Skip to content

FluxControlInpaint

LoRA

FluxControlInpaintPipeline is an implementation of Inpainting for Flux.1 Depth/Canny models. It is a pipeline that allows you to inpaint images using the Flux.1 Depth/Canny models. The pipeline takes an image and a mask as input and returns the inpainted image.

FLUX.1 Depth and Canny [dev] is a 12 billion parameter rectified flow transformer capable of generating an image based on a text description while following the structure of a given input image. This is not a ControlNet model.

Control type Developer Link
Depth Black Forest Labs Link
Canny Black Forest Labs Link

Tip

Flux can be quite expensive to run on consumer hardware devices. However, you can perform a suite of optimizations to run it faster and in a more memory-friendly manner. Check out this section for more details. Additionally, Flux can benefit from quantization for memory efficiency with a trade-off in inference latency. Refer to this blog post to learn more. For an exhaustive list of resources, check out this gist.

import mindspore as ms
from mindone.diffusers import FluxControlInpaintPipeline
from mindone.diffusers.models.transformers import FluxTransformer2DModel
from mindone.transformers import T5EncoderModel
from mindone.diffusers.utils import load_image, make_image_grid
from image_gen_aux import DepthPreprocessor # https://github.com/huggingface/image_gen_aux
from PIL import Image
import numpy as np

pipe = FluxControlInpaintPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-Depth-dev",
    mindspore_dtype=ms.bfloat16,
)
# use following lines if you have NPU constraints
# ---------------------------------------------------------------
transformer = FluxTransformer2DModel.from_pretrained(
    "sayakpaul/FLUX.1-Depth-dev-nf4", subfolder="transformer", mindspore_dtype=ms.bfloat16
)
text_encoder_2 = T5EncoderModel.from_pretrained(
    "sayakpaul/FLUX.1-Depth-dev-nf4", subfolder="text_encoder_2", mindspore_dtype=ms.bfloat16
)
pipe.transformer = transformer
pipe.text_encoder_2 = text_encoder_2
# ---------------------------------------------------------------

prompt = "a blue robot singing opera with human-like expressions"
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/robot.png")

head_mask = np.zeros_like(image)
head_mask[65:580,300:642] = 255
mask_image = Image.fromarray(head_mask)

processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
control_image = processor(image)[0].convert("RGB")

output = pipe(
    prompt=prompt,
    image=image,
    control_image=control_image,
    mask_image=mask_image,
    num_inference_steps=30,
    strength=0.9,
    guidance_scale=10.0,
    generator=np.random.default_rng(42),
)[0][0]
make_image_grid([image, control_image, mask_image, output.resize(image.size)], rows=1, cols=4).save("output.png")

mindone.diffusers.FluxControlInpaintPipeline

Bases: DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixin, TextualInversionLoaderMixin

The Flux pipeline for image inpainting using Flux-dev-Depth/Canny.

Reference: https://blackforestlabs.ai/announcing-black-forest-labs/

PARAMETER DESCRIPTION
transformer

Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.

TYPE: [`FluxTransformer2DModel`]

scheduler

A scheduler to be used in combination with transformer to denoise the encoded image latents.

TYPE: [`FlowMatchEulerDiscreteScheduler`]

vae

Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.

TYPE: [`AutoencoderKL`]

text_encoder

CLIP, specifically the clip-vit-large-patch14 variant.

TYPE: [`CLIPTextModel`]

text_encoder_2

T5, specifically the google/t5-v1_1-xxl variant.

TYPE: [`T5EncoderModel`]

tokenizer

Tokenizer of class CLIPTokenizer.

TYPE: `CLIPTokenizer`

tokenizer_2

Second Tokenizer of class T5TokenizerFast.

TYPE: `T5TokenizerFast`

Source code in mindone/diffusers/pipelines/flux/pipeline_flux_control_inpaint.py
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
class FluxControlInpaintPipeline(
    DiffusionPipeline,
    FluxLoraLoaderMixin,
    FromSingleFileMixin,
    TextualInversionLoaderMixin,
):
    r"""
    The Flux pipeline for image inpainting using Flux-dev-Depth/Canny.

    Reference: https://blackforestlabs.ai/announcing-black-forest-labs/

    Args:
        transformer ([`FluxTransformer2DModel`]):
            Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
        scheduler ([`FlowMatchEulerDiscreteScheduler`]):
            A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        text_encoder ([`CLIPTextModel`]):
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
            the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
        text_encoder_2 ([`T5EncoderModel`]):
            [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
            the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
        tokenizer (`CLIPTokenizer`):
            Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
        tokenizer_2 (`T5TokenizerFast`):
            Second Tokenizer of class
            [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
    """

    model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
    _optional_components = []
    _callback_tensor_inputs = ["latents", "prompt_embeds"]

    def __init__(
        self,
        scheduler: FlowMatchEulerDiscreteScheduler,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        text_encoder_2: T5EncoderModel,
        tokenizer_2: T5TokenizerFast,
        transformer: FluxTransformer2DModel,
    ):
        super().__init__()

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            text_encoder_2=text_encoder_2,
            tokenizer=tokenizer,
            tokenizer_2=tokenizer_2,
            transformer=transformer,
            scheduler=scheduler,
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
        # Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
        # by the patch size. So the vae scale factor is multiplied by the patch size to account for this
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
        latent_channels = self.vae.config.latent_channels if getattr(self, "vae", None) else 16
        self.mask_processor = VaeImageProcessor(
            vae_scale_factor=self.vae_scale_factor * 2,
            vae_latent_channels=latent_channels,
            do_normalize=False,
            do_binarize=True,
            do_convert_grayscale=True,
        )
        self.tokenizer_max_length = (
            self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
        )
        self.default_sample_size = 128

    # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_t5_prompt_embeds
    def _get_t5_prompt_embeds(
        self,
        prompt: Union[str, List[str]] = None,
        num_images_per_prompt: int = 1,
        max_sequence_length: int = 512,
        dtype: Optional[ms.Type] = None,
    ):
        dtype = dtype or self.text_encoder.dtype

        prompt = [prompt] if isinstance(prompt, str) else prompt
        batch_size = len(prompt)

        if isinstance(self, TextualInversionLoaderMixin):
            prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2)

        text_inputs = self.tokenizer_2(
            prompt,
            padding="max_length",
            max_length=max_sequence_length,
            truncation=True,
            return_length=False,
            return_overflowing_tokens=False,
            return_tensors="np",
        )
        text_input_ids = text_inputs.input_ids
        untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="np").input_ids

