

        if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
            attention_mask = ms.Tensor(uncond_input.attention_mask)
        else:
            attention_mask = None

        negative_prompt_embeds = self.text_encoder(
            ms.Tensor(uncond_input.input_ids),
            attention_mask=attention_mask,
        )
        negative_prompt_embeds = negative_prompt_embeds[0]

    if do_classifier_free_guidance:
        # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
        seq_len = negative_prompt_embeds.shape[1]

        negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype)

        negative_prompt_embeds = negative_prompt_embeds.tile((1, num_images_per_prompt, 1))
        negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

    if self.text_encoder is not None:
        if isinstance(self, LoraLoaderMixin):
            # Retrieve the original scale by scaling back the LoRA layers
            unscale_lora_layers(self.text_encoder, lora_scale)

    return prompt_embeds, negative_prompt_embeds

mindone.diffusers.StableDiffusionControlNetInpaintPipeline

Bases: DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, LoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin

Pipeline for image inpainting using Stable Diffusion with ControlNet guidance.

This model inherits from [DiffusionPipeline]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).

The pipeline also inherits the following loading methods
  • [~loaders.TextualInversionLoaderMixin.load_textual_inversion] for loading textual inversion embeddings
  • [~loaders.LoraLoaderMixin.load_lora_weights] for loading LoRA weights
  • [~loaders.LoraLoaderMixin.save_lora_weights] for saving LoRA weights
  • [~loaders.FromSingleFileMixin.from_single_file] for loading .ckpt files
  • [~loaders.IPAdapterMixin.load_ip_adapter] for loading IP Adapters

This pipeline can be used with checkpoints that have been specifically fine-tuned for inpainting (runwayml/stable-diffusion-inpainting) as well as default text-to-image Stable Diffusion checkpoints (runwayml/stable-diffusion-v1-5). Default text-to-image Stable Diffusion checkpoints might be preferable for ControlNets that have been fine-tuned on those, such as lllyasviel/control_v11p_sd15_inpaint.

PARAMETER DESCRIPTION
vae

Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.

TYPE: [`AutoencoderKL`]

text_encoder

Frozen text-encoder (clip-vit-large-patch14).

TYPE: [`~transformers.CLIPTextModel`]

tokenizer

A CLIPTokenizer to tokenize text.

TYPE: [`~transformers.CLIPTokenizer`]

unet

A UNet2DConditionModel to denoise the encoded image latents.

TYPE: [`UNet2DConditionModel`]

controlnet

Provides additional conditioning to the unet during the denoising process. If you set multiple ControlNets as a list, the outputs from each ControlNet are added together to create one combined additional conditioning.

TYPE: [`ControlNetModel`] or `List[ControlNetModel]`

scheduler

A scheduler to be used in combination with unet to denoise the encoded image latents. Can be one of [DDIMScheduler], [LMSDiscreteScheduler], or [PNDMScheduler].

TYPE: [`SchedulerMixin`]

safety_checker

Classification module that estimates whether generated images could be considered offensive or harmful. Please refer to the model card for more details about a model's potential harms.

TYPE: [`StableDiffusionSafetyChecker`]

feature_extractor

A CLIPImageProcessor to extract features from generated images; used as inputs to the safety_checker.

TYPE: [`~transformers.CLIPImageProcessor`]

Source code in mindone/diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
class StableDiffusionControlNetInpaintPipeline(
    DiffusionPipeline,
    StableDiffusionMixin,
    TextualInversionLoaderMixin,
    LoraLoaderMixin,
    IPAdapterMixin,
    FromSingleFileMixin,
):
    r"""
    Pipeline for image inpainting using Stable Diffusion with ControlNet guidance.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).

    The pipeline also inherits the following loading methods:
        - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
        - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
        - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
        - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
        - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters

    <Tip>

    This pipeline can be used with checkpoints that have been specifically fine-tuned for inpainting
    ([runwayml/stable-diffusion-inpainting](https://huggingface.co/runwayml/stable-diffusion-inpainting)) as well as
    default text-to-image Stable Diffusion checkpoints
    ([runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5)). Default text-to-image
    Stable Diffusion checkpoints might be preferable for ControlNets that have been fine-tuned on those, such as
    [lllyasviel/control_v11p_sd15_inpaint](https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint).

    </Tip>

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
        text_encoder ([`~transformers.CLIPTextModel`]):
            Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
        tokenizer ([`~transformers.CLIPTokenizer`]):
            A `CLIPTokenizer` to tokenize text.
        unet ([`UNet2DConditionModel`]):
            A `UNet2DConditionModel` to denoise the encoded image latents.
        controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
            Provides additional conditioning to the `unet` during the denoising process. If you set multiple
            ControlNets as a list, the outputs from each ControlNet are added together to create one combined
            additional conditioning.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        safety_checker ([`StableDiffusionSafetyChecker`]):
            Classification module that estimates whether generated images could be considered offensive or harmful.
            Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
            about a model's potential harms.
        feature_extractor ([`~transformers.CLIPImageProcessor`]):
            A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
    """

    model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
    _optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
    _exclude_from_cpu_offload = ["safety_checker"]
    _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
        controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
        scheduler: KarrasDiffusionSchedulers,
        safety_checker: StableDiffusionSafetyChecker,
        feature_extractor: CLIPImageProcessor,
        image_encoder: CLIPVisionModelWithProjection = None,
        requires_safety_checker: bool = True,
    ):
        super().__init__()

        if safety_checker is None and requires_safety_checker:
            logger.warning(
                f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
                " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
                " results in services or applications open to the public. Both the diffusers team and Hugging Face"
                " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
                " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
                " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
            )

        if safety_checker is not None and feature_extractor is None:
            raise ValueError(
                "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
                " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
            )

        if isinstance(controlnet, (list, tuple)):
            controlnet = MultiControlNetModel(controlnet)

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            controlnet=controlnet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
            image_encoder=image_encoder,
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
        self.mask_processor = VaeImageProcessor(
            vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
        )
        self.control_image_processor = VaeImageProcessor(
            vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
        )
        self.register_to_config(requires_safety_checker=requires_safety_checker)

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
    def _encode_prompt(
        self,
        prompt,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[ms.Tensor] = None,
        negative_prompt_embeds: Optional[ms.Tensor] = None,
        lora_scale: Optional[float] = None,
        **kwargs,
    ):
        deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."  # noqa: E501
        deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)

        prompt_embeds_tuple = self.encode_prompt(
            prompt=prompt,
            num_images_per_prompt=num_images_per_prompt,
            do_classifier_free_guidance=do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=lora_scale,
            **kwargs,
        )

        # concatenate for backwards comp
        prompt_embeds = ops.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])

        return prompt_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
    def encode_prompt(
        self,
        prompt,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[ms.Tensor] = None,
        negative_prompt_embeds: Optional[ms.Tensor] = None,
        lora_scale: Optional[float] = None,
        clip_skip: Optional[int] = None,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            lora_scale (`float`, *optional*):
                A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
        """
        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
        if lora_scale is not None and isinstance(self, LoraLoaderMixin):
            self._lora_scale = lora_scale

            # dynamically adjust the LoRA scale
            scale_lora_layers(self.text_encoder, lora_scale)

        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if prompt_embeds is None:
            # textual inversion: process multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                prompt = self.maybe_convert_prompt(prompt, self.tokenizer)

            text_inputs = self.tokenizer(
                prompt,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="np",
            )
            text_input_ids = text_inputs.input_ids
            untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="np").input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not np.array_equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {self.tokenizer.model_max_length} tokens: {removed_text}"
                )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = ms.Tensor(text_inputs.attention_mask)
            else:
                attention_mask = None

            if clip_skip is None:
                prompt_embeds = self.text_encoder(ms.Tensor(text_input_ids), attention_mask=attention_mask)
                prompt_embeds = prompt_embeds[0]
            else:
                prompt_embeds = self.text_encoder(
                    ms.Tensor(text_input_ids), attention_mask=attention_mask, output_hidden_states=True
                )
                # Access the `hidden_states` first, that contains a tuple of
                # all the hidden states from the encoder layers. Then index into
                # the tuple to access the hidden states from the desired layer.
                prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
                # We also need to apply the final LayerNorm here to not mess with the
                # representations. The `last_hidden_states` that we typically use for
                # obtaining the final prompt representations passes through the LayerNorm
                # layer.
                prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)

        if self.text_encoder is not None:
            prompt_embeds_dtype = self.text_encoder.dtype
        elif self.unet is not None:
            prompt_embeds_dtype = self.unet.dtype
        else:
            prompt_embeds_dtype = prompt_embeds.dtype

        prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype)

