Skip to content

Transformer2DModel

A Transformer model for image-like data from CompVis that is based on the Vision Transformer introduced by Dosovitskiy et al. The Transformer2DModel accepts discrete (classes of vector embeddings) or continuous (actual embeddings) inputs.

When the input is continuous:

  1. Project the input and reshape it to (batch_size, sequence_length, feature_dimension).
  2. Apply the Transformer blocks in the standard way.
  3. Reshape to image.

When the input is discrete:

Tip

It is assumed one of the input classes is the masked latent pixel. The predicted classes of the unnoised image don't contain a prediction for the masked pixel because the unnoised image cannot be masked.

  1. Convert input (classes of latent pixels) to embeddings and apply positional embeddings.
  2. Apply the Transformer blocks in the standard way.
  3. Predict classes of unnoised image.

mindone.diffusers.Transformer2DModel

Bases: LegacyModelMixin, LegacyConfigMixin

A 2D Transformer model for image-like data.

PARAMETER DESCRIPTION
num_attention_heads

The number of heads to use for multi-head attention.

TYPE: `int`, *optional*, defaults to 16 DEFAULT: 16

attention_head_dim

The number of channels in each head.

TYPE: `int`, *optional*, defaults to 88 DEFAULT: 88

in_channels

The number of channels in the input and output (specify if the input is continuous).

TYPE: `int`, *optional* DEFAULT: None

num_layers

The number of layers of Transformer blocks to use.

TYPE: `int`, *optional*, defaults to 1 DEFAULT: 1

dropout

The dropout probability to use.

TYPE: `float`, *optional*, defaults to 0.0 DEFAULT: 0.0

cross_attention_dim

The number of encoder_hidden_states dimensions to use.

TYPE: `int`, *optional* DEFAULT: None

sample_size

The width of the latent images (specify if the input is discrete). This is fixed during training since it is used to learn a number of position embeddings.

TYPE: `int`, *optional* DEFAULT: None

num_vector_embeds

The number of classes of the vector embeddings of the latent pixels (specify if the input is discrete). Includes the class for the masked latent pixel.

TYPE: `int`, *optional* DEFAULT: None

activation_fn

Activation function to use in feed-forward.

TYPE: `str`, *optional*, defaults to `"geglu"` DEFAULT: 'geglu'

num_embeds_ada_norm

The number of diffusion steps used during training. Pass if at least one of the norm_layers is AdaLayerNorm. This is fixed during training since it is used to learn a number of embeddings that are added to the hidden states.

During inference, you can denoise for up to but not more steps than num_embeds_ada_norm.

TYPE: `int`, *optional* DEFAULT: None

attention_bias

Configure if the TransformerBlocks attention should contain a bias parameter.

TYPE: `bool`, *optional* DEFAULT: False

Source code in mindone/diffusers/models/transformers/transformer_2d.py
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
class Transformer2DModel(LegacyModelMixin, LegacyConfigMixin):
    """
    A 2D Transformer model for image-like data.

    Parameters:
        num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
        attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
        in_channels (`int`, *optional*):
            The number of channels in the input and output (specify if the input is **continuous**).
        num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
        sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
            This is fixed during training since it is used to learn a number of position embeddings.
        num_vector_embeds (`int`, *optional*):
            The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
            Includes the class for the masked latent pixel.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
        num_embeds_ada_norm ( `int`, *optional*):
            The number of diffusion steps used during training. Pass if at least one of the norm_layers is
            `AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
            added to the hidden states.

            During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
        attention_bias (`bool`, *optional*):
            Configure if the `TransformerBlocks` attention should contain a bias parameter.
    """

    _supports_gradient_checkpointing = True
    _no_split_modules = ["BasicTransformerBlock"]

    @register_to_config
    def __init__(
        self,
        num_attention_heads: int = 16,
        attention_head_dim: int = 88,
        in_channels: Optional[int] = None,
        out_channels: Optional[int] = None,
        num_layers: int = 1,
        dropout: float = 0.0,
        norm_num_groups: int = 32,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        sample_size: Optional[int] = None,
        num_vector_embeds: Optional[int] = None,
        patch_size: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        use_linear_projection: bool = False,
        only_cross_attention: bool = False,
        double_self_attention: bool = False,
        upcast_attention: bool = False,
        norm_type: str = "layer_norm",  # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single', 'ada_norm_continuous', 'layer_norm_i2vgen'
        norm_elementwise_affine: bool = True,
        norm_eps: float = 1e-5,
        attention_type: str = "default",
        caption_channels: int = None,
        interpolation_scale: float = None,
        use_additional_conditions: Optional[bool] = None,
    ):
        super().__init__()

        # Validate inputs.
        if patch_size is not None:
            if norm_type not in ["ada_norm", "ada_norm_zero", "ada_norm_single"]:
                raise NotImplementedError(
                    f"Forward pass is not implemented when `patch_size` is not None and `norm_type` is '{norm_type}'."
                )
            elif norm_type in ["ada_norm", "ada_norm_zero"] and num_embeds_ada_norm is None:
                raise ValueError(
                    f"When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None."
                )