        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not np.array_equal(
            text_input_ids, untruncated_ids
        ):
            removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
            logger.warning(
                "The following part of your input was truncated because `max_sequence_length` is set to "
                f" {max_sequence_length} tokens: {removed_text}"
            )

        prompt_embeds = self.text_encoder_2(ms.tensor(text_input_ids), output_hidden_states=False)[0]

        dtype = self.text_encoder_2.dtype
        prompt_embeds = prompt_embeds.to(dtype=dtype)

        _, seq_len, _ = prompt_embeds.shape

        # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.tile((1, num_images_per_prompt, 1))
        prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

        return prompt_embeds

    # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_clip_prompt_embeds
    def _get_clip_prompt_embeds(
        self,
        prompt: Union[str, List[str]],
        num_images_per_prompt: int = 1,
    ):
        prompt = [prompt] if isinstance(prompt, str) else prompt
        batch_size = len(prompt)

        if isinstance(self, TextualInversionLoaderMixin):
            prompt = self.maybe_convert_prompt(prompt, self.tokenizer)

        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer_max_length,
            truncation=True,
            return_overflowing_tokens=False,
            return_length=False,
            return_tensors="np",
        )

        text_input_ids = text_inputs.input_ids
        untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="np").input_ids
        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not np.array_equal(
            text_input_ids, untruncated_ids
        ):
            removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
            logger.warning(
                "The following part of your input was truncated because CLIP can only handle sequences up to"
                f" {self.tokenizer_max_length} tokens: {removed_text}"
            )
        prompt_embeds = self.text_encoder(ms.tensor(text_input_ids), output_hidden_states=False)

        # Use pooled output of CLIPTextModel
        prompt_embeds = prompt_embeds[1]
        prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype)

        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.tile((1, num_images_per_prompt))
        prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)

        return prompt_embeds

    # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_prompt
    def encode_prompt(
        self,
        prompt: Union[str, List[str]],
        prompt_2: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: int = 1,
        prompt_embeds: Optional[ms.Tensor] = None,
        pooled_prompt_embeds: Optional[ms.Tensor] = None,
        max_sequence_length: int = 512,
        lora_scale: Optional[float] = None,
    ):
        r"""

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
                used in all text-encoders
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            pooled_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
                If not provided, pooled text embeddings will be generated from `prompt` input argument.
            lora_scale (`float`, *optional*):
                A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
        """
        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
        if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
            self._lora_scale = lora_scale

            # dynamically adjust the LoRA scale
            if self.text_encoder is not None:
                scale_lora_layers(self.text_encoder, lora_scale)
            if self.text_encoder_2 is not None:
                scale_lora_layers(self.text_encoder_2, lora_scale)

        prompt = [prompt] if isinstance(prompt, str) else prompt

        if prompt_embeds is None:
            prompt_2 = prompt_2 or prompt
            prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2

            # We only use the pooled prompt output from the CLIPTextModel
            pooled_prompt_embeds = self._get_clip_prompt_embeds(
                prompt=prompt,
                num_images_per_prompt=num_images_per_prompt,
            )
            prompt_embeds = self._get_t5_prompt_embeds(
                prompt=prompt_2,
                num_images_per_prompt=num_images_per_prompt,
                max_sequence_length=max_sequence_length,
            )

        if self.text_encoder is not None:
            if isinstance(self, FluxLoraLoaderMixin):
                # Retrieve the original scale by scaling back the LoRA layers
                unscale_lora_layers(self.text_encoder, lora_scale)

        if self.text_encoder_2 is not None:
            if isinstance(self, FluxLoraLoaderMixin):
                # Retrieve the original scale by scaling back the LoRA layers
                unscale_lora_layers(self.text_encoder_2, lora_scale)

        dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
        text_ids = mint.zeros((prompt_embeds.shape[1], 3)).to(dtype=dtype)

        return prompt_embeds, pooled_prompt_embeds, text_ids

    # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_inpaint.StableDiffusion3InpaintPipeline._encode_vae_image
    def _encode_vae_image(self, image: ms.Tensor, generator: np.random.Generator):
        if isinstance(generator, list):
            image_latents = [
                retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
                for i in range(image.shape[0])
            ]
            image_latents = mint.cat(image_latents, dim=0)
        else:
            image_latents = retrieve_latents(self.vae, self.vae.encode(image)[0], generator=generator)

        image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor

        return image_latents

    # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.get_timesteps
    def get_timesteps(self, num_inference_steps, strength):
        # get the original timestep using init_timestep
        init_timestep = min(num_inference_steps * strength, num_inference_steps)

        t_start = int(max(num_inference_steps - init_timestep, 0))
        timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
        if hasattr(self.scheduler, "set_begin_index"):
            self.scheduler.set_begin_index(t_start * self.scheduler.order)

        return timesteps, num_inference_steps - t_start

    def check_inputs(
        self,
        prompt,
        prompt_2,
        strength,
        height,
        width,
        prompt_embeds=None,
        pooled_prompt_embeds=None,
        callback_on_step_end_tensor_inputs=None,
        max_sequence_length=None,
    ):
        if strength < 0 or strength > 1:
            raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")

        if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
            logger.warning(
                f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
            )

        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"  # noqa E501
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt_2 is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
        elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
            raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")

        if prompt_embeds is not None and pooled_prompt_embeds is None:
            raise ValueError(
                "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."  # noqa E501
            )

        if max_sequence_length is not None and max_sequence_length > 512:
            raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")

    @staticmethod
    # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._prepare_latent_image_ids
    def _prepare_latent_image_ids(batch_size, height, width, dtype):
        latent_image_ids = mint.zeros((height, width, 3))
        latent_image_ids[..., 1] = latent_image_ids[..., 1] + mint.arange(height)[:, None]
        latent_image_ids[..., 2] = latent_image_ids[..., 2] + mint.arange(width)[None, :]

        latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape

        latent_image_ids = latent_image_ids.reshape(
            latent_image_id_height * latent_image_id_width, latent_image_id_channels
        )

        return latent_image_ids.to(dtype=dtype)