        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.tile((1, num_images_per_prompt, 1))
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif prompt is not None and type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

            # textual inversion: process multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)

            max_length = prompt_embeds.shape[1]
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="np",
            )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = ms.Tensor(uncond_input.attention_mask)
            else:
                attention_mask = None

            negative_prompt_embeds = self.text_encoder(
                ms.Tensor(uncond_input.input_ids),
                attention_mask=attention_mask,
            )
            negative_prompt_embeds = negative_prompt_embeds[0]

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

            negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype)

            negative_prompt_embeds = negative_prompt_embeds.tile((1, num_images_per_prompt, 1))
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

        if self.text_encoder is not None:
            if isinstance(self, LoraLoaderMixin):
                # Retrieve the original scale by scaling back the LoRA layers
                unscale_lora_layers(self.text_encoder, lora_scale)

        return prompt_embeds, negative_prompt_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
    def encode_image(self, image, num_images_per_prompt, output_hidden_states=None):
        dtype = next(self.image_encoder.get_parameters()).dtype

        if not isinstance(image, ms.Tensor):
            image = self.feature_extractor(image, return_tensors="np").pixel_values
            image = ms.Tensor(image)

        image = image.to(dtype=dtype)
        if output_hidden_states:
            image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True)[2][-2]
            image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_enc_hidden_states = self.image_encoder(ops.zeros_like(image), output_hidden_states=True)[2][-2]
            uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
                num_images_per_prompt, dim=0
            )
            return image_enc_hidden_states, uncond_image_enc_hidden_states
        else:
            image_embeds = self.image_encoder(image)[0]
            image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_embeds = ops.zeros_like(image_embeds)

            return image_embeds, uncond_image_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
    def prepare_ip_adapter_image_embeds(
        self, ip_adapter_image, ip_adapter_image_embeds, num_images_per_prompt, do_classifier_free_guidance
    ):
        if ip_adapter_image_embeds is None:
            if not isinstance(ip_adapter_image, list):
                ip_adapter_image = [ip_adapter_image]

            if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
                raise ValueError(
                    f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."  # noqa: E501
                )

            image_embeds = []
            for single_ip_adapter_image, image_proj_layer in zip(
                ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
            ):
                output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
                single_image_embeds, single_negative_image_embeds = self.encode_image(
                    single_ip_adapter_image, 1, output_hidden_state
                )
                single_image_embeds = ops.stack([single_image_embeds] * num_images_per_prompt, axis=0)
                single_negative_image_embeds = ops.stack([single_negative_image_embeds] * num_images_per_prompt, axis=0)

                if do_classifier_free_guidance:
                    single_image_embeds = ops.cat([single_negative_image_embeds, single_image_embeds])

                image_embeds.append(single_image_embeds)
        else:
            repeat_dims = [1]
            image_embeds = []
            for single_image_embeds in ip_adapter_image_embeds:
                if do_classifier_free_guidance:
                    single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
                    single_image_embeds = single_image_embeds.tile(
                        (num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])))
                    )
                    single_negative_image_embeds = single_negative_image_embeds.tile(
                        (num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:])))
                    )
                    single_image_embeds = ops.cat([single_negative_image_embeds, single_image_embeds])
                else:
                    single_image_embeds = single_image_embeds.tile(
                        (num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])))
                    )
                image_embeds.append(single_image_embeds)

        return image_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
    def run_safety_checker(self, image, dtype):
        if self.safety_checker is None:
            has_nsfw_concept = None
        else:
            if ops.is_tensor(image):
                feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
            else:
                feature_extractor_input = self.image_processor.numpy_to_pil(image)
            safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="np")
            image, has_nsfw_concept = self.safety_checker(
                images=image, clip_input=ms.Tensor(safety_checker_input.pixel_values).to(dtype)
            )

            # Warning for safety checker operations here as it couldn't been done in construct()
            if ops.any(has_nsfw_concept):
                logger.warning(
                    "Potential NSFW content was detected in one or more images. A black image will be returned instead."
                    " Try again with a different prompt and/or seed."
                )
        return image, has_nsfw_concept

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
    def decode_latents(self, latents):
        deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
        deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)

        latents = 1 / self.vae.config.scaling_factor * latents
        image = self.vae.decode(latents, return_dict=False)[0]
        image = (image / 2 + 0.5).clamp(0, 1)
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
        image = image.permute(0, 2, 3, 1).float().numpy()
        return image

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
    def get_timesteps(self, num_inference_steps, strength):
        # get the original timestep using init_timestep
        init_timestep = min(int(num_inference_steps * strength), num_inference_steps)

        t_start = max(num_inference_steps - init_timestep, 0)
        timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
        if hasattr(self.scheduler, "set_begin_index"):
            self.scheduler.set_begin_index(t_start * self.scheduler.order)

        return timesteps, num_inference_steps - t_start

    def check_inputs(
        self,
        prompt,
        image,
        mask_image,
        height,
        width,
        callback_steps,
        output_type,
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
        ip_adapter_image=None,
        ip_adapter_image_embeds=None,
        controlnet_conditioning_scale=1.0,
        control_guidance_start=0.0,
        control_guidance_end=1.0,
        callback_on_step_end_tensor_inputs=None,
        padding_mask_crop=None,
    ):
        if height is not None and height % 8 != 0 or width is not None and width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

        if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"  # noqa: E501
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

        if padding_mask_crop is not None:
            if not isinstance(image, PIL.Image.Image):
                raise ValueError(
                    f"The image should be a PIL image when inpainting mask crop, but is of type" f" {type(image)}."
                )
            if not isinstance(mask_image, PIL.Image.Image):
                raise ValueError(
                    f"The mask image should be a PIL image when inpainting mask crop, but is of type"
                    f" {type(mask_image)}."
                )
            if output_type != "pil":
                raise ValueError(f"The output type should be PIL when inpainting mask crop, but is" f" {output_type}.")

        # `prompt` needs more sophisticated handling when there are multiple
        # conditionings.
        if isinstance(self.controlnet, MultiControlNetModel):
            if isinstance(prompt, list):
                logger.warning(
                    f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}"
                    " prompts. The conditionings will be fixed across the prompts."
                )

        # Check `image`
        if isinstance(self.controlnet, ControlNetModel):
            self.check_image(image, prompt, prompt_embeds)
        elif isinstance(self.controlnet, MultiControlNetModel):
            if not isinstance(image, list):
                raise TypeError("For multiple controlnets: `image` must be type `list`")

            # When `image` is a nested list:
            # (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
            elif any(isinstance(i, list) for i in image):
                raise ValueError("A single batch of multiple conditionings are supported at the moment.")
            elif len(image) != len(self.controlnet.nets):
                raise ValueError(
                    f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets."  # noqa: E501
                )

            for image_ in image:
                self.check_image(image_, prompt, prompt_embeds)
        else:
            assert False

        # Check `controlnet_conditioning_scale`
        if isinstance(self.controlnet, ControlNetModel):
            if not isinstance(controlnet_conditioning_scale, float):
                raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
        elif isinstance(self.controlnet, MultiControlNetModel):
            if isinstance(controlnet_conditioning_scale, list):
                if any(isinstance(i, list) for i in controlnet_conditioning_scale):
                    raise ValueError("A single batch of multiple conditionings are supported at the moment.")
            elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
                self.controlnet.nets
            ):
                raise ValueError(
                    "For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
                    " the same length as the number of controlnets"
                )
        else:
            assert False

        if len(control_guidance_start) != len(control_guidance_end):
            raise ValueError(
                f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."  # noqa: E501
            )

        if isinstance(self.controlnet, MultiControlNetModel):
            if len(control_guidance_start) != len(self.controlnet.nets):
                raise ValueError(
                    f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}."  # noqa: E501
                )

        for start, end in zip(control_guidance_start, control_guidance_end):
            if start >= end:
                raise ValueError(
                    f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
                )
            if start < 0.0:
                raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
            if end > 1.0:
                raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")

        if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
            raise ValueError(
                "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
            )

        if ip_adapter_image_embeds is not None:
            if not isinstance(ip_adapter_image_embeds, list):
                raise ValueError(
                    f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
                )
            elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
                raise ValueError(
                    f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
                )

    # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image
    def check_image(self, image, prompt, prompt_embeds):
        image_is_pil = isinstance(image, PIL.Image.Image)
        image_is_tensor = isinstance(image, ms.Tensor)
        image_is_np = isinstance(image, np.ndarray)
        image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
        image_is_tensor_list = isinstance(image, list) and isinstance(image[0], ms.Tensor)
        image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)

        if (
            not image_is_pil
            and not image_is_tensor
            and not image_is_np
            and not image_is_pil_list
            and not image_is_tensor_list
            and not image_is_np_list
        ):
            raise TypeError(
                f"image must be passed and be one of PIL image, numpy array, mindspore tensor, list of PIL images, list of numpy arrays or list of mindspore tensors, but is {type(image)}"  # noqa: E501
            )

        if image_is_pil:
            image_batch_size = 1
        else:
            image_batch_size = len(image)

        if prompt is not None and isinstance(prompt, str):
            prompt_batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            prompt_batch_size = len(prompt)
        elif prompt_embeds is not None:
            prompt_batch_size = prompt_embeds.shape[0]

        if image_batch_size != 1 and image_batch_size != prompt_batch_size:
            raise ValueError(
                f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"  # noqa: E501
            )

    def prepare_control_image(
        self,
        image,
        width,
        height,
        batch_size,
        num_images_per_prompt,
        dtype,
        crops_coords,
        resize_mode,
        do_classifier_free_guidance=False,
        guess_mode=False,
    ):
        image = self.control_image_processor.preprocess(
            image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
        ).to(dtype=ms.float32)
        image_batch_size = image.shape[0]

        if image_batch_size == 1:
            repeat_by = batch_size
        else:
            # image batch size is the same as prompt batch size
            repeat_by = num_images_per_prompt

        image = image.repeat_interleave(repeat_by, dim=0)

        image = image.to(dtype=dtype)

        if do_classifier_free_guidance and not guess_mode:
            image = ops.cat([image] * 2)

        return image

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline.prepare_latents
    def prepare_latents(
        self,
        batch_size,
        num_channels_latents,
        height,
        width,
        dtype,
        generator,
        latents=None,
        image=None,
        timestep=None,
        is_strength_max=True,
        return_noise=False,
        return_image_latents=False,
    ):
        shape = (
            batch_size,
            num_channels_latents,
            int(height) // self.vae_scale_factor,
            int(width) // self.vae_scale_factor,
        )
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if (image is None or timestep is None) and not is_strength_max:
            raise ValueError(
                "Since strength < 1. initial latents are to be initialised as a combination of Image + Noise."
                "However, either the image or the noise timestep has not been provided."
            )

        if return_image_latents or (latents is None and not is_strength_max):
            image = image.to(dtype=dtype)

            if image.shape[1] == 4:
                image_latents = image
            else:
                image_latents = self._encode_vae_image(image=image, generator=generator)
            image_latents = image_latents.tile((batch_size // image_latents.shape[0], 1, 1, 1))

        if latents is None:
            noise = randn_tensor(shape, generator=generator, dtype=dtype)
            # if strength is 1. then initialise the latents to noise, else initial to image + noise
            latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep)
            # if pure noise then scale the initial latents by the  Scheduler's init sigma
            latents = (latents * self.scheduler.init_noise_sigma).to(dtype) if is_strength_max else latents
        else:
            noise = latents
            latents = (noise * self.scheduler.init_noise_sigma).to(dtype)

        outputs = (latents,)

        if return_noise:
            outputs += (noise,)

        if return_image_latents:
            outputs += (image_latents,)

        return outputs

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline.prepare_mask_latents
    def prepare_mask_latents(
        self, mask, masked_image, batch_size, height, width, dtype, generator, do_classifier_free_guidance
    ):
        # resize the mask to latents shape as we concatenate the mask to the latents
        # we do that before converting to dtype to avoid breaking in case we're using cpu_offload
        # and half precision
        mask = ops.interpolate(mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor))
        mask = mask.to(dtype=dtype)

        masked_image = masked_image.to(dtype=dtype)

        if masked_image.shape[1] == 4:
            masked_image_latents = masked_image
        else:
            masked_image_latents = self._encode_vae_image(masked_image, generator=generator)

        # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
        if mask.shape[0] < batch_size:
            if not batch_size % mask.shape[0] == 0:
                raise ValueError(
                    "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
                    f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
                    " of masks that you pass is divisible by the total requested batch size."
                )
            mask = mask.tile((batch_size // mask.shape[0], 1, 1, 1))
        if masked_image_latents.shape[0] < batch_size:
            if not batch_size % masked_image_latents.shape[0] == 0:
                raise ValueError(
                    "The passed images and the required batch size don't match. Images are supposed to be duplicated"
                    f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
                    " Make sure the number of images that you pass is divisible by the total requested batch size."
                )
            masked_image_latents = masked_image_latents.tile((batch_size // masked_image_latents.shape[0], 1, 1, 1))

        mask = ops.cat([mask] * 2) if do_classifier_free_guidance else mask
        masked_image_latents = (
            ops.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
        )

        # aligning device to prevent device errors when concating it with the latent model input
        masked_image_latents = masked_image_latents.to(dtype=dtype)
        return mask, masked_image_latents

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline._encode_vae_image
    def _encode_vae_image(self, image: ms.Tensor, generator: np.random.Generator):
        if isinstance(generator, list):
            image_latents = [
                retrieve_latents(self.vae, self.vae.encode(image[i : i + 1])[0], generator)
                for i in range(image.shape[0])
            ]
            image_latents = ops.cat(image_latents, axis=0)
        else:
            image_latents = retrieve_latents(self.vae, self.vae.encode(image)[0], generator)

        image_latents = self.vae.config.scaling_factor * image_latents

        return image_latents

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def clip_skip(self):
        return self._clip_skip

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1

    @property
    def cross_attention_kwargs(self):
        return self._cross_attention_kwargs

    @property
    def num_timesteps(self):
        return self._num_timesteps

    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        image: PipelineImageInput = None,
        mask_image: PipelineImageInput = None,
        control_image: PipelineImageInput = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        padding_mask_crop: Optional[int] = None,
        strength: float = 1.0,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
        latents: Optional[ms.Tensor] = None,
        prompt_embeds: Optional[ms.Tensor] = None,
        negative_prompt_embeds: Optional[ms.Tensor] = None,
        ip_adapter_image: Optional[PipelineImageInput] = None,
        ip_adapter_image_embeds: Optional[List[ms.Tensor]] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = False,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        controlnet_conditioning_scale: Union[float, List[float]] = 0.5,
        guess_mode: bool = False,
        control_guidance_start: Union[float, List[float]] = 0.0,
        control_guidance_end: Union[float, List[float]] = 1.0,
        clip_skip: Optional[int] = None,
        callback_on_step_end: Optional[
            Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
        ] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        **kwargs,
    ):
        r"""
        The call function to the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
            image (`ms.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[ms.Tensor]`,
                    `List[PIL.Image.Image]`, or `List[np.ndarray]`):
                `Image`, NumPy array or tensor representing an image batch to be used as the starting point. For both
                NumPy array and PyTorch tensor, the expected value range is between `[0, 1]`. If it's a tensor or a
                list or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a NumPy array or
                a list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)`. It can also accept image
                latents as `image`, but if passing latents directly it is not encoded again.
            mask_image (`ms.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[ms.Tensor]`,
                    `List[PIL.Image.Image]`, or `List[np.ndarray]`):
                `Image`, NumPy array or tensor representing an image batch to mask `image`. White pixels in the mask
                are repainted while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a
                single channel (luminance) before use. If it's a NumPy array or PyTorch tensor, it should contain one
                color channel (L) instead of 3, so the expected shape for PyTorch tensor would be `(B, 1, H, W)`, `(B,
                H, W)`, `(1, H, W)`, `(H, W)`. And for NumPy array, it would be for `(B, H, W, 1)`, `(B, H, W)`, `(H,
                W, 1)`, or `(H, W)`.
            control_image (`ms.Tensor`, `PIL.Image.Image`, `List[ms.Tensor]`, `List[PIL.Image.Image]`,
                    `List[List[ms.Tensor]]`, or `List[List[PIL.Image.Image]]`):
                The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
                specified as `ms.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
                as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
                width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
                images must be passed as a list such that each element of the list can be correctly batched for input
                to a single ControlNet.
            height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
                The width in pixels of the generated image.
            padding_mask_crop (`int`, *optional*, defaults to `None`):
                The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to
                image and mask_image. If `padding_mask_crop` is not `None`, it will first find a rectangular region
                with the same aspect ration of the image and contains all masked area, and then expand that area based
                on `padding_mask_crop`. The image and mask_image will then be cropped based on the expanded area before
                resizing to the original image size for inpainting. This is useful when the masked area is small while
                the image is large and contain information irrelevant for inpainting, such as background.
            strength (`float`, *optional*, defaults to 1.0):
                Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
                starting point and more noise is added the higher the `strength`. The number of denoising steps depends
                on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
                process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
                essentially ignores `image`.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
            generator (`np.random.Generator` or `List[np.random.Generator]`, *optional*):
                A [`np.random.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
            latents (`ms.Tensor`, *optional*):
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor is generated by sampling using the supplied random `generator`.
            prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument.
            negative_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
            ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
            ip_adapter_image_embeds (`List[ms.Tensor]`, *optional*):
                Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
                IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
                contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
                provided, embeddings are computed from the `ip_adapter_image` input argument.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 0.5):
                The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
                to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
                the corresponding scale as a list.
            guess_mode (`bool`, *optional*, defaults to `False`):
                The ControlNet encoder tries to recognize the content of the input image even if you remove all
                prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
            control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
                The percentage of total steps at which the ControlNet starts applying.
            control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
                The percentage of total steps at which the ControlNet stops applying.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
            callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
                A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
                each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
                DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
                list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
                `._callback_tensor_inputs` attribute of your pipeline class.

