Skip to content

UNet2DConditionModel

The UNet model was originally introduced by Ronneberger et al. for biomedical image segmentation, but it is also commonly used in 🤗 Diffusers because it outputs images that are the same size as the input. It is one of the most important components of a diffusion system because it facilitates the actual diffusion process. There are several variants of the UNet model in 🤗 Diffusers, depending on it's number of dimensions and whether it is a conditional model or not. This is a 2D UNet conditional model.

The abstract from the paper is:

There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net.

mindone.diffusers.UNet2DConditionModel

Bases: ModelMixin, ConfigMixin, FromOriginalModelMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin

A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample shaped output.

This model inherits from [ModelMixin]. Check the superclass documentation for it's generic methods implemented for all models (such as downloading or saving).

PARAMETER DESCRIPTION
sample_size

Height and width of input/output sample.

TYPE: `int` or `Tuple[int, int]`, *optional*, defaults to `None` DEFAULT: None

in_channels

Number of channels in the input sample.

TYPE: `int`, *optional*, defaults to 4 DEFAULT: 4

out_channels

Number of channels in the output.

TYPE: `int`, *optional*, defaults to 4 DEFAULT: 4

center_input_sample

Whether to center the input sample.

TYPE: `bool`, *optional*, defaults to `False` DEFAULT: False

flip_sin_to_cos

Whether to flip the sin to cos in the time embedding.

TYPE: `bool`, *optional*, defaults to `True` DEFAULT: True

freq_shift

The frequency shift to apply to the time embedding.

TYPE: `int`, *optional*, defaults to 0 DEFAULT: 0

down_block_types

The tuple of downsample blocks to use.

TYPE: `Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")` DEFAULT: ('CrossAttnDownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D', 'DownBlock2D')

mid_block_type

Block type for middle of UNet, it can be one of UNetMidBlock2DCrossAttn, UNetMidBlock2D, or UNetMidBlock2DSimpleCrossAttn. If None, the mid block layer is skipped.

TYPE: `str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"` DEFAULT: 'UNetMidBlock2DCrossAttn'

up_block_types

The tuple of upsample blocks to use.

TYPE: `Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")` DEFAULT: ('UpBlock2D', 'CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'CrossAttnUpBlock2D')

only_cross_attention(`bool`

Whether to include self-attention in the basic transformer blocks, see [~models.attention.BasicTransformerBlock].

TYPE: or `Tuple[bool]`, *optional*, default to `False`

block_out_channels

The tuple of output channels for each block.

TYPE: `Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)` DEFAULT: (320, 640, 1280, 1280)

layers_per_block

The number of layers per block.

TYPE: `int`, *optional*, defaults to 2 DEFAULT: 2

downsample_padding

The padding to use for the downsampling convolution.

TYPE: `int`, *optional*, defaults to 1 DEFAULT: 1

mid_block_scale_factor

The scale factor to use for the mid block.

TYPE: `float`, *optional*, defaults to 1.0 DEFAULT: 1

dropout

The dropout probability to use.

TYPE: `float`, *optional*, defaults to 0.0 DEFAULT: 0.0

act_fn

The activation function to use.

TYPE: `str`, *optional*, defaults to `"silu"` DEFAULT: 'silu'

norm_num_groups

The number of groups to use for the normalization. If None, normalization and activation layers is skipped in post-processing.

TYPE: `int`, *optional*, defaults to 32 DEFAULT: 32

norm_eps

The epsilon to use for the normalization.

TYPE: `float`, *optional*, defaults to 1e-5 DEFAULT: 1e-05

cross_attention_dim

The dimension of the cross attention features.

TYPE: `int` or `Tuple[int]`, *optional*, defaults to 1280 DEFAULT: 1280

transformer_layers_per_block

The number of transformer blocks of type [~models.attention.BasicTransformerBlock]. Only relevant for [~models.unets.unet_2d_blocks.CrossAttnDownBlock2D], [~models.unets.unet_2d_blocks.CrossAttnUpBlock2D], [~models.unets.unet_2d_blocks.UNetMidBlock2DCrossAttn].

TYPE: `int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1 DEFAULT: 1

reverse_transformer_layers_per_block

(Tuple[Tuple], optional, defaults to None): The number of transformer blocks of type [~models.attention.BasicTransformerBlock], in the upsampling blocks of the U-Net. Only relevant if transformer_layers_per_block is of type Tuple[Tuple] and for [~models.unets.unet_2d_blocks.CrossAttnDownBlock2D], [~models.unets.unet_2d_blocks.CrossAttnUpBlock2D], [~models.unets.unet_2d_blocks.UNetMidBlock2DCrossAttn].

DEFAULT: None

encoder_hid_dim

If encoder_hid_dim_type is defined, encoder_hidden_states will be projected from encoder_hid_dim dimension to cross_attention_dim.

TYPE: `int`, *optional*, defaults to None DEFAULT: None

encoder_hid_dim_type

If given, the encoder_hidden_states and potentially other embeddings are down-projected to text embeddings of dimension cross_attention according to encoder_hid_dim_type.

TYPE: `str`, *optional*, defaults to `None` DEFAULT: None

attention_head_dim

The dimension of the attention heads.

TYPE: `int`, *optional*, defaults to 8 DEFAULT: 8

num_attention_heads

The number of attention heads. If not defined, defaults to attention_head_dim

TYPE: `int`, *optional* DEFAULT: None

resnet_time_scale_shift

Time scale shift config for ResNet blocks (see [~models.resnet.ResnetBlock2D]). Choose from default or scale_shift.

TYPE: `str`, *optional*, defaults to `"default"` DEFAULT: 'default'

class_embed_type

The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None, "timestep", "identity", "projection", or "simple_projection".

TYPE: `str`, *optional*, defaults to `None` DEFAULT: None

addition_embed_type

Configures an optional embedding which will be summed with the time embeddings. Choose from None or "text". "text" will use the TextTimeEmbedding layer.

TYPE: `str`, *optional*, defaults to `None` DEFAULT: None

addition_time_embed_dim

(int, optional, defaults to None): Dimension for the timestep embeddings.

TYPE: Optional[int] DEFAULT: None

num_class_embeds

Input dimension of the learnable embedding matrix to be projected to time_embed_dim, when performing class conditioning with class_embed_type equal to None.

TYPE: `int`, *optional*, defaults to `None` DEFAULT: None

time_embedding_type

The type of position embedding to use for timesteps. Choose from positional or fourier.

TYPE: `str`, *optional*, defaults to `positional` DEFAULT: 'positional'

time_embedding_dim

An optional override for the dimension of the projected time embedding.

TYPE: `int`, *optional*, defaults to `None` DEFAULT: None

time_embedding_act_fn

Optional activation function to use only once on the time embeddings before they are passed to the rest of the UNet. Choose from silu, mish, gelu, and swish.

TYPE: `str`, *optional*, defaults to `None` DEFAULT: None

timestep_post_act

The second activation function to use in timestep embedding. Choose from silu, mish and gelu.

TYPE: `str`, *optional*, defaults to `None` DEFAULT: None

time_cond_proj_dim

The dimension of cond_proj layer in the timestep embedding.

TYPE: `int`, *optional*, defaults to `None` DEFAULT: None

conv_in_kernel

The kernel size of conv_in layer.

TYPE: `int`, *optional*, default to `3` DEFAULT: 3

conv_out_kernel

The kernel size of conv_out layer.

TYPE: `int`, *optional*, default to `3` DEFAULT: 3

projection_class_embeddings_input_dim

The dimension of the class_labels input when class_embed_type="projection". Required when class_embed_type="projection".

TYPE: `int`, *optional* DEFAULT: None

class_embeddings_concat

Whether to concatenate the time embeddings with the class embeddings.