    @staticmethod
    # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._pack_latents
    def _pack_latents(latents, batch_size, num_channels_latents, height, width):
        latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
        latents = latents.permute(0, 2, 4, 1, 3, 5)
        latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)

        return latents

    @staticmethod
    # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._unpack_latents
    def _unpack_latents(latents, height, width, vae_scale_factor):
        batch_size, num_patches, channels = latents.shape

        # VAE applies 8x compression on images but we must also account for packing which requires
        # latent height and width to be divisible by 2.
        height = 2 * (int(height) // (vae_scale_factor * 2))
        width = 2 * (int(width) // (vae_scale_factor * 2))

        latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
        latents = latents.permute(0, 3, 1, 4, 2, 5)

        latents = latents.reshape(batch_size, channels // (2 * 2), height, width)

        return latents

    def enable_vae_slicing(self):
        r"""
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
        """
        self.vae.enable_slicing()

    def disable_vae_slicing(self):
        r"""
        Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
        computing decoding in one step.
        """
        self.vae.disable_slicing()

    def enable_vae_tiling(self):
        r"""
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
        processing larger images.
        """
        self.vae.enable_tiling()

    def disable_vae_tiling(self):
        r"""
        Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
        computing decoding in one step.
        """
        self.vae.disable_tiling()

    def prepare_latents(
        self,
        image,
        timestep,
        batch_size,
        num_channels_latents,
        height,
        width,
        dtype,
        generator,
        latents=None,
    ):
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        # VAE applies 8x compression on images but we must also account for packing which requires
        # latent height and width to be divisible by 2.
        height = 2 * (int(height) // (self.vae_scale_factor * 2))
        width = 2 * (int(width) // (self.vae_scale_factor * 2))
        shape = (batch_size, num_channels_latents, height, width)
        latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, dtype)

        if latents is not None:
            return latents.to(dtype=dtype), latent_image_ids

        image = image.to(dtype=dtype)
        image_latents = self._encode_vae_image(image=image, generator=generator)
        if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
            # expand init_latents for batch_size
            additional_image_per_prompt = batch_size // image_latents.shape[0]
            image_latents = mint.cat([image_latents] * additional_image_per_prompt, dim=0)
        elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
            raise ValueError(
                f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
            )
        else:
            image_latents = mint.cat([image_latents], dim=0)

        noise = randn_tensor(shape, generator=generator, dtype=dtype)
        latents = self.scheduler.scale_noise(image_latents, timestep, noise)
        latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
        return latents, noise, image_latents, latent_image_ids

    # Copied from diffusers.pipelines.controlnet_sd3.pipeline_stable_diffusion_3_controlnet.StableDiffusion3ControlNetPipeline.prepare_image
    def prepare_image(
        self,
        image,
        width,
        height,
        batch_size,
        num_images_per_prompt,
        dtype,
        do_classifier_free_guidance=False,
        guess_mode=False,
    ):
        if isinstance(image, ms.Tensor):
            pass
        else:
            image = self.image_processor.preprocess(image, height=height, width=width)

        image_batch_size = image.shape[0]

        if image_batch_size == 1:
            repeat_by = batch_size
        else:
            # image batch size is the same as prompt batch size
            repeat_by = num_images_per_prompt

        image = image.repeat_interleave(repeat_by, dim=0)

        image = image.to(dtype=dtype)

        if do_classifier_free_guidance and not guess_mode:
            image = mint.cat([image] * 2)

        return image

    def prepare_mask_latents(
        self,
        image,
        mask_image,
        batch_size,
        num_channels_latents,
        num_images_per_prompt,
        height,
        width,
        dtype,
        generator,
    ):
        # VAE applies 8x compression on images but we must also account for packing which requires
        # latent height and width to be divisible by 2.
        image = self.image_processor.preprocess(image, height=height, width=width)
        mask_image = self.mask_processor.preprocess(mask_image, height=height, width=width)

        masked_image = image * (1 - mask_image)
        masked_image = masked_image.to(dtype=dtype)

        height = 2 * (int(height) // (self.vae_scale_factor * 2))
        width = 2 * (int(width) // (self.vae_scale_factor * 2))
        # resize the mask to latents shape as we concatenate the mask to the latents
        # we do that before converting to dtype to avoid breaking in case we're using cpu_offload
        # and half precision
        mask_image = mint.nn.functional.interpolate(mask_image, size=(height, width))
        mask_image = mask_image.to(dtype=dtype)

        batch_size = batch_size * num_images_per_prompt

        masked_image = masked_image.to(dtype=dtype)

        if masked_image.shape[1] == num_channels_latents:
            masked_image_latents = masked_image
        else:
            masked_image_latents = retrieve_latents(self.vae, self.vae.encode(masked_image)[0], generator=generator)

        masked_image_latents = (masked_image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor

        # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
        if mask_image.shape[0] < batch_size:
            if not batch_size % mask_image.shape[0] == 0:
                raise ValueError(
                    "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
                    f" a total batch size of {batch_size}, but {mask_image.shape[0]} mask_image were passed. Make sure the number"
                    " of masks that you pass is divisible by the total requested batch size."
                )
            mask_image = mask_image.tile((batch_size // mask_image.shape[0], 1, 1, 1))
        if masked_image_latents.shape[0] < batch_size:
            if not batch_size % masked_image_latents.shape[0] == 0:
                raise ValueError(
                    "The passed images and the required batch size don't match. Images are supposed to be duplicated"
                    f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
                    " Make sure the number of images that you pass is divisible by the total requested batch size."
                )
            masked_image_latents = masked_image_latents.tile((batch_size // masked_image_latents.shape[0], 1, 1, 1))

        # aligning device to prevent device errors when concating it with the latent model input
        masked_image_latents = masked_image_latents.to(dtype=dtype)
        masked_image_latents = self._pack_latents(
            masked_image_latents,
            batch_size,
            num_channels_latents,
            height,
            width,
        )
        mask_image = self._pack_latents(
            mask_image.tile((1, num_channels_latents, 1, 1)),
            batch_size,
            num_channels_latents,
            height,
            width,
        )
        masked_image_latents = mint.cat((masked_image_latents, mask_image), -1)

        return mask_image, masked_image_latents

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def joint_attention_kwargs(self):
        return self._joint_attention_kwargs