        Examples:

        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
                otherwise a `tuple` is returned where the first element is a list with the generated images and the
                second element is a list of `bool`s indicating whether the corresponding generated image contains
                "not-safe-for-work" (nsfw) content.
        """

        callback = kwargs.pop("callback", None)
        callback_steps = kwargs.pop("callback_steps", None)

        if callback is not None:
            deprecate(
                "callback",
                "1.0.0",
                "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
            )
        if callback_steps is not None:
            deprecate(
                "callback_steps",
                "1.0.0",
                "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
            )

        if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
            callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs

        controlnet = self.controlnet

        # align format for control guidance
        if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
            control_guidance_start = len(control_guidance_end) * [control_guidance_start]
        elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
            control_guidance_end = len(control_guidance_start) * [control_guidance_end]
        elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
            mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
            control_guidance_start, control_guidance_end = (
                mult * [control_guidance_start],
                mult * [control_guidance_end],
            )

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            control_image,
            mask_image,
            height,
            width,
            callback_steps,
            output_type,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
            ip_adapter_image,
            ip_adapter_image_embeds,
            controlnet_conditioning_scale,
            control_guidance_start,
            control_guidance_end,
            callback_on_step_end_tensor_inputs,
            padding_mask_crop,
        )

        self._guidance_scale = guidance_scale
        self._clip_skip = clip_skip
        self._cross_attention_kwargs = cross_attention_kwargs

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if padding_mask_crop is not None:
            height, width = self.image_processor.get_default_height_width(image, height, width)
            crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop)
            resize_mode = "fill"
        else:
            crops_coords = None
            resize_mode = "default"

        if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
            controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)

        global_pool_conditions = (
            controlnet.config.global_pool_conditions
            if isinstance(controlnet, ControlNetModel)
            else controlnet.nets[0].config.global_pool_conditions
        )
        guess_mode = guess_mode or global_pool_conditions

        # 3. Encode input prompt
        text_encoder_lora_scale = (
            self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
        )
        prompt_embeds, negative_prompt_embeds = self.encode_prompt(
            prompt,
            num_images_per_prompt,
            self.do_classifier_free_guidance,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=text_encoder_lora_scale,
            clip_skip=self.clip_skip,
        )
        # For classifier free guidance, we need to do two forward passes.
        # Here we concatenate the unconditional and text embeddings into a single batch
        # to avoid doing two forward passes
        if self.do_classifier_free_guidance:
            prompt_embeds = ops.cat([negative_prompt_embeds, prompt_embeds])

        if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
            image_embeds = self.prepare_ip_adapter_image_embeds(
                ip_adapter_image,
                ip_adapter_image_embeds,
                batch_size * num_images_per_prompt,
                self.do_classifier_free_guidance,
            )

        # 4. Prepare image
        if isinstance(controlnet, ControlNetModel):
            control_image = self.prepare_control_image(
                image=control_image,
                width=width,
                height=height,
                batch_size=batch_size * num_images_per_prompt,
                num_images_per_prompt=num_images_per_prompt,
                dtype=controlnet.dtype,
                crops_coords=crops_coords,
                resize_mode=resize_mode,
                do_classifier_free_guidance=self.do_classifier_free_guidance,
                guess_mode=guess_mode,
            )
        elif isinstance(controlnet, MultiControlNetModel):
            control_images = []

            for control_image_ in control_image:
                control_image_ = self.prepare_control_image(
                    image=control_image_,
                    width=width,
                    height=height,
                    batch_size=batch_size * num_images_per_prompt,
                    num_images_per_prompt=num_images_per_prompt,
                    dtype=controlnet.dtype,
                    crops_coords=crops_coords,
                    resize_mode=resize_mode,
                    do_classifier_free_guidance=self.do_classifier_free_guidance,
                    guess_mode=guess_mode,
                )

                control_images.append(control_image_)

            control_image = control_images
        else:
            assert False

        # 4.1 Preprocess mask and image - resizes image and mask w.r.t height and width
        original_image = image
        init_image = self.image_processor.preprocess(
            image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
        )
        init_image = init_image.to(dtype=ms.float32)

        mask = self.mask_processor.preprocess(
            mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
        )

        masked_image = init_image * (mask < 0.5)
        _, _, height, width = init_image.shape

        # 5. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps)
        timesteps, num_inference_steps = self.get_timesteps(num_inference_steps=num_inference_steps, strength=strength)
        # at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
        latent_timestep = timesteps[:1].tile((batch_size * num_images_per_prompt,))
        # create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
        is_strength_max = strength == 1.0
        self._num_timesteps = len(timesteps)

        # 6. Prepare latent variables
        num_channels_latents = self.vae.config.latent_channels
        num_channels_unet = self.unet.config.in_channels
        return_image_latents = num_channels_unet == 4
        latents_outputs = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            generator,
            latents,
            image=init_image,
            timestep=latent_timestep,
            is_strength_max=is_strength_max,
            return_noise=True,
            return_image_latents=return_image_latents,
        )

        if return_image_latents:
            latents, noise, image_latents = latents_outputs
        else:
            latents, noise = latents_outputs

        # 7. Prepare mask latent variables
        mask, masked_image_latents = self.prepare_mask_latents(
            mask,
            masked_image,
            batch_size * num_images_per_prompt,
            height,
            width,
            prompt_embeds.dtype,
            generator,
            self.do_classifier_free_guidance,
        )

        # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 7.1 Add image embeds for IP-Adapter
        added_cond_kwargs = (
            {"image_embeds": image_embeds}
            if ip_adapter_image is not None or ip_adapter_image_embeds is not None
            else None
        )

        # 7.2 Create tensor stating which controlnets to keep
        controlnet_keep = []
        for i in range(len(timesteps)):
            keeps = [
                1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
                for s, e in zip(control_guidance_start, control_guidance_end)
            ]
            controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)

        # we're popping the `scale` instead of getting it because otherwise `scale` will be propagated
        # to the unet and will raise RuntimeError.
        lora_scale = self.cross_attention_kwargs.pop("scale", None) if self.cross_attention_kwargs is not None else None
        if lora_scale is not None:
            # weight the lora layers by setting `lora_scale` for each PEFT layer
            scale_lora_layers(self.unet, lora_scale)

        # 8. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = ops.cat([latents] * 2) if self.do_classifier_free_guidance else latents
                # TODO: method of scheduler should not change the dtype of input.
                #  Remove the casting after cuiyushi confirm that.
                tmp_dtype = latent_model_input.dtype
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
                latent_model_input = latent_model_input.to(tmp_dtype)