TYPE: `bool`, *optional*, defaults to `False` DEFAULT: False

mid_block_only_cross_attention

Whether to use cross attention with the mid block when using the UNetMidBlock2DSimpleCrossAttn. If only_cross_attention is given as a single boolean and mid_block_only_cross_attention is None, the only_cross_attention value is used as the value for mid_block_only_cross_attention. Default to False otherwise.

TYPE: `bool`, *optional*, defaults to `None` DEFAULT: None

Source code in mindone/diffusers/models/unets/unet_2d_condition.py
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
class UNet2DConditionModel(
    ModelMixin, ConfigMixin, FromOriginalModelMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin
):
    r"""
    A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
    shaped output.

    This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
    for all models (such as downloading or saving).

    Parameters:
        sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
            Height and width of input/output sample.
        in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
        out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
        center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
        flip_sin_to_cos (`bool`, *optional*, defaults to `True`):
            Whether to flip the sin to cos in the time embedding.
        freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
        down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
            The tuple of downsample blocks to use.
        mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
            Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
            `UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
        up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
            The tuple of upsample blocks to use.
        only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
            Whether to include self-attention in the basic transformer blocks, see
            [`~models.attention.BasicTransformerBlock`].
        block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
            The tuple of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
        downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
        mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
        norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
            If `None`, normalization and activation layers is skipped in post-processing.
        norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
        cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
            The dimension of the cross attention features.
        transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
            The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
            [`~models.unets.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unets.unet_2d_blocks.CrossAttnUpBlock2D`],
            [`~models.unets.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
        reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
            The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
            blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
            [`~models.unets.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unets.unet_2d_blocks.CrossAttnUpBlock2D`],
            [`~models.unets.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
        encoder_hid_dim (`int`, *optional*, defaults to None):
            If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
            dimension to `cross_attention_dim`.
        encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
            If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
            embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
        attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
        num_attention_heads (`int`, *optional*):
            The number of attention heads. If not defined, defaults to `attention_head_dim`
        resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
            for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
        class_embed_type (`str`, *optional*, defaults to `None`):
            The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
            `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
        addition_embed_type (`str`, *optional*, defaults to `None`):
            Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
            "text". "text" will use the `TextTimeEmbedding` layer.
        addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
            Dimension for the timestep embeddings.
        num_class_embeds (`int`, *optional*, defaults to `None`):
            Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
            class conditioning with `class_embed_type` equal to `None`.
        time_embedding_type (`str`, *optional*, defaults to `positional`):
            The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
        time_embedding_dim (`int`, *optional*, defaults to `None`):
            An optional override for the dimension of the projected time embedding.
        time_embedding_act_fn (`str`, *optional*, defaults to `None`):
            Optional activation function to use only once on the time embeddings before they are passed to the rest of
            the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
        timestep_post_act (`str`, *optional*, defaults to `None`):
            The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
        time_cond_proj_dim (`int`, *optional*, defaults to `None`):
            The dimension of `cond_proj` layer in the timestep embedding.
        conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
        conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
        projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
            `class_embed_type="projection"`. Required when `class_embed_type="projection"`.
        class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
            embeddings with the class embeddings.
        mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
            Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
            `only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
            `only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
            otherwise.
    """

    _supports_gradient_checkpointing = True
    _no_split_modules = ["BasicTransformerBlock", "ResnetBlock2D", "CrossAttnUpBlock2D"]

    @register_to_config
    def __init__(
        self,
        sample_size: Optional[int] = None,
        in_channels: int = 4,
        out_channels: int = 4,
        center_input_sample: bool = False,
        flip_sin_to_cos: bool = True,
        freq_shift: int = 0,
        down_block_types: Tuple[str] = (
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "DownBlock2D",
        ),
        mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
        up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
        only_cross_attention: Union[bool, Tuple[bool]] = False,
        block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
        layers_per_block: Union[int, Tuple[int]] = 2,
        downsample_padding: int = 1,
        mid_block_scale_factor: float = 1,
        dropout: float = 0.0,
        act_fn: str = "silu",
        norm_num_groups: Optional[int] = 32,
        norm_eps: float = 1e-5,
        cross_attention_dim: Union[int, Tuple[int]] = 1280,
        transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
        reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
        encoder_hid_dim: Optional[int] = None,
        encoder_hid_dim_type: Optional[str] = None,
        attention_head_dim: Union[int, Tuple[int]] = 8,
        num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
        dual_cross_attention: bool = False,
        use_linear_projection: bool = False,
        class_embed_type: Optional[str] = None,
        addition_embed_type: Optional[str] = None,
        addition_time_embed_dim: Optional[int] = None,
        num_class_embeds: Optional[int] = None,
        upcast_attention: bool = False,
        resnet_time_scale_shift: str = "default",
        resnet_skip_time_act: bool = False,
        resnet_out_scale_factor: float = 1.0,
        time_embedding_type: str = "positional",
        time_embedding_dim: Optional[int] = None,
        time_embedding_act_fn: Optional[str] = None,
        timestep_post_act: Optional[str] = None,
        time_cond_proj_dim: Optional[int] = None,
        conv_in_kernel: int = 3,
        conv_out_kernel: int = 3,
        projection_class_embeddings_input_dim: Optional[int] = None,
        attention_type: str = "default",
        class_embeddings_concat: bool = False,
        mid_block_only_cross_attention: Optional[bool] = None,
        cross_attention_norm: Optional[str] = None,
        addition_embed_type_num_heads: int = 64,
    ):
        super().__init__()

        self.sample_size = sample_size

        if num_attention_heads is not None:
            raise ValueError(
                "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."  # noqa: E501
            )

        # If `num_attention_heads` is not defined (which is the case for most models)
        # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
        # The reason for this behavior is to correct for incorrectly named variables that were introduced
        # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131  # noqa: E501
        # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
        # which is why we correct for the naming here.
        num_attention_heads = num_attention_heads or attention_head_dim

        # Check inputs
        self._check_config(
            down_block_types=down_block_types,
            up_block_types=up_block_types,
            only_cross_attention=only_cross_attention,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            cross_attention_dim=cross_attention_dim,
            transformer_layers_per_block=transformer_layers_per_block,
            reverse_transformer_layers_per_block=reverse_transformer_layers_per_block,
            attention_head_dim=attention_head_dim,
            num_attention_heads=num_attention_heads,
        )

        # input
        conv_in_padding = (conv_in_kernel - 1) // 2
        self.conv_in = nn.Conv2d(
            in_channels,
            block_out_channels[0],
            kernel_size=conv_in_kernel,
            pad_mode="pad",
            padding=conv_in_padding,
            has_bias=True,
        )

        # time
        time_embed_dim, timestep_input_dim = self._set_time_proj(
            time_embedding_type,
            block_out_channels=block_out_channels,
            flip_sin_to_cos=flip_sin_to_cos,
            freq_shift=freq_shift,
            time_embedding_dim=time_embedding_dim,
        )

        self.time_embedding = TimestepEmbedding(
            timestep_input_dim,
            time_embed_dim,
            act_fn=act_fn,
            post_act_fn=timestep_post_act,
            cond_proj_dim=time_cond_proj_dim,
        )

        self._set_encoder_hid_proj(
            encoder_hid_dim_type,
            cross_attention_dim=cross_attention_dim,
            encoder_hid_dim=encoder_hid_dim,
        )

        self.has_text_encoder_hid_proj = (
            False  # Used in `process_encoder_hidden_states`, Kolors Unet already has a `encoder_hid_proj`
        )