    @property
    def num_timesteps(self):
        return self._num_timesteps

    @property
    def interrupt(self):
        return self._interrupt

    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        prompt_2: Optional[Union[str, List[str]]] = None,
        image: PipelineImageInput = None,
        control_image: PipelineImageInput = None,
        mask_image: PipelineImageInput = None,
        masked_image_latents: PipelineImageInput = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        strength: float = 0.6,
        num_inference_steps: int = 28,
        sigmas: Optional[List[float]] = None,
        guidance_scale: float = 7.0,
        num_images_per_prompt: Optional[int] = 1,
        generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
        latents: Optional[ms.Tensor] = None,
        prompt_embeds: Optional[ms.Tensor] = None,
        pooled_prompt_embeds: Optional[ms.Tensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = False,
        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        max_sequence_length: int = 512,
    ):
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
                instead.
            prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
                will be used instead
            image (`ms.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[ms.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
                `Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
                numpy array and ms tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
                or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
                list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
                latents as `image`, but if passing latents directly it is not encoded again.
            control_image (`ms.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[ms.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
                    `List[List[ms.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
                The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
                specified as `ms.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
                as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
                width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
                images must be passed as a list such that each element of the list can be correctly batched for input
                to a single ControlNet.
            mask_image (`ms.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[ms.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
                `Image`, numpy array or tensor representing an image batch to mask `image`. White pixels in the mask
                are repainted while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a
                single channel (luminance) before use. If it's a numpy array or ms tensor, it should contain one
                color channel (L) instead of 3, so the expected shape for ms tensor would be `(B, 1, H, W)`, `(B,
                H, W)`, `(1, H, W)`, `(H, W)`. And for numpy array would be for `(B, H, W, 1)`, `(B, H, W)`, `(H, W,
                1)`, or `(H, W)`.
            mask_image_latent (`ms.Tensor`, `List[ms.Tensor]`):
                `Tensor` representing an image batch to mask `image` generated by VAE. If not provided, the mask
                latents tensor will ge generated by `mask_image`.
            height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The height in pixels of the generated image. This is set to 1024 by default for the best results.
            width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The width in pixels of the generated image. This is set to 1024 by default for the best results.
            strength (`float`, *optional*, defaults to 1.0):
                Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
                starting point and more noise is added the higher the `strength`. The number of denoising steps depends
                on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
                process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
                essentially ignores `image`.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            sigmas (`List[float]`, *optional*):
                Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
                their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
                will be used.
            guidance_scale (`float`, *optional*, defaults to 7.0):
                Guidance scale as defined in [Classifier-Free Diffusion
                Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
                of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
                `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
                the text `prompt`, usually at the expense of lower image quality.
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            generator (`np.random.Generator` or `List[np.random.Generator]`, *optional*):
                One or more [np.random.Generator(s)](https://numpy.org/doc/stable/reference/random/generator.html) to
                make generation deterministic.
            latents (`ms.Tensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            prompt_embeds (`ms.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            pooled_prompt_embeds (`ms.FloatTensor`, *optional*):
                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
                If not provided, pooled text embeddings will be generated from `prompt` input argument.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
            joint_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            callback_on_step_end (`Callable`, *optional*):
                A function that calls at the end of each denoising steps during the inference. The function is called
                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
                `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
                `._callback_tensor_inputs` attribute of your pipeline class.
            max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.

        Examples:

        Returns:
            [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
            is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
            images.
        """

        height = height or self.default_sample_size * self.vae_scale_factor
        width = width or self.default_sample_size * self.vae_scale_factor

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            prompt_2,
            strength,
            height,
            width,
            prompt_embeds=prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
            max_sequence_length=max_sequence_length,
        )

        self._guidance_scale = guidance_scale
        self._joint_attention_kwargs = joint_attention_kwargs
        self._interrupt = False

        # 3. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        # 3. Prepare text embeddings
        lora_scale = self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
        (
            prompt_embeds,
            pooled_prompt_embeds,
            text_ids,
        ) = self.encode_prompt(
            prompt=prompt,
            prompt_2=prompt_2,
            prompt_embeds=prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            num_images_per_prompt=num_images_per_prompt,
            max_sequence_length=max_sequence_length,
            lora_scale=lora_scale,
        )

        # 3. Preprocess mask and image
        num_channels_latents = self.vae.config.latent_channels
        if masked_image_latents is not None:
            # pre computed masked_image_latents and mask_image
            mask = mask_image
        else:
            mask, masked_image_latents = self.prepare_mask_latents(
                image,
                mask_image,
                batch_size,
                num_channels_latents,
                num_images_per_prompt,
                height,
                width,
                prompt_embeds.dtype,
                generator,
            )

        init_image = self.image_processor.preprocess(image, height=height, width=width)
        init_image = init_image.to(dtype=ms.float32)

        # 4.Prepare timesteps
        sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
        image_seq_len = (int(height) // self.vae_scale_factor // 2) * (int(width) // self.vae_scale_factor // 2)
        mu = calculate_shift(
            image_seq_len,
            self.scheduler.config.get("base_image_seq_len", 256),
            self.scheduler.config.get("max_image_seq_len", 4096),
            self.scheduler.config.get("base_shift", 0.5),
            self.scheduler.config.get("max_shift", 1.15),
        )
        timesteps, num_inference_steps = retrieve_timesteps(
            self.scheduler,
            num_inference_steps,
            sigmas=sigmas,
            mu=mu,
        )
        timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength)

        if num_inference_steps < 1:
            raise ValueError(
                f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
                f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
            )
        latent_timestep = timesteps[:1].tile((batch_size * num_images_per_prompt,))

        # 5. Prepare latent variables
        num_channels_latents = self.transformer.config.in_channels // 8

        control_image = self.prepare_image(
            image=control_image,
            width=width,
            height=height,
            batch_size=batch_size * num_images_per_prompt,
            num_images_per_prompt=num_images_per_prompt,
            dtype=self.vae.dtype,
        )

        if control_image.ndim == 4:
            control_image = self.vae.diag_gauss_dist.sample(self.vae.encode(control_image)[0], generator=generator)
            control_image = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor

            height_control_image, width_control_image = control_image.shape[2:]
            control_image = self._pack_latents(
                control_image,
                batch_size * num_images_per_prompt,
                num_channels_latents,
                height_control_image,
                width_control_image,
            )

        latents, noise, image_latents, latent_image_ids = self.prepare_latents(
            init_image,
            latent_timestep,
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            generator,
            latents,
        )