                # controlnet(s) inference
                if guess_mode and self.do_classifier_free_guidance:
                    # Infer ControlNet only for the conditional batch.
                    control_model_input = latents
                    control_model_input = self.scheduler.scale_model_input(control_model_input, t)
                    controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
                else:
                    control_model_input = latent_model_input
                    controlnet_prompt_embeds = prompt_embeds

                if isinstance(controlnet_keep[i], list):
                    cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
                else:
                    controlnet_cond_scale = controlnet_conditioning_scale
                    if isinstance(controlnet_cond_scale, list):
                        controlnet_cond_scale = controlnet_cond_scale[0]
                    cond_scale = controlnet_cond_scale * controlnet_keep[i]

                down_block_res_samples, mid_block_res_sample = self.controlnet(
                    control_model_input,
                    t,
                    encoder_hidden_states=controlnet_prompt_embeds,
                    controlnet_cond=control_image,
                    conditioning_scale=cond_scale,
                    guess_mode=guess_mode,
                    return_dict=False,
                )

                if guess_mode and self.do_classifier_free_guidance:
                    # Infered ControlNet only for the conditional batch.
                    # To apply the output of ControlNet to both the unconditional and conditional batches,
                    # add 0 to the unconditional batch to keep it unchanged.
                    down_block_res_samples = [ops.cat([ops.zeros_like(d), d]) for d in down_block_res_samples]
                    mid_block_res_sample = ops.cat([ops.zeros_like(mid_block_res_sample), mid_block_res_sample])

                # predict the noise residual
                if num_channels_unet == 9:
                    latent_model_input = ops.cat([latent_model_input, mask, masked_image_latents], axis=1)

                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    cross_attention_kwargs=self.cross_attention_kwargs,
                    down_block_additional_residuals=ms.mutable(down_block_res_samples),
                    mid_block_additional_residual=mid_block_res_sample,
                    added_cond_kwargs=ms.mutable(added_cond_kwargs) if added_cond_kwargs else added_cond_kwargs,
                    return_dict=False,
                )[0]

                # perform guidance
                if self.do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                # TODO: method of scheduler should not change the dtype of input.
                #  Remove the casting after cuiyushi confirm that.
                tmp_dtype = latents.dtype
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
                latents = latents.to(tmp_dtype)

                if num_channels_unet == 4:
                    init_latents_proper = image_latents
                    if self.do_classifier_free_guidance:
                        init_mask, _ = mask.chunk(2)
                    else:
                        init_mask = mask

                    if i < len(timesteps) - 1:
                        noise_timestep = timesteps[i + 1]
                        init_latents_proper = self.scheduler.add_noise(init_latents_proper, noise, noise_timestep[None])

                    latents = (1 - init_mask) * init_latents_proper + init_mask * latents

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)

        if lora_scale is not None:
            # remove `lora_scale` from each PEFT layer
            unscale_lora_layers(self.unet, lora_scale)

        if not output_type == "latent":
            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
            image, has_nsfw_concept = self.run_safety_checker(image, prompt_embeds.dtype)
        else:
            image = latents
            has_nsfw_concept = None

        if has_nsfw_concept is None:
            do_denormalize = [True] * image.shape[0]
        else:
            do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]

        image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)

        if padding_mask_crop is not None:
            image = [self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image]

        if not return_dict:
            return (image, has_nsfw_concept)

        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)

mindone.diffusers.StableDiffusionControlNetInpaintPipeline.__call__(prompt=None, image=None, mask_image=None, control_image=None, height=None, width=None, padding_mask_crop=None, strength=1.0, num_inference_steps=50, guidance_scale=7.5, negative_prompt=None, num_images_per_prompt=1, eta=0.0, generator=None, latents=None, prompt_embeds=None, negative_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, output_type='pil', return_dict=False, cross_attention_kwargs=None, controlnet_conditioning_scale=0.5, guess_mode=False, control_guidance_start=0.0, control_guidance_end=1.0, clip_skip=None, callback_on_step_end=None, callback_on_step_end_tensor_inputs=['latents'], **kwargs)

The call function to the pipeline for generation.

PARAMETER DESCRIPTION
prompt

The prompt or prompts to guide image generation. If not defined, you need to pass prompt_embeds.

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

height

The height in pixels of the generated image.

TYPE: `int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor` DEFAULT: None

width

The width in pixels of the generated image.

TYPE: `int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor` DEFAULT: None

padding_mask_crop

The size of margin in the crop to be applied to the image and masking. If None, no crop is applied to image and mask_image. If padding_mask_crop is not None, it will first find a rectangular region with the same aspect ration of the image and contains all masked area, and then expand that area based on padding_mask_crop. The image and mask_image will then be cropped based on the expanded area before resizing to the original image size for inpainting. This is useful when the masked area is small while the image is large and contain information irrelevant for inpainting, such as background.

TYPE: `int`, *optional*, defaults to `None` DEFAULT: None

strength

Indicates extent to transform the reference image. Must be between 0 and 1. image is used as a starting point and more noise is added the higher the strength. The number of denoising steps depends on the amount of noise initially added. When strength is 1, added noise is maximum and the denoising process runs for the full number of iterations specified in num_inference_steps. A value of 1 essentially ignores image.

TYPE: `float`, *optional*, defaults to 1.0 DEFAULT: 1.0

num_inference_steps

The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.

TYPE: `int`, *optional*, defaults to 50 DEFAULT: 50

guidance_scale

A higher guidance scale value encourages the model to generate images closely linked to the text prompt at the expense of lower image quality. Guidance scale is enabled when guidance_scale > 1.

TYPE: `float`, *optional*, defaults to 7.5 DEFAULT: 7.5

negative_prompt

The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass negative_prompt_embeds instead. Ignored when not using guidance (guidance_scale < 1).

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

num_images_per_prompt

The number of images to generate per prompt.

TYPE: `int`, *optional*, defaults to 1 DEFAULT: 1

eta

Corresponds to parameter eta (η) from the DDIM paper. Only applies to the [~schedulers.DDIMScheduler], and is ignored in other schedulers.

TYPE: `float`, *optional*, defaults to 0.0 DEFAULT: 0.0

generator

A np.random.Generator to make generation deterministic.

TYPE: `np.random.Generator` or `List[np.random.Generator]`, *optional* DEFAULT: None

latents

Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random generator.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

prompt_embeds

Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_prompt_embeds

Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, negative_prompt_embeds are generated from the negative_prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

ip_adapter_image

(PipelineImageInput, optional): Optional image input to work with IP Adapters.

TYPE: Optional[PipelineImageInput] DEFAULT: None

ip_adapter_image_embeds

Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters. Each element should be a tensor of shape (batch_size, num_images, emb_dim). It should contain the negative image embedding if do_classifier_free_guidance is set to True. If not provided, embeddings are computed from the ip_adapter_image input argument.

TYPE: `List[ms.Tensor]`, *optional* DEFAULT: None

output_type

The output format of the generated image. Choose between PIL.Image or np.array.

TYPE: `str`, *optional*, defaults to `"pil"` DEFAULT: 'pil'

return_dict

Whether or not to return a [~pipelines.stable_diffusion.StableDiffusionPipelineOutput] instead of a plain tuple.

TYPE: `bool`, *optional*, defaults to `False` DEFAULT: False

cross_attention_kwargs

A kwargs dictionary that if specified is passed along to the [AttentionProcessor] as defined in self.processor.

TYPE: `dict`, *optional* DEFAULT: None

controlnet_conditioning_scale

The outputs of the ControlNet are multiplied by controlnet_conditioning_scale before they are added to the residual in the original unet. If multiple ControlNets are specified in init, you can set the corresponding scale as a list.

TYPE: `float` or `List[float]`, *optional*, defaults to 0.5 DEFAULT: 0.5

guess_mode

The ControlNet encoder tries to recognize the content of the input image even if you remove all prompts. A guidance_scale value between 3.0 and 5.0 is recommended.

TYPE: `bool`, *optional*, defaults to `False` DEFAULT: False

control_guidance_start

The percentage of total steps at which the ControlNet starts applying.

TYPE: `float` or `List[float]`, *optional*, defaults to 0.0 DEFAULT: 0.0

control_guidance_end

The percentage of total steps at which the ControlNet stops applying.

TYPE: `float` or `List[float]`, *optional*, defaults to 1.0 DEFAULT: 1.0

clip_skip

Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings.