        # class embedding
        self._set_class_embedding(
            class_embed_type,
            act_fn=act_fn,
            num_class_embeds=num_class_embeds,
            projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
            time_embed_dim=time_embed_dim,
            timestep_input_dim=timestep_input_dim,
        )

        self._set_add_embedding(
            addition_embed_type,
            addition_embed_type_num_heads=addition_embed_type_num_heads,
            addition_time_embed_dim=addition_time_embed_dim,
            cross_attention_dim=cross_attention_dim,
            encoder_hid_dim=encoder_hid_dim,
            flip_sin_to_cos=flip_sin_to_cos,
            freq_shift=freq_shift,
            projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
            time_embed_dim=time_embed_dim,
        )

        if time_embedding_act_fn is None:
            self.time_embed_act = None
        else:
            self.time_embed_act = get_activation(time_embedding_act_fn)()

        if isinstance(only_cross_attention, bool):
            if mid_block_only_cross_attention is None:
                mid_block_only_cross_attention = only_cross_attention

            only_cross_attention = [only_cross_attention] * len(down_block_types)

        if mid_block_only_cross_attention is None:
            mid_block_only_cross_attention = False

        if isinstance(num_attention_heads, int):
            num_attention_heads = (num_attention_heads,) * len(down_block_types)

        if isinstance(attention_head_dim, int):
            attention_head_dim = (attention_head_dim,) * len(down_block_types)

        if isinstance(cross_attention_dim, int):
            cross_attention_dim = (cross_attention_dim,) * len(down_block_types)

        if isinstance(layers_per_block, int):
            layers_per_block = [layers_per_block] * len(down_block_types)

        if isinstance(transformer_layers_per_block, int):
            transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)

        if class_embeddings_concat:
            # The time embeddings are concatenated with the class embeddings. The dimension of the
            # time embeddings passed to the down, middle, and up blocks is twice the dimension of the
            # regular time embeddings
            blocks_time_embed_dim = time_embed_dim * 2
        else:
            blocks_time_embed_dim = time_embed_dim

        self.down_blocks = nn.CellList()
        self.up_blocks = nn.CellList()
        # down
        down_blocks = []
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
                num_layers=layers_per_block[i],
                transformer_layers_per_block=transformer_layers_per_block[i],
                in_channels=input_channel,
                out_channels=output_channel,
                temb_channels=blocks_time_embed_dim,
                add_downsample=not is_final_block,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
                cross_attention_dim=cross_attention_dim[i],
                num_attention_heads=num_attention_heads[i],
                downsample_padding=downsample_padding,
                dual_cross_attention=dual_cross_attention,
                use_linear_projection=use_linear_projection,
                only_cross_attention=only_cross_attention[i],
                upcast_attention=upcast_attention,
                resnet_time_scale_shift=resnet_time_scale_shift,
                attention_type=attention_type,
                resnet_skip_time_act=resnet_skip_time_act,
                resnet_out_scale_factor=resnet_out_scale_factor,
                cross_attention_norm=cross_attention_norm,
                attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
                dropout=dropout,
            )
            down_blocks.append(down_block)
        self.down_blocks = nn.CellList(down_blocks)

        # mid
        self.mid_block = get_mid_block(
            mid_block_type,
            temb_channels=blocks_time_embed_dim,
            in_channels=block_out_channels[-1],
            resnet_eps=norm_eps,
            resnet_act_fn=act_fn,
            resnet_groups=norm_num_groups,
            output_scale_factor=mid_block_scale_factor,
            transformer_layers_per_block=transformer_layers_per_block[-1],
            num_attention_heads=num_attention_heads[-1],
            cross_attention_dim=cross_attention_dim[-1],
            dual_cross_attention=dual_cross_attention,
            use_linear_projection=use_linear_projection,
            mid_block_only_cross_attention=mid_block_only_cross_attention,
            upcast_attention=upcast_attention,
            resnet_time_scale_shift=resnet_time_scale_shift,
            attention_type=attention_type,
            resnet_skip_time_act=resnet_skip_time_act,
            cross_attention_norm=cross_attention_norm,
            attention_head_dim=attention_head_dim[-1],
            dropout=dropout,
        )

        # count how many layers upsample the images
        self.num_upsamplers = 0

        # up
        up_blocks = []
        layers_per_resnet_in_up_blocks = []
        reversed_block_out_channels = list(reversed(block_out_channels))
        reversed_num_attention_heads = list(reversed(num_attention_heads))
        reversed_layers_per_block = list(reversed(layers_per_block))
        reversed_cross_attention_dim = list(reversed(cross_attention_dim))
        reversed_transformer_layers_per_block = (
            list(reversed(transformer_layers_per_block))
            if reverse_transformer_layers_per_block is None
            else reverse_transformer_layers_per_block
        )
        only_cross_attention = list(reversed(only_cross_attention))

        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
            is_final_block = i == len(block_out_channels) - 1

            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]
            input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]

            # add upsample block for all BUT final layer
            if not is_final_block:
                add_upsample = True
                self.num_upsamplers += 1
            else:
                add_upsample = False

            up_block = get_up_block(
                up_block_type,
                num_layers=reversed_layers_per_block[i] + 1,
                transformer_layers_per_block=reversed_transformer_layers_per_block[i],
                in_channels=input_channel,
                out_channels=output_channel,
                prev_output_channel=prev_output_channel,
                temb_channels=blocks_time_embed_dim,
                add_upsample=add_upsample,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                resolution_idx=i,
                resnet_groups=norm_num_groups,
                cross_attention_dim=reversed_cross_attention_dim[i],
                num_attention_heads=reversed_num_attention_heads[i],
                dual_cross_attention=dual_cross_attention,
                use_linear_projection=use_linear_projection,
                only_cross_attention=only_cross_attention[i],
                upcast_attention=upcast_attention,
                resnet_time_scale_shift=resnet_time_scale_shift,
                attention_type=attention_type,
                resnet_skip_time_act=resnet_skip_time_act,
                resnet_out_scale_factor=resnet_out_scale_factor,
                cross_attention_norm=cross_attention_norm,
                attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
                dropout=dropout,
            )
            up_blocks.append(up_block)
            prev_output_channel = output_channel
            layers_per_resnet_in_up_blocks.append(len(up_block.resnets))
        self.up_blocks = nn.CellList(up_blocks)
        self.layers_per_resnet_in_up_blocks = layers_per_resnet_in_up_blocks

        # out
        if norm_num_groups is not None:
            self.conv_norm_out = GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps)

            self.conv_act = get_activation(act_fn)()

        else:
            self.conv_norm_out = None
            self.conv_act = None

        conv_out_padding = (conv_out_kernel - 1) // 2
        self.conv_out = nn.Conv2d(
            block_out_channels[0],
            out_channels,
            kernel_size=conv_out_kernel,
            pad_mode="pad",
            padding=conv_out_padding,
            has_bias=True,
        )

        self._set_pos_net_if_use_gligen(attention_type=attention_type, cross_attention_dim=cross_attention_dim)

        self.center_input_sample = self.config.center_input_sample
        self.class_embed_type = self.config.class_embed_type
        self.class_embeddings_concat = self.config.class_embeddings_concat
        self.addition_embed_type = self.config.addition_embed_type
        self.encoder_hid_dim_type = self.config.encoder_hid_dim_type

    def _check_config(
        self,
        down_block_types: Tuple[str],
        up_block_types: Tuple[str],
        only_cross_attention: Union[bool, Tuple[bool]],
        block_out_channels: Tuple[int],
        layers_per_block: Union[int, Tuple[int]],
        cross_attention_dim: Union[int, Tuple[int]],
        transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple[int]]],
        reverse_transformer_layers_per_block: bool,
        attention_head_dim: int,
        num_attention_heads: Optional[Union[int, Tuple[int]]],
    ):
        if len(down_block_types) != len(up_block_types):
            raise ValueError(
                f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."  # noqa: E501
            )

        if len(block_out_channels) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."  # noqa: E501
            )

        if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."  # noqa: E501
            )

        if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."  # noqa: E501
            )

        if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."  # noqa: E501
            )

        if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."  # noqa: E501
            )

        if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."  # noqa: E501
            )
        if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None:
            for layer_number_per_block in transformer_layers_per_block:
                if isinstance(layer_number_per_block, list):
                    raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.")