        # VAE applies 8x compression on images but we must also account for packing which requires
        # latent height and width to be divisible by 2.
        height_8 = 2 * (int(height) // (self.vae_scale_factor * 2))
        width_8 = 2 * (int(width) // (self.vae_scale_factor * 2))

        num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
        self._num_timesteps = len(timesteps)

        # handle guidance
        if self.transformer.config.guidance_embeds:
            guidance = mint.full([1], guidance_scale, dtype=ms.float32)
            guidance = guidance.broadcast_to((latents.shape[0],))
        else:
            guidance = None

        # 6. Denoising loop
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                if self.interrupt:
                    continue

                latent_model_input = mint.cat([latents, control_image], dim=2)

                # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
                timestep = t.broadcast_to((latents.shape[0],)).to(latents.dtype)

                noise_pred = self.transformer(
                    hidden_states=latent_model_input,
                    timestep=timestep / 1000,
                    guidance=guidance,
                    pooled_projections=pooled_prompt_embeds,
                    encoder_hidden_states=prompt_embeds,
                    txt_ids=text_ids,
                    img_ids=latent_image_ids,
                    joint_attention_kwargs=self.joint_attention_kwargs,
                    return_dict=False,
                )[0]

                # compute the previous noisy sample x_t -> x_t-1
                latents_dtype = latents.dtype
                latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]

                # for 64 channel transformer only.
                init_mask = mask
                if i < len(timesteps) - 1:
                    noise_timestep = timesteps[i + 1]
                    init_latents_proper = self.scheduler.scale_noise(
                        image_latents, ms.tensor([noise_timestep.item()]), noise
                    )
                else:
                    init_latents_proper = image_latents
                init_latents_proper = self._pack_latents(
                    init_latents_proper, batch_size * num_images_per_prompt, num_channels_latents, height_8, width_8
                )

                latents = (1 - init_mask) * init_latents_proper + init_mask * latents

                if latents.dtype != latents_dtype:
                    latents = latents.to(latents_dtype)

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()

        if output_type == "latent":
            image = latents

        else:
            latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
            latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
            image = self.vae.decode(latents, return_dict=False)[0]
            image = self.image_processor.postprocess(image, output_type=output_type)

        if not return_dict:
            return (image,)

        return FluxPipelineOutput(images=image)

mindone.diffusers.FluxControlInpaintPipeline.__call__(prompt=None, prompt_2=None, image=None, control_image=None, mask_image=None, masked_image_latents=None, height=None, width=None, strength=0.6, num_inference_steps=28, sigmas=None, guidance_scale=7.0, num_images_per_prompt=1, generator=None, latents=None, prompt_embeds=None, pooled_prompt_embeds=None, output_type='pil', return_dict=False, joint_attention_kwargs=None, callback_on_step_end=None, callback_on_step_end_tensor_inputs=['latents'], max_sequence_length=512)

Function invoked when calling the pipeline for generation.

PARAMETER DESCRIPTION
prompt

The prompt or prompts to guide the image generation. If not defined, one has to pass prompt_embeds. instead.

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

prompt_2

The prompt or prompts to be sent to tokenizer_2 and text_encoder_2. If not defined, prompt is will be used instead

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

image

Image, numpy array or tensor representing an image batch to be used as the starting point. For both numpy array and ms tensor, the expected value range is between [0, 1] If it's a tensor or a list or tensors, the expected shape should be (B, C, H, W) or (C, H, W). If it is a numpy array or a list of arrays, the expected shape should be (B, H, W, C) or (H, W, C) It can also accept image latents as image, but if passing latents directly it is not encoded again.

TYPE: `ms.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[ms.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]` DEFAULT: None

control_image (`ms.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[ms.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,
`List[List[ms.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):

The ControlNet input condition to provide guidance to the unet for generation. If the type is specified as ms.Tensor, it is passed to ControlNet as is. PIL.Image.Image can also be accepted as an image. The dimensions of the output image defaults to image's dimensions. If height and/or width are passed, image is resized accordingly. If multiple ControlNets are specified in init, images must be passed as a list such that each element of the list can be correctly batched for input to a single ControlNet.

mask_image

Image, numpy array or tensor representing an image batch to mask image. White pixels in the mask are repainted while black pixels are preserved. If mask_image is a PIL image, it is converted to a single channel (luminance) before use. If it's a numpy array or ms tensor, it should contain one color channel (L) instead of 3, so the expected shape for ms tensor would be (B, 1, H, W), (B, H, W), (1, H, W), (H, W). And for numpy array would be for (B, H, W, 1), (B, H, W), (H, W, 1), or (H, W).

TYPE: `ms.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[ms.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]` DEFAULT: None

mask_image_latent

Tensor representing an image batch to mask image generated by VAE. If not provided, the mask latents tensor will ge generated by mask_image.

TYPE: `ms.Tensor`, `List[ms.Tensor]`

height

The height in pixels of the generated image. This is set to 1024 by default for the best results.

TYPE: `int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor DEFAULT: None

width

The width in pixels of the generated image. This is set to 1024 by default for the best results.

TYPE: `int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor DEFAULT: None

strength

Indicates extent to transform the reference image. Must be between 0 and 1. image is used as a starting point and more noise is added the higher the strength. The number of denoising steps depends on the amount of noise initially added. When strength is 1, added noise is maximum and the denoising process runs for the full number of iterations specified in num_inference_steps. A value of 1 essentially ignores image.

TYPE: `float`, *optional*, defaults to 1.0 DEFAULT: 0.6

num_inference_steps

The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.

TYPE: `int`, *optional*, defaults to 50 DEFAULT: 28

sigmas

Custom sigmas to use for the denoising process with schedulers which support a sigmas argument in their set_timesteps method. If not defined, the default behavior when num_inference_steps is passed will be used.

TYPE: `List[float]`, *optional* DEFAULT: None

guidance_scale

Guidance scale as defined in Classifier-Free Diffusion Guidance. guidance_scale is defined as w of equation 2. of Imagen Paper. Guidance scale is enabled by setting guidance_scale > 1. Higher guidance scale encourages to generate images that are closely linked to the text prompt, usually at the expense of lower image quality.