TYPE: `int`, *optional* DEFAULT: None

callback_on_step_end

A function or a subclass of PipelineCallback or MultiPipelineCallbacks that is called at the end of each denoising step during the inference. with the following arguments: callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict). callback_kwargs will include a list of all tensors as specified by callback_on_step_end_tensor_inputs.

TYPE: `Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional* DEFAULT: None

callback_on_step_end_tensor_inputs

The list of tensor inputs for the callback_on_step_end function. The tensors specified in the list will be passed as callback_kwargs argument. You will only be able to include variables listed in the ._callback_tensor_inputs attribute of your pipeline class.

TYPE: `List`, *optional* DEFAULT: ['latents']

RETURNS DESCRIPTION

[~pipelines.stable_diffusion.StableDiffusionPipelineOutput] or tuple: If return_dict is True, [~pipelines.stable_diffusion.StableDiffusionPipelineOutput] is returned, otherwise a tuple is returned where the first element is a list with the generated images and the second element is a list of bools indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content.

Source code in mindone/diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
def __call__(
    self,
    prompt: Union[str, List[str]] = None,
    image: PipelineImageInput = None,
    mask_image: PipelineImageInput = None,
    control_image: PipelineImageInput = None,
    height: Optional[int] = None,
    width: Optional[int] = None,
    padding_mask_crop: Optional[int] = None,
    strength: float = 1.0,
    num_inference_steps: int = 50,
    guidance_scale: float = 7.5,
    negative_prompt: Optional[Union[str, List[str]]] = None,
    num_images_per_prompt: Optional[int] = 1,
    eta: float = 0.0,
    generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
    latents: Optional[ms.Tensor] = None,
    prompt_embeds: Optional[ms.Tensor] = None,
    negative_prompt_embeds: Optional[ms.Tensor] = None,
    ip_adapter_image: Optional[PipelineImageInput] = None,
    ip_adapter_image_embeds: Optional[List[ms.Tensor]] = None,
    output_type: Optional[str] = "pil",
    return_dict: bool = False,
    cross_attention_kwargs: Optional[Dict[str, Any]] = None,
    controlnet_conditioning_scale: Union[float, List[float]] = 0.5,
    guess_mode: bool = False,
    control_guidance_start: Union[float, List[float]] = 0.0,
    control_guidance_end: Union[float, List[float]] = 1.0,
    clip_skip: Optional[int] = None,
    callback_on_step_end: Optional[
        Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
    ] = None,
    callback_on_step_end_tensor_inputs: List[str] = ["latents"],
    **kwargs,
):
    r"""
    The call function to the pipeline for generation.

    Args:
        prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
        image (`ms.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[ms.Tensor]`,
                `List[PIL.Image.Image]`, or `List[np.ndarray]`):
            `Image`, NumPy array or tensor representing an image batch to be used as the starting point. For both
            NumPy array and PyTorch tensor, the expected value range is between `[0, 1]`. If it's a tensor or a
            list or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a NumPy array or
            a list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)`. It can also accept image
            latents as `image`, but if passing latents directly it is not encoded again.
        mask_image (`ms.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[ms.Tensor]`,
                `List[PIL.Image.Image]`, or `List[np.ndarray]`):
            `Image`, NumPy array or tensor representing an image batch to mask `image`. White pixels in the mask
            are repainted while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a
            single channel (luminance) before use. If it's a NumPy array or PyTorch tensor, it should contain one
            color channel (L) instead of 3, so the expected shape for PyTorch tensor would be `(B, 1, H, W)`, `(B,
            H, W)`, `(1, H, W)`, `(H, W)`. And for NumPy array, it would be for `(B, H, W, 1)`, `(B, H, W)`, `(H,
            W, 1)`, or `(H, W)`.
        control_image (`ms.Tensor`, `PIL.Image.Image`, `List[ms.Tensor]`, `List[PIL.Image.Image]`,
                `List[List[ms.Tensor]]`, or `List[List[PIL.Image.Image]]`):
            The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
            specified as `ms.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
            as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
            width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
            images must be passed as a list such that each element of the list can be correctly batched for input
            to a single ControlNet.
        height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
            The height in pixels of the generated image.
        width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
            The width in pixels of the generated image.
        padding_mask_crop (`int`, *optional*, defaults to `None`):
            The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to
            image and mask_image. If `padding_mask_crop` is not `None`, it will first find a rectangular region
            with the same aspect ration of the image and contains all masked area, and then expand that area based
            on `padding_mask_crop`. The image and mask_image will then be cropped based on the expanded area before
            resizing to the original image size for inpainting. This is useful when the masked area is small while
            the image is large and contain information irrelevant for inpainting, such as background.
        strength (`float`, *optional*, defaults to 1.0):
            Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
            starting point and more noise is added the higher the `strength`. The number of denoising steps depends
            on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
            process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
            essentially ignores `image`.
        num_inference_steps (`int`, *optional*, defaults to 50):
            The number of denoising steps. More denoising steps usually lead to a higher quality image at the
            expense of slower inference.
        guidance_scale (`float`, *optional*, defaults to 7.5):
            A higher guidance scale value encourages the model to generate images closely linked to the text
            `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
        negative_prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts to guide what to not include in image generation. If not defined, you need to
            pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
        num_images_per_prompt (`int`, *optional*, defaults to 1):
            The number of images to generate per prompt.
        eta (`float`, *optional*, defaults to 0.0):
            Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
            to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
        generator (`np.random.Generator` or `List[np.random.Generator]`, *optional*):
            A [`np.random.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
            generation deterministic.
        latents (`ms.Tensor`, *optional*):
            Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
            generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
            tensor is generated by sampling using the supplied random `generator`.
        prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
            provided, text embeddings are generated from the `prompt` input argument.
        negative_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
            not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
        ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
        ip_adapter_image_embeds (`List[ms.Tensor]`, *optional*):
            Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
            IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
            contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
            provided, embeddings are computed from the `ip_adapter_image` input argument.
        output_type (`str`, *optional*, defaults to `"pil"`):
            The output format of the generated image. Choose between `PIL.Image` or `np.array`.
        return_dict (`bool`, *optional*, defaults to `False`):
            Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
            plain tuple.
        cross_attention_kwargs (`dict`, *optional*):
            A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
            [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
        controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 0.5):
            The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
            to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
            the corresponding scale as a list.
        guess_mode (`bool`, *optional*, defaults to `False`):
            The ControlNet encoder tries to recognize the content of the input image even if you remove all
            prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
        control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
            The percentage of total steps at which the ControlNet starts applying.
        control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
            The percentage of total steps at which the ControlNet stops applying.
        clip_skip (`int`, *optional*):
            Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
            the output of the pre-final layer will be used for computing the prompt embeddings.
        callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
            A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
            each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
            DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
            list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
        callback_on_step_end_tensor_inputs (`List`, *optional*):
            The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
            will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
            `._callback_tensor_inputs` attribute of your pipeline class.

    Examples:

    Returns:
        [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
            If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
            otherwise a `tuple` is returned where the first element is a list with the generated images and the
            second element is a list of `bool`s indicating whether the corresponding generated image contains
            "not-safe-for-work" (nsfw) content.
    """

    callback = kwargs.pop("callback", None)
    callback_steps = kwargs.pop("callback_steps", None)

    if callback is not None:
        deprecate(
            "callback",
            "1.0.0",
            "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
        )
    if callback_steps is not None:
        deprecate(
            "callback_steps",
            "1.0.0",
            "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
        )

    if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
        callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs

    controlnet = self.controlnet

    # align format for control guidance
    if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
        control_guidance_start = len(control_guidance_end) * [control_guidance_start]
    elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
        control_guidance_end = len(control_guidance_start) * [control_guidance_end]
    elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
        mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
        control_guidance_start, control_guidance_end = (
            mult * [control_guidance_start],
            mult * [control_guidance_end],
        )

    # 1. Check inputs. Raise error if not correct
    self.check_inputs(
        prompt,
        control_image,
        mask_image,
        height,
        width,
        callback_steps,
        output_type,
        negative_prompt,
        prompt_embeds,
        negative_prompt_embeds,
        ip_adapter_image,
        ip_adapter_image_embeds,
        controlnet_conditioning_scale,
        control_guidance_start,
        control_guidance_end,
        callback_on_step_end_tensor_inputs,
        padding_mask_crop,
    )

    self._guidance_scale = guidance_scale
    self._clip_skip = clip_skip
    self._cross_attention_kwargs = cross_attention_kwargs