    def _set_time_proj(
        self,
        time_embedding_type: str,
        block_out_channels: int,
        flip_sin_to_cos: bool,
        freq_shift: float,
        time_embedding_dim: int,
    ) -> Tuple[int, int]:
        if time_embedding_type == "fourier":
            time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
            if time_embed_dim % 2 != 0:
                raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
            self.time_proj = GaussianFourierProjection(
                time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
            )
            timestep_input_dim = time_embed_dim
        elif time_embedding_type == "positional":
            time_embed_dim = time_embedding_dim or block_out_channels[0] * 4

            self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
            timestep_input_dim = block_out_channels[0]
        else:
            raise ValueError(
                f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
            )
        return time_embed_dim, timestep_input_dim

    def _set_encoder_hid_proj(
        self,
        encoder_hid_dim_type: Optional[str],
        cross_attention_dim: Union[int, Tuple[int]],
        encoder_hid_dim: Optional[int],
    ):
        if encoder_hid_dim_type is None and encoder_hid_dim is not None:
            encoder_hid_dim_type = "text_proj"
            self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
            logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")

        if encoder_hid_dim is None and encoder_hid_dim_type is not None:
            raise ValueError(
                f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
            )

        if encoder_hid_dim_type == "text_proj":
            self.encoder_hid_proj = nn.Dense(encoder_hid_dim, cross_attention_dim)
        elif encoder_hid_dim_type == "text_image_proj":
            # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
            # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
            # case when `addition_embed_type == "text_image_proj"` (Kandinsky 2.1)`
            self.encoder_hid_proj = TextImageProjection(
                text_embed_dim=encoder_hid_dim,
                image_embed_dim=cross_attention_dim,
                cross_attention_dim=cross_attention_dim,
            )
        elif encoder_hid_dim_type == "image_proj":
            # Kandinsky 2.2
            self.encoder_hid_proj = ImageProjection(
                image_embed_dim=encoder_hid_dim,
                cross_attention_dim=cross_attention_dim,
            )
        elif encoder_hid_dim_type is not None:
            raise ValueError(
                f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
            )
        else:
            self.encoder_hid_proj = None

    def _set_class_embedding(
        self,
        class_embed_type: Optional[str],
        act_fn: str,
        num_class_embeds: Optional[int],
        projection_class_embeddings_input_dim: Optional[int],
        time_embed_dim: int,
        timestep_input_dim: int,
    ):
        if class_embed_type is None and num_class_embeds is not None:
            self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
        elif class_embed_type == "timestep":
            self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
        elif class_embed_type == "identity":
            self.class_embedding = nn.Identity()
        elif class_embed_type == "projection":
            if projection_class_embeddings_input_dim is None:
                raise ValueError(
                    "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
                )
            # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
            # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
            # 2. it projects from an arbitrary input dimension.
            #
            # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
            # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
            # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
            self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
        elif class_embed_type == "simple_projection":
            if projection_class_embeddings_input_dim is None:
                raise ValueError(
                    "`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
                )
            self.class_embedding = nn.Dense(projection_class_embeddings_input_dim, time_embed_dim)
        else:
            self.class_embedding = None

    def _set_add_embedding(
        self,
        addition_embed_type: str,
        addition_embed_type_num_heads: int,
        addition_time_embed_dim: Optional[int],
        flip_sin_to_cos: bool,
        freq_shift: float,
        cross_attention_dim: Optional[int],
        encoder_hid_dim: Optional[int],
        projection_class_embeddings_input_dim: Optional[int],
        time_embed_dim: int,
    ):
        if addition_embed_type == "text":
            if encoder_hid_dim is not None:
                text_time_embedding_from_dim = encoder_hid_dim
            else:
                text_time_embedding_from_dim = cross_attention_dim

            self.add_embedding = TextTimeEmbedding(
                text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
            )
        elif addition_embed_type == "text_image":
            # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
            # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
            # case when `addition_embed_type == "text_image"` (Kandinsky 2.1)`
            self.add_embedding = TextImageTimeEmbedding(
                text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
            )
        elif addition_embed_type == "text_time":
            self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
            self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
        elif addition_embed_type == "image":
            # Kandinsky 2.2
            self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
        elif addition_embed_type == "image_hint":
            # Kandinsky 2.2 ControlNet
            self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
        elif addition_embed_type is not None:
            raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")

    def _set_pos_net_if_use_gligen(self, attention_type: str, cross_attention_dim: int):
        if attention_type in ["gated", "gated-text-image"]:
            positive_len = 768
            if isinstance(cross_attention_dim, int):
                positive_len = cross_attention_dim
            elif isinstance(cross_attention_dim, (list, tuple)):
                positive_len = cross_attention_dim[0]

            feature_type = "text-only" if attention_type == "gated" else "text-image"
            self.position_net = GLIGENTextBoundingboxProjection(
                positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
            )

    @property
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(name: str, module: nn.Cell, processors: Dict[str, AttentionProcessor]):
            if hasattr(module, "get_processor"):
                processors[f"{name}.processor"] = module.get_processor()

            for sub_name, child in module.name_cells().items():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.name_cells().items():
            fn_recursive_add_processors(name, module, processors)

        return processors

    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
        r"""
        Sets the attention processor to use to compute attention.

        Parameters:
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: nn.Cell, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))

            for sub_name, child in module.name_cells().items():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.name_cells().items():
            fn_recursive_attn_processor(name, module, processor)

    def set_default_attn_processor(self):
        """
        Disables custom attention processors and sets the default attention implementation.
        """
        if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnAddedKVProcessor()
        elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnProcessor()
        else:
            raise ValueError(
                f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
            )

        self.set_attn_processor(processor)

    def _set_gradient_checkpointing(self, module, value=False):
        if hasattr(module, "gradient_checkpointing"):
            module.gradient_checkpointing = value

    def get_time_embed(self, sample: ms.Tensor, timestep: Union[ms.Tensor, float, int]) -> Optional[ms.Tensor]:
        timesteps = timestep
        if not ops.is_tensor(timesteps):
            # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
            if isinstance(timestep, float):
                dtype = ms.float64
            else:
                dtype = ms.int64
            timesteps = ms.tensor([timesteps], dtype=dtype)
        elif len(timesteps.shape) == 0:
            timesteps = timesteps[None]

        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
        if timesteps.shape[0] == 1:
            timesteps = timesteps.tile((sample.shape[0],))

        t_emb = self.time_proj(timesteps)

        # `Timesteps` does not contain any weights and will always return f32 tensors
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
        t_emb = t_emb.to(dtype=sample.dtype)
        return t_emb

    def get_class_embed(self, sample: ms.Tensor, class_labels: Optional[ms.Tensor]) -> Optional[ms.Tensor]:
        class_emb = None
        if self.class_embedding is not None:
            if class_labels is None:
                raise ValueError("class_labels should be provided when num_class_embeds > 0")

            if self.class_embed_type == "timestep":
                class_labels = self.time_proj(class_labels)