TYPE: `float`, *optional*, defaults to 7.0 DEFAULT: 7.0

num_images_per_prompt

The number of images to generate per prompt.

TYPE: `int`, *optional*, defaults to 1 DEFAULT: 1

generator

One or more np.random.Generator(s) to make generation deterministic.

TYPE: `np.random.Generator` or `List[np.random.Generator]`, *optional* DEFAULT: None

latents

Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random generator.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

prompt_embeds

Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt input argument.

TYPE: `ms.FloatTensor`, *optional* DEFAULT: None

pooled_prompt_embeds

Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated from prompt input argument.

TYPE: `ms.FloatTensor`, *optional* DEFAULT: None

output_type

The output format of the generate image. Choose between PIL: PIL.Image.Image or np.array.

TYPE: `str`, *optional*, defaults to `"pil"` DEFAULT: 'pil'

return_dict

Whether or not to return a [~pipelines.flux.FluxPipelineOutput] instead of a plain tuple.

TYPE: `bool`, *optional*, defaults to `True` DEFAULT: False

joint_attention_kwargs

A kwargs dictionary that if specified is passed along to the AttentionProcessor as defined under self.processor in diffusers.models.attention_processor.

TYPE: `dict`, *optional* DEFAULT: None

callback_on_step_end

A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict). callback_kwargs will include a list of all tensors as specified by callback_on_step_end_tensor_inputs.

TYPE: `Callable`, *optional* DEFAULT: None

callback_on_step_end_tensor_inputs

The list of tensor inputs for the callback_on_step_end function. The tensors specified in the list will be passed as callback_kwargs argument. You will only be able to include variables listed in the ._callback_tensor_inputs attribute of your pipeline class.

TYPE: `List`, *optional* DEFAULT: ['latents']

max_sequence_length

Maximum sequence length to use with the prompt.

TYPE: `int` defaults to 512 DEFAULT: 512

RETURNS DESCRIPTION

[~pipelines.flux.FluxPipelineOutput] or tuple: [~pipelines.flux.FluxPipelineOutput] if return_dict

is True, otherwise a tuple. When returning a tuple, the first element is a list with the generated

images.

Source code in mindone/diffusers/pipelines/flux/pipeline_flux_control_inpaint.py
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
def __call__(
    self,
    prompt: Union[str, List[str]] = None,
    prompt_2: Optional[Union[str, List[str]]] = None,
    image: PipelineImageInput = None,
    control_image: PipelineImageInput = None,
    mask_image: PipelineImageInput = None,
    masked_image_latents: PipelineImageInput = None,
    height: Optional[int] = None,
    width: Optional[int] = None,
    strength: float = 0.6,
    num_inference_steps: int = 28,
    sigmas: Optional[List[float]] = None,
    guidance_scale: float = 7.0,
    num_images_per_prompt: Optional[int] = 1,
    generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
    latents: Optional[ms.Tensor] = None,
    prompt_embeds: Optional[ms.Tensor] = None,
    pooled_prompt_embeds: Optional[ms.Tensor] = None,
    output_type: Optional[str] = "pil",
    return_dict: bool = False,
    joint_attention_kwargs: Optional[Dict[str, Any]] = None,
    callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
    callback_on_step_end_tensor_inputs: List[str] = ["latents"],
    max_sequence_length: int = 512,
):
    r"""
    Function invoked when calling the pipeline for generation.

    Args:
        prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
            instead.
        prompt_2 (`str` or `List[str]`, *optional*):
            The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
            will be used instead
        image (`ms.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[ms.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
            `Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
            numpy array and ms tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
            or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
            list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
            latents as `image`, but if passing latents directly it is not encoded again.
        control_image (`ms.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[ms.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
                `List[List[ms.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
            The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
            specified as `ms.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
            as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
            width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
            images must be passed as a list such that each element of the list can be correctly batched for input
            to a single ControlNet.
        mask_image (`ms.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[ms.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
            `Image`, numpy array or tensor representing an image batch to mask `image`. White pixels in the mask
            are repainted while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a
            single channel (luminance) before use. If it's a numpy array or ms tensor, it should contain one
            color channel (L) instead of 3, so the expected shape for ms tensor would be `(B, 1, H, W)`, `(B,
            H, W)`, `(1, H, W)`, `(H, W)`. And for numpy array would be for `(B, H, W, 1)`, `(B, H, W)`, `(H, W,
            1)`, or `(H, W)`.
        mask_image_latent (`ms.Tensor`, `List[ms.Tensor]`):
            `Tensor` representing an image batch to mask `image` generated by VAE. If not provided, the mask
            latents tensor will ge generated by `mask_image`.
        height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
            The height in pixels of the generated image. This is set to 1024 by default for the best results.
        width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
            The width in pixels of the generated image. This is set to 1024 by default for the best results.
        strength (`float`, *optional*, defaults to 1.0):
            Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
            starting point and more noise is added the higher the `strength`. The number of denoising steps depends
            on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
            process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
            essentially ignores `image`.
        num_inference_steps (`int`, *optional*, defaults to 50):
            The number of denoising steps. More denoising steps usually lead to a higher quality image at the
            expense of slower inference.
        sigmas (`List[float]`, *optional*):
            Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
            their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
            will be used.
        guidance_scale (`float`, *optional*, defaults to 7.0):
            Guidance scale as defined in [Classifier-Free Diffusion
            Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
            of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
            `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
            the text `prompt`, usually at the expense of lower image quality.
        num_images_per_prompt (`int`, *optional*, defaults to 1):
            The number of images to generate per prompt.
        generator (`np.random.Generator` or `List[np.random.Generator]`, *optional*):
            One or more [np.random.Generator(s)](https://numpy.org/doc/stable/reference/random/generator.html) to
            make generation deterministic.
        latents (`ms.Tensor`, *optional*):
            Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
            generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
            tensor will ge generated by sampling using the supplied random `generator`.
        prompt_embeds (`ms.FloatTensor`, *optional*):
            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
            provided, text embeddings will be generated from `prompt` input argument.
        pooled_prompt_embeds (`ms.FloatTensor`, *optional*):
            Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
            If not provided, pooled text embeddings will be generated from `prompt` input argument.
        output_type (`str`, *optional*, defaults to `"pil"`):
            The output format of the generate image. Choose between
            [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
        return_dict (`bool`, *optional*, defaults to `True`):
            Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
        joint_attention_kwargs (`dict`, *optional*):
            A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
            `self.processor` in
            [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
        callback_on_step_end (`Callable`, *optional*):
            A function that calls at the end of each denoising steps during the inference. The function is called
            with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
            callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
            `callback_on_step_end_tensor_inputs`.
        callback_on_step_end_tensor_inputs (`List`, *optional*):
            The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
            will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
            `._callback_tensor_inputs` attribute of your pipeline class.
        max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.