    # 2. Define call parameters
    if prompt is not None and isinstance(prompt, str):
        batch_size = 1
    elif prompt is not None and isinstance(prompt, list):
        batch_size = len(prompt)
    else:
        batch_size = prompt_embeds.shape[0]

    if padding_mask_crop is not None:
        height, width = self.image_processor.get_default_height_width(image, height, width)
        crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop)
        resize_mode = "fill"
    else:
        crops_coords = None
        resize_mode = "default"

    if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
        controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)

    global_pool_conditions = (
        controlnet.config.global_pool_conditions
        if isinstance(controlnet, ControlNetModel)
        else controlnet.nets[0].config.global_pool_conditions
    )
    guess_mode = guess_mode or global_pool_conditions

    # 3. Encode input prompt
    text_encoder_lora_scale = (
        self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
    )
    prompt_embeds, negative_prompt_embeds = self.encode_prompt(
        prompt,
        num_images_per_prompt,
        self.do_classifier_free_guidance,
        negative_prompt,
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=negative_prompt_embeds,
        lora_scale=text_encoder_lora_scale,
        clip_skip=self.clip_skip,
    )
    # For classifier free guidance, we need to do two forward passes.
    # Here we concatenate the unconditional and text embeddings into a single batch
    # to avoid doing two forward passes
    if self.do_classifier_free_guidance:
        prompt_embeds = ops.cat([negative_prompt_embeds, prompt_embeds])

    if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
        image_embeds = self.prepare_ip_adapter_image_embeds(
            ip_adapter_image,
            ip_adapter_image_embeds,
            batch_size * num_images_per_prompt,
            self.do_classifier_free_guidance,
        )

    # 4. Prepare image
    if isinstance(controlnet, ControlNetModel):
        control_image = self.prepare_control_image(
            image=control_image,
            width=width,
            height=height,
            batch_size=batch_size * num_images_per_prompt,
            num_images_per_prompt=num_images_per_prompt,
            dtype=controlnet.dtype,
            crops_coords=crops_coords,
            resize_mode=resize_mode,
            do_classifier_free_guidance=self.do_classifier_free_guidance,
            guess_mode=guess_mode,
        )
    elif isinstance(controlnet, MultiControlNetModel):
        control_images = []

        for control_image_ in control_image:
            control_image_ = self.prepare_control_image(
                image=control_image_,
                width=width,
                height=height,
                batch_size=batch_size * num_images_per_prompt,
                num_images_per_prompt=num_images_per_prompt,
                dtype=controlnet.dtype,
                crops_coords=crops_coords,
                resize_mode=resize_mode,
                do_classifier_free_guidance=self.do_classifier_free_guidance,
                guess_mode=guess_mode,
            )

            control_images.append(control_image_)

        control_image = control_images
    else:
        assert False

    # 4.1 Preprocess mask and image - resizes image and mask w.r.t height and width
    original_image = image
    init_image = self.image_processor.preprocess(
        image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
    )
    init_image = init_image.to(dtype=ms.float32)

    mask = self.mask_processor.preprocess(
        mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
    )

    masked_image = init_image * (mask < 0.5)
    _, _, height, width = init_image.shape

    # 5. Prepare timesteps
    self.scheduler.set_timesteps(num_inference_steps)
    timesteps, num_inference_steps = self.get_timesteps(num_inference_steps=num_inference_steps, strength=strength)
    # at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
    latent_timestep = timesteps[:1].tile((batch_size * num_images_per_prompt,))
    # create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
    is_strength_max = strength == 1.0
    self._num_timesteps = len(timesteps)

    # 6. Prepare latent variables
    num_channels_latents = self.vae.config.latent_channels
    num_channels_unet = self.unet.config.in_channels
    return_image_latents = num_channels_unet == 4
    latents_outputs = self.prepare_latents(
        batch_size * num_images_per_prompt,
        num_channels_latents,
        height,
        width,
        prompt_embeds.dtype,
        generator,
        latents,
        image=init_image,
        timestep=latent_timestep,
        is_strength_max=is_strength_max,
        return_noise=True,
        return_image_latents=return_image_latents,
    )

    if return_image_latents:
        latents, noise, image_latents = latents_outputs
    else:
        latents, noise = latents_outputs

    # 7. Prepare mask latent variables
    mask, masked_image_latents = self.prepare_mask_latents(
        mask,
        masked_image,
        batch_size * num_images_per_prompt,
        height,
        width,
        prompt_embeds.dtype,
        generator,
        self.do_classifier_free_guidance,
    )

    # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
    extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

    # 7.1 Add image embeds for IP-Adapter
    added_cond_kwargs = (
        {"image_embeds": image_embeds}
        if ip_adapter_image is not None or ip_adapter_image_embeds is not None
        else None
    )

    # 7.2 Create tensor stating which controlnets to keep
    controlnet_keep = []
    for i in range(len(timesteps)):
        keeps = [
            1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
            for s, e in zip(control_guidance_start, control_guidance_end)
        ]
        controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)

    # we're popping the `scale` instead of getting it because otherwise `scale` will be propagated
    # to the unet and will raise RuntimeError.
    lora_scale = self.cross_attention_kwargs.pop("scale", None) if self.cross_attention_kwargs is not None else None
    if lora_scale is not None:
        # weight the lora layers by setting `lora_scale` for each PEFT layer
        scale_lora_layers(self.unet, lora_scale)

    # 8. Denoising loop
    num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
    with self.progress_bar(total=num_inference_steps) as progress_bar:
        for i, t in enumerate(timesteps):
            # expand the latents if we are doing classifier free guidance
            latent_model_input = ops.cat([latents] * 2) if self.do_classifier_free_guidance else latents
            # TODO: method of scheduler should not change the dtype of input.
            #  Remove the casting after cuiyushi confirm that.
            tmp_dtype = latent_model_input.dtype
            latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
            latent_model_input = latent_model_input.to(tmp_dtype)

            # controlnet(s) inference
            if guess_mode and self.do_classifier_free_guidance:
                # Infer ControlNet only for the conditional batch.
                control_model_input = latents
                control_model_input = self.scheduler.scale_model_input(control_model_input, t)
                controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
            else:
                control_model_input = latent_model_input
                controlnet_prompt_embeds = prompt_embeds

            if isinstance(controlnet_keep[i], list):
                cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
            else:
                controlnet_cond_scale = controlnet_conditioning_scale
                if isinstance(controlnet_cond_scale, list):
                    controlnet_cond_scale = controlnet_cond_scale[0]
                cond_scale = controlnet_cond_scale * controlnet_keep[i]

            down_block_res_samples, mid_block_res_sample = self.controlnet(
                control_model_input,
                t,
                encoder_hidden_states=controlnet_prompt_embeds,
                controlnet_cond=control_image,
                conditioning_scale=cond_scale,
                guess_mode=guess_mode,
                return_dict=False,
            )

            if guess_mode and self.do_classifier_free_guidance:
                # Infered ControlNet only for the conditional batch.
                # To apply the output of ControlNet to both the unconditional and conditional batches,
                # add 0 to the unconditional batch to keep it unchanged.
                down_block_res_samples = [ops.cat([ops.zeros_like(d), d]) for d in down_block_res_samples]
                mid_block_res_sample = ops.cat([ops.zeros_like(mid_block_res_sample), mid_block_res_sample])

            # predict the noise residual
            if num_channels_unet == 9:
                latent_model_input = ops.cat([latent_model_input, mask, masked_image_latents], axis=1)

            noise_pred = self.unet(
                latent_model_input,
                t,
                encoder_hidden_states=prompt_embeds,
                cross_attention_kwargs=self.cross_attention_kwargs,
                down_block_additional_residuals=ms.mutable(down_block_res_samples),
                mid_block_additional_residual=mid_block_res_sample,
                added_cond_kwargs=ms.mutable(added_cond_kwargs) if added_cond_kwargs else added_cond_kwargs,
                return_dict=False,
            )[0]