                # `Timesteps` does not contain any weights and will always return f32 tensors
                # there might be better ways to encapsulate this.
                class_labels = class_labels.to(dtype=sample.dtype)

            class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
        return class_emb

    def get_aug_embed(
        self, emb: ms.Tensor, encoder_hidden_states: ms.Tensor, added_cond_kwargs: Dict[str, Any]
    ) -> Optional[ms.Tensor]:
        aug_emb = None
        if self.addition_embed_type == "text":
            aug_emb = self.add_embedding(encoder_hidden_states)
        elif self.addition_embed_type == "text_image":
            # Kandinsky 2.1 - style
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"  # noqa: E501
                )

            image_embs = added_cond_kwargs.get("image_embeds")
            text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
            aug_emb = self.add_embedding(text_embs, image_embs)
        elif self.addition_embed_type == "text_time":
            # SDXL - style
            if "text_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"  # noqa: E501
                )
            text_embeds = added_cond_kwargs.get("text_embeds")
            if "time_ids" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"  # noqa: E501
                )
            time_ids = added_cond_kwargs.get("time_ids")
            time_embeds = self.add_time_proj(time_ids.flatten())
            # `Timesteps` does not contain any weights and will always return f32 tensors
            # there might be better ways to encapsulate this.
            time_embeds = time_embeds.to(emb.dtype)
            time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
            add_embeds = ops.concat([text_embeds, time_embeds], axis=-1)
            add_embeds = add_embeds.to(emb.dtype)
            aug_emb = self.add_embedding(add_embeds)
        elif self.addition_embed_type == "image":
            # Kandinsky 2.2 - style
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"  # noqa: E501
                )
            image_embs = added_cond_kwargs.get("image_embeds")
            aug_emb = self.add_embedding(image_embs)
        elif self.addition_embed_type == "image_hint":
            # Kandinsky 2.2 - style
            if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"  # noqa: E501
                )
            image_embs = added_cond_kwargs.get("image_embeds")
            hint = added_cond_kwargs.get("hint")
            aug_emb = self.add_embedding(image_embs, hint)
        return aug_emb

    def process_encoder_hidden_states(
        self, encoder_hidden_states: ms.Tensor, added_cond_kwargs: Dict[str, Any]
    ) -> ms.Tensor:
        if self.encoder_hid_proj is not None and self.encoder_hid_dim_type == "text_proj":
            encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
        elif self.encoder_hid_proj is not None and self.encoder_hid_dim_type == "text_image_proj":
            # Kandinsky 2.1 - style
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"  # noqa: E501
                )

            image_embeds = added_cond_kwargs.get("image_embeds")
            encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
        elif self.encoder_hid_proj is not None and self.encoder_hid_dim_type == "image_proj":
            # Kandinsky 2.2 - style
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"  # noqa: E501
                )
            image_embeds = added_cond_kwargs.get("image_embeds")
            encoder_hidden_states = self.encoder_hid_proj(image_embeds)
        elif self.encoder_hid_proj is not None and self.encoder_hid_dim_type == "ip_image_proj":
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"  # noqa: E501
                )

            if (
                self.has_text_encoder_hid_proj
            ):  # abandon `hasattr` as it is not supported by static graph before MindSpore 2.3
                encoder_hidden_states = self.text_encoder_hid_proj(encoder_hidden_states)

            image_embeds = added_cond_kwargs.get("image_embeds")
            image_embeds = self.encoder_hid_proj(image_embeds)
            encoder_hidden_states = (encoder_hidden_states, image_embeds)
        return encoder_hidden_states

    def construct(
        self,
        sample: ms.Tensor,
        timestep: Union[ms.Tensor, float, int],
        encoder_hidden_states: ms.Tensor,
        class_labels: Optional[ms.Tensor] = None,
        timestep_cond: Optional[ms.Tensor] = None,
        attention_mask: Optional[ms.Tensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        added_cond_kwargs: Optional[Dict[str, ms.Tensor]] = None,
        down_block_additional_residuals: Optional[Tuple[ms.Tensor]] = None,
        mid_block_additional_residual: Optional[ms.Tensor] = None,
        down_intrablock_additional_residuals: Optional[Tuple[ms.Tensor]] = None,
        encoder_attention_mask: Optional[ms.Tensor] = None,
        return_dict: bool = False,
    ) -> Union[UNet2DConditionOutput, Tuple]:
        r"""
        The [`UNet2DConditionModel`] forward method.

        Args:
            sample (`ms.Tensor`):
                The noisy input tensor with the following shape `(batch, channel, height, width)`.
            timestep (`ms.Tensor` or `float` or `int`): The number of timesteps to denoise an input.
            encoder_hidden_states (`ms.Tensor`):
                The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
            class_labels (`ms.Tensor`, *optional*, defaults to `None`):
                Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
            timestep_cond: (`ms.Tensor`, *optional*, defaults to `None`):
                Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
                through the `self.time_embedding` layer to obtain the timestep embeddings.
            attention_mask (`ms.Tensor`, *optional*, defaults to `None`):
                An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
                is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
                negative values to the attention scores corresponding to "discard" tokens.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            added_cond_kwargs: (`dict`, *optional*):
                A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
                are passed along to the UNet blocks.
            down_block_additional_residuals: (`tuple` of `ms.Tensor`, *optional*):
                A tuple of tensors that if specified are added to the residuals of down unet blocks.
            mid_block_additional_residual: (`ms.Tensor`, *optional*):
                A tensor that if specified is added to the residual of the middle unet block.
            down_intrablock_additional_residuals (`tuple` of `ms.Tensor`, *optional*):
                additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
            encoder_attention_mask (`ms.Tensor`):
                A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
                `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
                which adds large negative values to the attention scores corresponding to "discard" tokens.
            return_dict (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
                tuple.

        Returns:
            [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
                If `return_dict` is True, an [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] is returned,
                otherwise a `tuple` is returned where the first element is the sample tensor.
        """
        # By default samples have to be AT least a multiple of the overall upsampling factor.
        # The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
        # However, the upsampling interpolation output size can be forced to fit any upsampling size
        # on the fly if necessary.
        default_overall_up_factor = 2**self.num_upsamplers

        # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
        forward_upsample_size = False
        upsample_size = None

        for dim in sample.shape[-2:]:
            if dim % default_overall_up_factor != 0:
                # Forward upsample size to force interpolation output size.
                forward_upsample_size = True
                break

        # ensure attention_mask is a bias, and give it a singleton query_tokens dimension
        # expects mask of shape:
        #   [batch, key_tokens]
        # adds singleton query_tokens dimension:
        #   [batch,                    1, key_tokens]
        # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
        #   [batch,  heads, query_tokens, key_tokens] (e.g. torch sdp attn)
        #   [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
        if attention_mask is not None:
            # assume that mask is expressed as:
            #   (1 = keep,      0 = discard)
            # convert mask into a bias that can be added to attention scores:
            #       (keep = +0,     discard = -10000.0)
            attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

        # convert encoder_attention_mask to a bias the same way we do for attention_mask
        if encoder_attention_mask is not None:
            encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
            encoder_attention_mask = encoder_attention_mask.unsqueeze(1)

        # 0. center input if necessary
        if self.center_input_sample:
            sample = 2 * sample - 1.0

        # 1. time
        t_emb = self.get_time_embed(sample=sample, timestep=timestep)
        emb = self.time_embedding(t_emb, timestep_cond)
        aug_emb = None

        class_emb = self.get_class_embed(sample=sample, class_labels=class_labels)
        if class_emb is not None:
            if self.class_embeddings_concat:
                emb = ops.cat([emb, class_emb], axis=-1)
            else:
                emb = emb + class_emb

        aug_emb = self.get_aug_embed(
            emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
        )
        if self.addition_embed_type == "image_hint":
            aug_emb, hint = aug_emb
            sample = ops.cat([sample, hint], axis=1)

        emb = emb + aug_emb if aug_emb is not None else emb

        if self.time_embed_act is not None:
            emb = self.time_embed_act(emb)

        encoder_hidden_states = self.process_encoder_hidden_states(
            encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
        )