    Examples:

    Returns:
        [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
        is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
        images.
    """

    height = height or self.default_sample_size * self.vae_scale_factor
    width = width or self.default_sample_size * self.vae_scale_factor

    # 1. Check inputs. Raise error if not correct
    self.check_inputs(
        prompt,
        prompt_2,
        strength,
        height,
        width,
        prompt_embeds=prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
        max_sequence_length=max_sequence_length,
    )

    self._guidance_scale = guidance_scale
    self._joint_attention_kwargs = joint_attention_kwargs
    self._interrupt = False

    # 3. Define call parameters
    if prompt is not None and isinstance(prompt, str):
        batch_size = 1
    elif prompt is not None and isinstance(prompt, list):
        batch_size = len(prompt)
    else:
        batch_size = prompt_embeds.shape[0]

    # 3. Prepare text embeddings
    lora_scale = self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
    (
        prompt_embeds,
        pooled_prompt_embeds,
        text_ids,
    ) = self.encode_prompt(
        prompt=prompt,
        prompt_2=prompt_2,
        prompt_embeds=prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        num_images_per_prompt=num_images_per_prompt,
        max_sequence_length=max_sequence_length,
        lora_scale=lora_scale,
    )

    # 3. Preprocess mask and image
    num_channels_latents = self.vae.config.latent_channels
    if masked_image_latents is not None:
        # pre computed masked_image_latents and mask_image
        mask = mask_image
    else:
        mask, masked_image_latents = self.prepare_mask_latents(
            image,
            mask_image,
            batch_size,
            num_channels_latents,
            num_images_per_prompt,
            height,
            width,
            prompt_embeds.dtype,
            generator,
        )

    init_image = self.image_processor.preprocess(image, height=height, width=width)
    init_image = init_image.to(dtype=ms.float32)

    # 4.Prepare timesteps
    sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
    image_seq_len = (int(height) // self.vae_scale_factor // 2) * (int(width) // self.vae_scale_factor // 2)
    mu = calculate_shift(
        image_seq_len,
        self.scheduler.config.get("base_image_seq_len", 256),
        self.scheduler.config.get("max_image_seq_len", 4096),
        self.scheduler.config.get("base_shift", 0.5),
        self.scheduler.config.get("max_shift", 1.15),
    )
    timesteps, num_inference_steps = retrieve_timesteps(
        self.scheduler,
        num_inference_steps,
        sigmas=sigmas,
        mu=mu,
    )
    timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength)

    if num_inference_steps < 1:
        raise ValueError(
            f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
            f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
        )
    latent_timestep = timesteps[:1].tile((batch_size * num_images_per_prompt,))

    # 5. Prepare latent variables
    num_channels_latents = self.transformer.config.in_channels // 8

    control_image = self.prepare_image(
        image=control_image,
        width=width,
        height=height,
        batch_size=batch_size * num_images_per_prompt,
        num_images_per_prompt=num_images_per_prompt,
        dtype=self.vae.dtype,
    )

    if control_image.ndim == 4:
        control_image = self.vae.diag_gauss_dist.sample(self.vae.encode(control_image)[0], generator=generator)
        control_image = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor

        height_control_image, width_control_image = control_image.shape[2:]
        control_image = self._pack_latents(
            control_image,
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height_control_image,
            width_control_image,
        )

    latents, noise, image_latents, latent_image_ids = self.prepare_latents(
        init_image,
        latent_timestep,
        batch_size * num_images_per_prompt,
        num_channels_latents,
        height,
        width,
        prompt_embeds.dtype,
        generator,
        latents,
    )

    # VAE applies 8x compression on images but we must also account for packing which requires
    # latent height and width to be divisible by 2.
    height_8 = 2 * (int(height) // (self.vae_scale_factor * 2))
    width_8 = 2 * (int(width) // (self.vae_scale_factor * 2))

    num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
    self._num_timesteps = len(timesteps)

    # handle guidance
    if self.transformer.config.guidance_embeds:
        guidance = mint.full([1], guidance_scale, dtype=ms.float32)
        guidance = guidance.broadcast_to((latents.shape[0],))
    else:
        guidance = None

    # 6. Denoising loop
    with self.progress_bar(total=num_inference_steps) as progress_bar:
        for i, t in enumerate(timesteps):
            if self.interrupt:
                continue

            latent_model_input = mint.cat([latents, control_image], dim=2)

            # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
            timestep = t.broadcast_to((latents.shape[0],)).to(latents.dtype)

            noise_pred = self.transformer(
                hidden_states=latent_model_input,
                timestep=timestep / 1000,
                guidance=guidance,
                pooled_projections=pooled_prompt_embeds,
                encoder_hidden_states=prompt_embeds,
                txt_ids=text_ids,
                img_ids=latent_image_ids,
                joint_attention_kwargs=self.joint_attention_kwargs,
                return_dict=False,
            )[0]

            # compute the previous noisy sample x_t -> x_t-1
            latents_dtype = latents.dtype
            latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]

            # for 64 channel transformer only.
            init_mask = mask
            if i < len(timesteps) - 1:
                noise_timestep = timesteps[i + 1]
                init_latents_proper = self.scheduler.scale_noise(
                    image_latents, ms.tensor([noise_timestep.item()]), noise
                )
            else:
                init_latents_proper = image_latents
            init_latents_proper = self._pack_latents(
                init_latents_proper, batch_size * num_images_per_prompt, num_channels_latents, height_8, width_8
            )

            latents = (1 - init_mask) * init_latents_proper + init_mask * latents

            if latents.dtype != latents_dtype:
                latents = latents.to(latents_dtype)

            if callback_on_step_end is not None:
                callback_kwargs = {}
                for k in callback_on_step_end_tensor_inputs:
                    callback_kwargs[k] = locals()[k]
                callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                latents = callback_outputs.pop("latents", latents)
                prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)

            # call the callback, if provided
            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                progress_bar.update()

    if output_type == "latent":
        image = latents

    else:
        latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
        latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
        image = self.vae.decode(latents, return_dict=False)[0]
        image = self.image_processor.postprocess(image, output_type=output_type)

    if not return_dict:
        return (image,)

    return FluxPipelineOutput(images=image)

mindone.diffusers.FluxControlInpaintPipeline.disable_vae_slicing()

Disable sliced VAE decoding. If enable_vae_slicing was previously enabled, this method will go back to computing decoding in one step.