            # perform guidance
            if self.do_classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

            # compute the previous noisy sample x_t -> x_t-1
            # TODO: method of scheduler should not change the dtype of input.
            #  Remove the casting after cuiyushi confirm that.
            tmp_dtype = latents.dtype
            latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
            latents = latents.to(tmp_dtype)

            if num_channels_unet == 4:
                init_latents_proper = image_latents
                if self.do_classifier_free_guidance:
                    init_mask, _ = mask.chunk(2)
                else:
                    init_mask = mask

                if i < len(timesteps) - 1:
                    noise_timestep = timesteps[i + 1]
                    init_latents_proper = self.scheduler.add_noise(init_latents_proper, noise, noise_timestep[None])

                latents = (1 - init_mask) * init_latents_proper + init_mask * latents

            if callback_on_step_end is not None:
                callback_kwargs = {}
                for k in callback_on_step_end_tensor_inputs:
                    callback_kwargs[k] = locals()[k]
                callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                latents = callback_outputs.pop("latents", latents)
                prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

            # call the callback, if provided
            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                progress_bar.update()
                if callback is not None and i % callback_steps == 0:
                    step_idx = i // getattr(self.scheduler, "order", 1)
                    callback(step_idx, t, latents)

    if lora_scale is not None:
        # remove `lora_scale` from each PEFT layer
        unscale_lora_layers(self.unet, lora_scale)

    if not output_type == "latent":
        image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
        image, has_nsfw_concept = self.run_safety_checker(image, prompt_embeds.dtype)
    else:
        image = latents
        has_nsfw_concept = None

    if has_nsfw_concept is None:
        do_denormalize = [True] * image.shape[0]
    else:
        do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]

    image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)

    if padding_mask_crop is not None:
        image = [self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image]

    if not return_dict:
        return (image, has_nsfw_concept)

    return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)

mindone.diffusers.StableDiffusionControlNetInpaintPipeline.encode_prompt(prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, lora_scale=None, clip_skip=None)

Encodes the prompt into text encoder hidden states.

PARAMETER DESCRIPTION
prompt

prompt to be encoded

TYPE: `str` or `List[str]`, *optional*

num_images_per_prompt

number of images that should be generated per prompt

TYPE: `int`

do_classifier_free_guidance

whether to use classifier free guidance or not

TYPE: `bool`

negative_prompt

The prompt or prompts not to guide the image generation. If not defined, one has to pass negative_prompt_embeds instead. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1).

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

prompt_embeds

Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_prompt_embeds

Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

lora_scale

A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.

TYPE: `float`, *optional* DEFAULT: None

clip_skip

Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings.

TYPE: `int`, *optional* DEFAULT: None

Source code in mindone/diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
def encode_prompt(
    self,
    prompt,
    num_images_per_prompt,
    do_classifier_free_guidance,
    negative_prompt=None,
    prompt_embeds: Optional[ms.Tensor] = None,
    negative_prompt_embeds: Optional[ms.Tensor] = None,
    lora_scale: Optional[float] = None,
    clip_skip: Optional[int] = None,
):
    r"""
    Encodes the prompt into text encoder hidden states.

    Args:
        prompt (`str` or `List[str]`, *optional*):
            prompt to be encoded
        num_images_per_prompt (`int`):
            number of images that should be generated per prompt
        do_classifier_free_guidance (`bool`):
            whether to use classifier free guidance or not
        negative_prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts not to guide the image generation. If not defined, one has to pass
            `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
            less than `1`).
        prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
            provided, text embeddings will be generated from `prompt` input argument.
        negative_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
            weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
            argument.
        lora_scale (`float`, *optional*):
            A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
        clip_skip (`int`, *optional*):
            Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
            the output of the pre-final layer will be used for computing the prompt embeddings.
    """
    # set lora scale so that monkey patched LoRA
    # function of text encoder can correctly access it
    if lora_scale is not None and isinstance(self, LoraLoaderMixin):
        self._lora_scale = lora_scale

        # dynamically adjust the LoRA scale
        scale_lora_layers(self.text_encoder, lora_scale)

    if prompt is not None and isinstance(prompt, str):
        batch_size = 1
    elif prompt is not None and isinstance(prompt, list):
        batch_size = len(prompt)
    else:
        batch_size = prompt_embeds.shape[0]

    if prompt_embeds is None:
        # textual inversion: process multi-vector tokens if necessary
        if isinstance(self, TextualInversionLoaderMixin):
            prompt = self.maybe_convert_prompt(prompt, self.tokenizer)

        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
            truncation=True,
            return_tensors="np",
        )
        text_input_ids = text_inputs.input_ids
        untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="np").input_ids

        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not np.array_equal(
            text_input_ids, untruncated_ids
        ):
            removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
            logger.warning(
                "The following part of your input was truncated because CLIP can only handle sequences up to"
                f" {self.tokenizer.model_max_length} tokens: {removed_text}"
            )

        if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
            attention_mask = ms.Tensor(text_inputs.attention_mask)
        else:
            attention_mask = None

        if clip_skip is None:
            prompt_embeds = self.text_encoder(ms.Tensor(text_input_ids), attention_mask=attention_mask)
            prompt_embeds = prompt_embeds[0]
        else:
            prompt_embeds = self.text_encoder(
                ms.Tensor(text_input_ids), attention_mask=attention_mask, output_hidden_states=True
            )
            # Access the `hidden_states` first, that contains a tuple of
            # all the hidden states from the encoder layers. Then index into
            # the tuple to access the hidden states from the desired layer.
            prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
            # We also need to apply the final LayerNorm here to not mess with the
            # representations. The `last_hidden_states` that we typically use for
            # obtaining the final prompt representations passes through the LayerNorm
            # layer.
            prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)

    if self.text_encoder is not None:
        prompt_embeds_dtype = self.text_encoder.dtype
    elif self.unet is not None:
        prompt_embeds_dtype = self.unet.dtype
    else:
        prompt_embeds_dtype = prompt_embeds.dtype

    prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype)

    bs_embed, seq_len, _ = prompt_embeds.shape
    # duplicate text embeddings for each generation per prompt, using mps friendly method
    prompt_embeds = prompt_embeds.tile((1, num_images_per_prompt, 1))
    prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

    # get unconditional embeddings for classifier free guidance
    if do_classifier_free_guidance and negative_prompt_embeds is None:
        uncond_tokens: List[str]
        if negative_prompt is None:
            uncond_tokens = [""] * batch_size
        elif prompt is not None and type(prompt) is not type(negative_prompt):
            raise TypeError(
                f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                f" {type(prompt)}."
            )
        elif isinstance(negative_prompt, str):
            uncond_tokens = [negative_prompt]
        elif batch_size != len(negative_prompt):
            raise ValueError(
                f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                " the batch size of `prompt`."
            )
        else:
            uncond_tokens = negative_prompt

        # textual inversion: process multi-vector tokens if necessary
        if isinstance(self, TextualInversionLoaderMixin):
            uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)

        max_length = prompt_embeds.shape[1]
        uncond_input = self.tokenizer(
            uncond_tokens,
            padding="max_length",
            max_length=max_length,
            truncation=True,
            return_tensors="np",
        )

        if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
            attention_mask = ms.Tensor(uncond_input.attention_mask)
        else:
            attention_mask = None

        negative_prompt_embeds = self.text_encoder(
            ms.Tensor(uncond_input.input_ids),
            attention_mask=attention_mask,
        )
        negative_prompt_embeds = negative_prompt_embeds[0]

    if do_classifier_free_guidance:
        # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
        seq_len = negative_prompt_embeds.shape[1]

        negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype)

        negative_prompt_embeds = negative_prompt_embeds.tile((1, num_images_per_prompt, 1))
        negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

    if self.text_encoder is not None:
        if isinstance(self, LoraLoaderMixin):
            # Retrieve the original scale by scaling back the LoRA layers
            unscale_lora_layers(self.text_encoder, lora_scale)

    return prompt_embeds, negative_prompt_embeds

mindone.diffusers.pipelines.stable_diffusion.StableDiffusionPipelineOutput dataclass

Bases: BaseOutput

Output class for Stable Diffusion pipelines.

Source code in mindone/diffusers/pipelines/stable_diffusion/pipeline_output.py
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
@dataclass
class StableDiffusionPipelineOutput(BaseOutput):
    """
    Output class for Stable Diffusion pipelines.

    Args:
        images (`List[PIL.Image.Image]` or `np.ndarray`)
            List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
            num_channels)`.
        nsfw_content_detected (`List[bool]`)
            List indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content or
            `None` if safety checking could not be performed.
    """

    images: Union[List[PIL.Image.Image], np.ndarray]
    nsfw_content_detected: Optional[List[bool]]