        # 2. pre-process
        sample = self.conv_in(sample)

        # 2.5 GLIGEN position net
        if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
            # copy and pop cross_attention_kwargs manually, as dict.copy/pop is not supported in GRAPH MODE syntax
            copied_cross_attention_kwargs = {}
            for k, v in cross_attention_kwargs.items():
                if k == "gligen":
                    copied_cross_attention_kwargs[k] = {"objs": self.position_net(**v)}
                else:
                    copied_cross_attention_kwargs[k] = v
            cross_attention_kwargs = copied_cross_attention_kwargs

        # 3. down
        # we're popping the `scale` instead of getting it because otherwise `scale` will be propagated
        # to the internal blocks and will raise deprecation warnings. this will be confusing for our users.
        if cross_attention_kwargs is not None and "scale" in cross_attention_kwargs:
            # weight the lora layers by setting `lora_scale` for each PEFT layer here
            # and remove `lora_scale` from each PEFT layer at the end.
            # scale_lora_layers & unscale_lora_layers maybe contains some operation forbidden in graph mode
            raise RuntimeError(
                f"You are trying to set scaling of lora layer by passing {cross_attention_kwargs['scale']=}. "
                f"However it's not allowed in on-the-fly model forwarding. "
                f"Please manually call `scale_lora_layers(model, lora_scale)` before model forwarding and "
                f"`unscale_lora_layers(model, lora_scale)` after model forwarding. "
                f"For example, it can be done in a pipeline call like `StableDiffusionPipeline.__call__`."
            )

        is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
        # using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
        is_adapter = down_intrablock_additional_residuals is not None
        # using variable `adapter_index` to get item in `down_intrablock_additional_residuals` for avoiding
        # pop operations in construct(), which are not fully supported in GRAPH_MODE
        adapter_index = 0
        # maintain backward compatibility for legacy usage, where
        #       T2I-Adapter and ControlNet both use down_block_additional_residuals arg
        #       but can only use one or the other
        if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
            # deprecate(
            #     "T2I should not use down_block_additional_residuals",
            #     "1.3.0",
            #     "Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
            #            and will be removed in diffusers 1.3.0.  `down_block_additional_residuals` should only be used \
            #            for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
            #     standard_warn=False,
            # )
            down_intrablock_additional_residuals = down_block_additional_residuals
            is_adapter = True

        down_block_res_samples = (sample,)
        for downsample_block in self.down_blocks:
            if downsample_block.has_cross_attention:
                # For t2i-adapter CrossAttnDownBlock2D
                additional_residuals = {}
                if is_adapter and len(down_intrablock_additional_residuals) > adapter_index:
                    additional_residuals["additional_residuals"] = down_intrablock_additional_residuals[adapter_index]
                    adapter_index += 1

                sample, res_samples = downsample_block(
                    hidden_states=sample,
                    temb=emb,
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
                    encoder_attention_mask=encoder_attention_mask,
                    **additional_residuals,
                )
            else:
                sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
                if is_adapter and len(down_intrablock_additional_residuals) > adapter_index:
                    # `sample` here is one of element in `res_samples`, in PyTorch they refer to the same object
                    # which means changes on sample will take effect on the counterpart in res_samples. However it
                    # doesn't work in MindSpore as they are different objects thus we need change both of them manually.
                    sample += down_intrablock_additional_residuals[adapter_index]
                    res_samples = list(res_samples)  # convert to list to support item assignment
                    res_samples[-1] += down_intrablock_additional_residuals[adapter_index]
                    res_samples = tuple(res_samples)  # convert back to tuple to concat
                    adapter_index += 1

            down_block_res_samples += res_samples

        if is_controlnet:
            new_down_block_res_samples = ()

            for down_block_res_sample, down_block_additional_residual in zip(
                down_block_res_samples, down_block_additional_residuals
            ):
                down_block_res_sample = down_block_res_sample + down_block_additional_residual
                new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)

            down_block_res_samples = new_down_block_res_samples

        # 4. mid
        if self.mid_block is not None:
            if self.mid_block.has_cross_attention:
                sample = self.mid_block(
                    sample,
                    emb,
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
                    encoder_attention_mask=encoder_attention_mask,
                )
            else:
                sample = self.mid_block(sample, emb)

            # To support T2I-Adapter-XL
            if (
                is_adapter
                and len(down_intrablock_additional_residuals) > adapter_index
                and sample.shape == down_intrablock_additional_residuals[adapter_index].shape
            ):
                sample += down_intrablock_additional_residuals[adapter_index]
                adapter_index += 1

        if is_controlnet:
            sample = sample + mid_block_additional_residual

        # 5. up
        for i, upsample_block in enumerate(self.up_blocks):
            is_final_block = i == len(self.up_blocks) - 1

            res_samples = down_block_res_samples[-self.layers_per_resnet_in_up_blocks[i] :]
            down_block_res_samples = down_block_res_samples[: -self.layers_per_resnet_in_up_blocks[i]]

            # if we have not reached the final block and need to forward the
            # upsample size, we do it here
            if not is_final_block and forward_upsample_size:
                upsample_size = down_block_res_samples[-1].shape[2:]

            if upsample_block.has_cross_attention:
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    upsample_size=upsample_size,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                )
            else:
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    upsample_size=upsample_size,
                )

        # 6. post-process
        if self.conv_norm_out:
            sample = self.conv_norm_out(sample)
            sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        if not return_dict:
            return (sample,)

        return UNet2DConditionOutput(sample=sample)

mindone.diffusers.UNet2DConditionModel.attn_processors: Dict[str, AttentionProcessor] property

RETURNS DESCRIPTION
Dict[str, AttentionProcessor]

dict of attention processors: A dictionary containing all attention processors used in the model with

Dict[str, AttentionProcessor]

indexed by its weight name.

mindone.diffusers.UNet2DConditionModel.construct(sample, timestep, encoder_hidden_states, class_labels=None, timestep_cond=None, attention_mask=None, cross_attention_kwargs=None, added_cond_kwargs=None, down_block_additional_residuals=None, mid_block_additional_residual=None, down_intrablock_additional_residuals=None, encoder_attention_mask=None, return_dict=False)

The [UNet2DConditionModel] forward method.

PARAMETER DESCRIPTION
sample

The noisy input tensor with the following shape (batch, channel, height, width).

TYPE: `ms.Tensor`

timestep

The number of timesteps to denoise an input.

TYPE: `ms.Tensor` or `float` or `int`

encoder_hidden_states

The encoder hidden states with shape (batch, sequence_length, feature_dim).

TYPE: `ms.Tensor`

class_labels

Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.

TYPE: `ms.Tensor`, *optional*, defaults to `None` DEFAULT: None

timestep_cond

(ms.Tensor, optional, defaults to None): Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed through the self.time_embedding layer to obtain the timestep embeddings.

TYPE: Optional[Tensor] DEFAULT: None

attention_mask

An attention mask of shape (batch, key_tokens) is applied to encoder_hidden_states. If 1 the mask is kept, otherwise if 0 it is discarded. Mask will be converted into a bias, which adds large negative values to the attention scores corresponding to "discard" tokens.

TYPE: `ms.Tensor`, *optional*, defaults to `None` DEFAULT: None

cross_attention_kwargs

A kwargs dictionary that if specified is passed along to the AttentionProcessor as defined under self.processor in diffusers.models.attention_processor.