Source code in mindone/diffusers/pipelines/flux/pipeline_flux_control_inpaint.py
553
554
555
556
557
558
def disable_vae_slicing(self):
    r"""
    Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
    computing decoding in one step.
    """
    self.vae.disable_slicing()

mindone.diffusers.FluxControlInpaintPipeline.disable_vae_tiling()

Disable tiled VAE decoding. If enable_vae_tiling was previously enabled, this method will go back to computing decoding in one step.

Source code in mindone/diffusers/pipelines/flux/pipeline_flux_control_inpaint.py
568
569
570
571
572
573
def disable_vae_tiling(self):
    r"""
    Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
    computing decoding in one step.
    """
    self.vae.disable_tiling()

mindone.diffusers.FluxControlInpaintPipeline.enable_vae_slicing()

Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.

Source code in mindone/diffusers/pipelines/flux/pipeline_flux_control_inpaint.py
546
547
548
549
550
551
def enable_vae_slicing(self):
    r"""
    Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
    compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
    """
    self.vae.enable_slicing()

mindone.diffusers.FluxControlInpaintPipeline.enable_vae_tiling()

Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images.

Source code in mindone/diffusers/pipelines/flux/pipeline_flux_control_inpaint.py
560
561
562
563
564
565
566
def enable_vae_tiling(self):
    r"""
    Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
    compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
    processing larger images.
    """
    self.vae.enable_tiling()

mindone.diffusers.FluxControlInpaintPipeline.encode_prompt(prompt, prompt_2=None, num_images_per_prompt=1, prompt_embeds=None, pooled_prompt_embeds=None, max_sequence_length=512, lora_scale=None)

PARAMETER DESCRIPTION
prompt

prompt to be encoded

TYPE: `str` or `List[str]`, *optional*

prompt_2

The prompt or prompts to be sent to the tokenizer_2 and text_encoder_2. If not defined, prompt is used in all text-encoders

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

num_images_per_prompt

number of images that should be generated per prompt

TYPE: `int` DEFAULT: 1

prompt_embeds

Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

pooled_prompt_embeds

Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated from prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

lora_scale

A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.

TYPE: `float`, *optional* DEFAULT: None

Source code in mindone/diffusers/pipelines/flux/pipeline_flux_control_inpaint.py
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
def encode_prompt(
    self,
    prompt: Union[str, List[str]],
    prompt_2: Optional[Union[str, List[str]]] = None,
    num_images_per_prompt: int = 1,
    prompt_embeds: Optional[ms.Tensor] = None,
    pooled_prompt_embeds: Optional[ms.Tensor] = None,
    max_sequence_length: int = 512,
    lora_scale: Optional[float] = None,
):
    r"""

    Args:
        prompt (`str` or `List[str]`, *optional*):
            prompt to be encoded
        prompt_2 (`str` or `List[str]`, *optional*):
            The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
            used in all text-encoders
        num_images_per_prompt (`int`):
            number of images that should be generated per prompt
        prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
            provided, text embeddings will be generated from `prompt` input argument.
        pooled_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
            If not provided, pooled text embeddings will be generated from `prompt` input argument.
        lora_scale (`float`, *optional*):
            A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
    """
    # set lora scale so that monkey patched LoRA
    # function of text encoder can correctly access it
    if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
        self._lora_scale = lora_scale

        # dynamically adjust the LoRA scale
        if self.text_encoder is not None:
            scale_lora_layers(self.text_encoder, lora_scale)
        if self.text_encoder_2 is not None:
            scale_lora_layers(self.text_encoder_2, lora_scale)

    prompt = [prompt] if isinstance(prompt, str) else prompt

    if prompt_embeds is None:
        prompt_2 = prompt_2 or prompt
        prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2

        # We only use the pooled prompt output from the CLIPTextModel
        pooled_prompt_embeds = self._get_clip_prompt_embeds(
            prompt=prompt,
            num_images_per_prompt=num_images_per_prompt,
        )
        prompt_embeds = self._get_t5_prompt_embeds(
            prompt=prompt_2,
            num_images_per_prompt=num_images_per_prompt,
            max_sequence_length=max_sequence_length,
        )

    if self.text_encoder is not None:
        if isinstance(self, FluxLoraLoaderMixin):
            # Retrieve the original scale by scaling back the LoRA layers
            unscale_lora_layers(self.text_encoder, lora_scale)

    if self.text_encoder_2 is not None:
        if isinstance(self, FluxLoraLoaderMixin):
            # Retrieve the original scale by scaling back the LoRA layers
            unscale_lora_layers(self.text_encoder_2, lora_scale)

    dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
    text_ids = mint.zeros((prompt_embeds.shape[1], 3)).to(dtype=dtype)

    return prompt_embeds, pooled_prompt_embeds, text_ids

mindone.diffusers.pipelines.flux.pipeline_output.FluxPipelineOutput dataclass

Bases: BaseOutput

Output class for Flux image generation pipelines.

Source code in mindone/diffusers/pipelines/flux/pipeline_output.py
14
15
16
17
18
19
20
21
22
23
24
25
26
27
@dataclass
class FluxPipelineOutput(BaseOutput):
    """
    Output class for Flux image generation pipelines.

    Args:
        images (`List[PIL.Image.Image]` or `ms.Tensor` or `np.ndarray`)
            List of denoised PIL images of length `batch_size` or numpy array or mindspore tensor of shape `(batch_size,
            height, width, num_channels)`. PIL images or numpy array present the denoised images of the diffusion
            pipeline. Mindspore tensors can represent either the denoised images or the intermediate latents ready to be
            passed to the decoder.
    """

    images: Union[List[PIL.Image.Image], np.ndarray]