TYPE: `dict`, *optional* DEFAULT: None

added_cond_kwargs

(dict, optional): A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that are passed along to the UNet blocks.

TYPE: Optional[Dict[str, Tensor]] DEFAULT: None

down_block_additional_residuals

(tuple of ms.Tensor, optional): A tuple of tensors that if specified are added to the residuals of down unet blocks.

TYPE: Optional[Tuple[Tensor]] DEFAULT: None

mid_block_additional_residual

(ms.Tensor, optional): A tensor that if specified is added to the residual of the middle unet block.

TYPE: Optional[Tensor] DEFAULT: None

down_intrablock_additional_residuals

additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)

TYPE: `tuple` of `ms.Tensor`, *optional* DEFAULT: None

encoder_attention_mask

A cross-attention mask of shape (batch, sequence_length) is applied to encoder_hidden_states. If True the mask is kept, otherwise if False it is discarded. Mask will be converted into a bias, which adds large negative values to the attention scores corresponding to "discard" tokens.

TYPE: `ms.Tensor` DEFAULT: None

return_dict

Whether or not to return a [~models.unets.unet_2d_condition.UNet2DConditionOutput] instead of a plain tuple.

TYPE: `bool`, *optional*, defaults to `False` DEFAULT: False

RETURNS DESCRIPTION
Union[UNet2DConditionOutput, Tuple]

[~models.unets.unet_2d_condition.UNet2DConditionOutput] or tuple: If return_dict is True, an [~models.unets.unet_2d_condition.UNet2DConditionOutput] is returned, otherwise a tuple is returned where the first element is the sample tensor.

Source code in mindone/diffusers/models/unets/unet_2d_condition.py
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
def construct(
    self,
    sample: ms.Tensor,
    timestep: Union[ms.Tensor, float, int],
    encoder_hidden_states: ms.Tensor,
    class_labels: Optional[ms.Tensor] = None,
    timestep_cond: Optional[ms.Tensor] = None,
    attention_mask: Optional[ms.Tensor] = None,
    cross_attention_kwargs: Optional[Dict[str, Any]] = None,
    added_cond_kwargs: Optional[Dict[str, ms.Tensor]] = None,
    down_block_additional_residuals: Optional[Tuple[ms.Tensor]] = None,
    mid_block_additional_residual: Optional[ms.Tensor] = None,
    down_intrablock_additional_residuals: Optional[Tuple[ms.Tensor]] = None,
    encoder_attention_mask: Optional[ms.Tensor] = None,
    return_dict: bool = False,
) -> Union[UNet2DConditionOutput, Tuple]:
    r"""
    The [`UNet2DConditionModel`] forward method.

    Args:
        sample (`ms.Tensor`):
            The noisy input tensor with the following shape `(batch, channel, height, width)`.
        timestep (`ms.Tensor` or `float` or `int`): The number of timesteps to denoise an input.
        encoder_hidden_states (`ms.Tensor`):
            The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
        class_labels (`ms.Tensor`, *optional*, defaults to `None`):
            Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
        timestep_cond: (`ms.Tensor`, *optional*, defaults to `None`):
            Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
            through the `self.time_embedding` layer to obtain the timestep embeddings.
        attention_mask (`ms.Tensor`, *optional*, defaults to `None`):
            An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
            is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
            negative values to the attention scores corresponding to "discard" tokens.
        cross_attention_kwargs (`dict`, *optional*):
            A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
            `self.processor` in
            [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
        added_cond_kwargs: (`dict`, *optional*):
            A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
            are passed along to the UNet blocks.
        down_block_additional_residuals: (`tuple` of `ms.Tensor`, *optional*):
            A tuple of tensors that if specified are added to the residuals of down unet blocks.
        mid_block_additional_residual: (`ms.Tensor`, *optional*):
            A tensor that if specified is added to the residual of the middle unet block.
        down_intrablock_additional_residuals (`tuple` of `ms.Tensor`, *optional*):
            additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
        encoder_attention_mask (`ms.Tensor`):
            A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
            `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
            which adds large negative values to the attention scores corresponding to "discard" tokens.
        return_dict (`bool`, *optional*, defaults to `False`):
            Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
            tuple.

    Returns:
        [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
            If `return_dict` is True, an [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] is returned,
            otherwise a `tuple` is returned where the first element is the sample tensor.
    """
    # By default samples have to be AT least a multiple of the overall upsampling factor.
    # The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
    # However, the upsampling interpolation output size can be forced to fit any upsampling size
    # on the fly if necessary.
    default_overall_up_factor = 2**self.num_upsamplers

    # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
    forward_upsample_size = False
    upsample_size = None

    for dim in sample.shape[-2:]:
        if dim % default_overall_up_factor != 0:
            # Forward upsample size to force interpolation output size.
            forward_upsample_size = True
            break

    # ensure attention_mask is a bias, and give it a singleton query_tokens dimension
    # expects mask of shape:
    #   [batch, key_tokens]
    # adds singleton query_tokens dimension:
    #   [batch,                    1, key_tokens]
    # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
    #   [batch,  heads, query_tokens, key_tokens] (e.g. torch sdp attn)
    #   [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
    if attention_mask is not None:
        # assume that mask is expressed as:
        #   (1 = keep,      0 = discard)
        # convert mask into a bias that can be added to attention scores:
        #       (keep = +0,     discard = -10000.0)
        attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
        attention_mask = attention_mask.unsqueeze(1)

    # convert encoder_attention_mask to a bias the same way we do for attention_mask
    if encoder_attention_mask is not None:
        encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
        encoder_attention_mask = encoder_attention_mask.unsqueeze(1)

    # 0. center input if necessary
    if self.center_input_sample:
        sample = 2 * sample - 1.0

    # 1. time
    t_emb = self.get_time_embed(sample=sample, timestep=timestep)
    emb = self.time_embedding(t_emb, timestep_cond)
    aug_emb = None

    class_emb = self.get_class_embed(sample=sample, class_labels=class_labels)
    if class_emb is not None:
        if self.class_embeddings_concat:
            emb = ops.cat([emb, class_emb], axis=-1)
        else:
            emb = emb + class_emb

    aug_emb = self.get_aug_embed(
        emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
    )
    if self.addition_embed_type == "image_hint":
        aug_emb, hint = aug_emb
        sample = ops.cat([sample, hint], axis=1)

    emb = emb + aug_emb if aug_emb is not None else emb

    if self.time_embed_act is not None:
        emb = self.time_embed_act(emb)

    encoder_hidden_states = self.process_encoder_hidden_states(
        encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
    )

    # 2. pre-process
    sample = self.conv_in(sample)

    # 2.5 GLIGEN position net
    if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
        # copy and pop cross_attention_kwargs manually, as dict.copy/pop is not supported in GRAPH MODE syntax
        copied_cross_attention_kwargs = {}
        for k, v in cross_attention_kwargs.items():
            if k == "gligen":
                copied_cross_attention_kwargs[k] = {"objs": self.position_net(**v)}
            else:
                copied_cross_attention_kwargs[k] = v
        cross_attention_kwargs = copied_cross_attention_kwargs

    # 3. down
    # we're popping the `scale` instead of getting it because otherwise `scale` will be propagated
    # to the internal blocks and will raise deprecation warnings. this will be confusing for our users.
    if cross_attention_kwargs is not None and "scale" in cross_attention_kwargs:
        # weight the lora layers by setting `lora_scale` for each PEFT layer here
        # and remove `lora_scale` from each PEFT layer at the end.
        # scale_lora_layers & unscale_lora_layers maybe contains some operation forbidden in graph mode
        raise RuntimeError(
            f"You are trying to set scaling of lora layer by passing {cross_attention_kwargs['scale']=}. "
            f"However it's not allowed in on-the-fly model forwarding. "
            f"Please manually call `scale_lora_layers(model, lora_scale)` before model forwarding and "
            f"`unscale_lora_layers(model, lora_scale)` after model forwarding. "
            f"For example, it can be done in a pipeline call like `StableDiffusionPipeline.__call__`."
        )

    is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
    # using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
    is_adapter = down_intrablock_additional_residuals is not None
    # using variable `adapter_index` to get item in `down_intrablock_additional_residuals` for avoiding
    # pop operations in construct(), which are not fully supported in GRAPH_MODE
    adapter_index = 0
    # maintain backward compatibility for legacy usage, where
    #       T2I-Adapter and ControlNet both use down_block_additional_residuals arg
    #       but can only use one or the other
    if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
        # deprecate(
        #     "T2I should not use down_block_additional_residuals",
        #     "1.3.0",
        #     "Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
        #            and will be removed in diffusers 1.3.0.  `down_block_additional_residuals` should only be used \
        #            for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
        #     standard_warn=False,
        # )
        down_intrablock_additional_residuals = down_block_additional_residuals
        is_adapter = True

    down_block_res_samples = (sample,)
    for downsample_block in self.down_blocks:
        if downsample_block.has_cross_attention:
            # For t2i-adapter CrossAttnDownBlock2D
            additional_residuals = {}
            if is_adapter and len(down_intrablock_additional_residuals) > adapter_index:
                additional_residuals["additional_residuals"] = down_intrablock_additional_residuals[adapter_index]
                adapter_index += 1

            sample, res_samples = downsample_block(
                hidden_states=sample,
                temb=emb,
                encoder_hidden_states=encoder_hidden_states,
                attention_mask=attention_mask,
                cross_attention_kwargs=cross_attention_kwargs,
                encoder_attention_mask=encoder_attention_mask,
                **additional_residuals,
            )
        else:
            sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
            if is_adapter and len(down_intrablock_additional_residuals) > adapter_index:
                # `sample` here is one of element in `res_samples`, in PyTorch they refer to the same object
                # which means changes on sample will take effect on the counterpart in res_samples. However it
                # doesn't work in MindSpore as they are different objects thus we need change both of them manually.
                sample += down_intrablock_additional_residuals[adapter_index]
                res_samples = list(res_samples)  # convert to list to support item assignment
                res_samples[-1] += down_intrablock_additional_residuals[adapter_index]
                res_samples = tuple(res_samples)  # convert back to tuple to concat
                adapter_index += 1

        down_block_res_samples += res_samples

    if is_controlnet:
        new_down_block_res_samples = ()

        for down_block_res_sample, down_block_additional_residual in zip(
            down_block_res_samples, down_block_additional_residuals
        ):
            down_block_res_sample = down_block_res_sample + down_block_additional_residual
            new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)

        down_block_res_samples = new_down_block_res_samples

    # 4. mid
    if self.mid_block is not None:
        if self.mid_block.has_cross_attention:
            sample = self.mid_block(
                sample,
                emb,
                encoder_hidden_states=encoder_hidden_states,
                attention_mask=attention_mask,
                cross_attention_kwargs=cross_attention_kwargs,
                encoder_attention_mask=encoder_attention_mask,
            )
        else:
            sample = self.mid_block(sample, emb)

        # To support T2I-Adapter-XL
        if (
            is_adapter
            and len(down_intrablock_additional_residuals) > adapter_index
            and sample.shape == down_intrablock_additional_residuals[adapter_index].shape
        ):
            sample += down_intrablock_additional_residuals[adapter_index]
            adapter_index += 1

    if is_controlnet:
        sample = sample + mid_block_additional_residual

    # 5. up
    for i, upsample_block in enumerate(self.up_blocks):
        is_final_block = i == len(self.up_blocks) - 1

        res_samples = down_block_res_samples[-self.layers_per_resnet_in_up_blocks[i] :]
        down_block_res_samples = down_block_res_samples[: -self.layers_per_resnet_in_up_blocks[i]]

        # if we have not reached the final block and need to forward the
        # upsample size, we do it here
        if not is_final_block and forward_upsample_size:
            upsample_size = down_block_res_samples[-1].shape[2:]

        if upsample_block.has_cross_attention:
            sample = upsample_block(
                hidden_states=sample,
                temb=emb,
                res_hidden_states_tuple=res_samples,
                encoder_hidden_states=encoder_hidden_states,
                cross_attention_kwargs=cross_attention_kwargs,
                upsample_size=upsample_size,
                attention_mask=attention_mask,
                encoder_attention_mask=encoder_attention_mask,
            )
        else:
            sample = upsample_block(
                hidden_states=sample,
                temb=emb,
                res_hidden_states_tuple=res_samples,
                upsample_size=upsample_size,
            )

    # 6. post-process
    if self.conv_norm_out:
        sample = self.conv_norm_out(sample)
        sample = self.conv_act(sample)
    sample = self.conv_out(sample)

    if not return_dict:
        return (sample,)

    return UNet2DConditionOutput(sample=sample)

mindone.diffusers.UNet2DConditionModel.set_attn_processor(processor)

Sets the attention processor to use to compute attention.

PARAMETER DESCRIPTION
processor

The instantiated processor class or a dictionary of processor classes that will be set as the processor for all Attention layers.

If processor is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors.

TYPE: `dict` of `AttentionProcessor` or only `AttentionProcessor`

Source code in mindone/diffusers/models/unets/unet_2d_condition.py
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
    r"""
    Sets the attention processor to use to compute attention.

    Parameters:
        processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
            The instantiated processor class or a dictionary of processor classes that will be set as the processor
            for **all** `Attention` layers.

            If `processor` is a dict, the key needs to define the path to the corresponding cross attention
            processor. This is strongly recommended when setting trainable attention processors.

    """
    count = len(self.attn_processors.keys())

    if isinstance(processor, dict) and len(processor) != count:
        raise ValueError(
            f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
            f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
        )

    def fn_recursive_attn_processor(name: str, module: nn.Cell, processor):
        if hasattr(module, "set_processor"):
            if not isinstance(processor, dict):
                module.set_processor(processor)
            else:
                module.set_processor(processor.pop(f"{name}.processor"))

        for sub_name, child in module.name_cells().items():
            fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

    for name, module in self.name_cells().items():
        fn_recursive_attn_processor(name, module, processor)

mindone.diffusers.UNet2DConditionModel.set_default_attn_processor()

Disables custom attention processors and sets the default attention implementation.

Source code in mindone/diffusers/models/unets/unet_2d_condition.py
771
772
773
774
775
776
777
778
779
780
781
782
783
784
def set_default_attn_processor(self):
    """
    Disables custom attention processors and sets the default attention implementation.
    """
    if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
        processor = AttnAddedKVProcessor()
    elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
        processor = AttnProcessor()
    else:
        raise ValueError(
            f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
        )

    self.set_attn_processor(processor)

mindone.diffusers.models.unets.unet_2d_condition.UNet2DConditionOutput dataclass

Bases: BaseOutput

The output of [UNet2DConditionModel].

PARAMETER DESCRIPTION
sample

The hidden states output conditioned on encoder_hidden_states input. Output of last layer of model.

TYPE: `ms.Tensor` of shape `(batch_size, num_channels, height, width)` DEFAULT: None

Source code in mindone/diffusers/models/unets/unet_2d_condition.py
51
52
53
54
55
56
57
58
59
60
61
@dataclass
class UNet2DConditionOutput(BaseOutput):
    """
    The output of [`UNet2DConditionModel`].

    Args:
        sample (`ms.Tensor` of shape `(batch_size, num_channels, height, width)`):
            The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
    """

    sample: ms.Tensor = None