        # 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`  # noqa: E501
        # Define whether input is continuous or discrete depending on configuration
        self.is_input_continuous = (in_channels is not None) and (patch_size is None)
        self.is_input_vectorized = num_vector_embeds is not None
        self.is_input_patches = in_channels is not None and patch_size is not None

        if self.is_input_continuous and self.is_input_vectorized:
            raise ValueError(
                f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
                " sure that either `in_channels` or `num_vector_embeds` is None."
            )
        elif self.is_input_vectorized and self.is_input_patches:
            raise ValueError(
                f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
                " sure that either `num_vector_embeds` or `num_patches` is None."
            )
        elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches:
            raise ValueError(
                f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
                f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
            )

        if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
            deprecation_message = (
                f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
                " incorrectly set to `'layer_norm'`. Make sure to set `norm_type` to `'ada_norm'` in the config."
                " Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
                " results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
                " would be very nice if you could open a Pull request for the `transformer/config.json` file"
            )
            deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
            norm_type = "ada_norm"

        # Set some common variables used across the board.
        self.use_linear_projection = use_linear_projection
        self.interpolation_scale = interpolation_scale
        self.caption_channels = caption_channels
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim
        self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
        self.in_channels = in_channels
        self.out_channels = in_channels if out_channels is None else out_channels

        if use_additional_conditions is None:
            if norm_type == "ada_norm_single" and sample_size == 128:
                use_additional_conditions = True
            else:
                use_additional_conditions = False
        self.use_additional_conditions = use_additional_conditions

        # 2. Initialize the right blocks.
        # These functions follow a common structure:
        # a. Initialize the input blocks. b. Initialize the transformer blocks.
        # c. Initialize the output blocks and other projection blocks when necessary.
        if self.is_input_continuous:
            self._init_continuous_input(norm_type=norm_type)
        elif self.is_input_vectorized:
            self._init_vectorized_inputs(norm_type=norm_type)
        elif self.is_input_patches:
            self._init_patched_inputs(norm_type=norm_type)

        # Move here to call `gradient_checkpointing.setter` after self.transformer_blocks initiated
        self._gradient_checkpointing = False

    def _init_continuous_input(self, norm_type):
        self.norm = GroupNorm(
            num_groups=self.config.norm_num_groups, num_channels=self.in_channels, eps=1e-6, affine=True
        )
        if self.use_linear_projection:
            self.proj_in = nn.Dense(self.in_channels, self.inner_dim)
        else:
            self.proj_in = nn.Conv2d(
                self.in_channels, self.inner_dim, kernel_size=1, stride=1, pad_mode="pad", padding=0, has_bias=True
            )

        self.transformer_blocks = nn.CellList(
            [
                BasicTransformerBlock(
                    self.inner_dim,
                    self.config.num_attention_heads,
                    self.config.attention_head_dim,
                    dropout=self.config.dropout,
                    cross_attention_dim=self.config.cross_attention_dim,
                    activation_fn=self.config.activation_fn,
                    num_embeds_ada_norm=self.config.num_embeds_ada_norm,
                    attention_bias=self.config.attention_bias,
                    only_cross_attention=self.config.only_cross_attention,
                    double_self_attention=self.config.double_self_attention,
                    upcast_attention=self.config.upcast_attention,
                    norm_type=norm_type,
                    norm_elementwise_affine=self.config.norm_elementwise_affine,
                    norm_eps=self.config.norm_eps,
                    attention_type=self.config.attention_type,
                )
                for _ in range(self.config.num_layers)
            ]
        )

        if self.use_linear_projection:
            self.proj_out = nn.Dense(self.inner_dim, self.out_channels)
        else:
            self.proj_out = nn.Conv2d(
                self.inner_dim, self.out_channels, kernel_size=1, stride=1, pad_mode="pad", padding=0, has_bias=True
            )

    def _init_vectorized_inputs(self, norm_type):
        assert self.config.sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
        assert (
            self.config.num_vector_embeds is not None
        ), "Transformer2DModel over discrete input must provide num_embed"

        self.height = self.config.sample_size
        self.width = self.config.sample_size
        self.num_latent_pixels = self.height * self.width

        self.latent_image_embedding = ImagePositionalEmbeddings(
            num_embed=self.config.num_vector_embeds, embed_dim=self.inner_dim, height=self.height, width=self.width
        )

        self.transformer_blocks = nn.CellList(
            [
                BasicTransformerBlock(
                    self.inner_dim,
                    self.config.num_attention_heads,
                    self.config.attention_head_dim,
                    dropout=self.config.dropout,
                    cross_attention_dim=self.config.cross_attention_dim,
                    activation_fn=self.config.activation_fn,
                    num_embeds_ada_norm=self.config.num_embeds_ada_norm,
                    attention_bias=self.config.attention_bias,
                    only_cross_attention=self.config.only_cross_attention,
                    double_self_attention=self.config.double_self_attention,
                    upcast_attention=self.config.upcast_attention,
                    norm_type=norm_type,
                    norm_elementwise_affine=self.config.norm_elementwise_affine,
                    norm_eps=self.config.norm_eps,
                    attention_type=self.config.attention_type,
                )
                for _ in range(self.config.num_layers)
            ]
        )

        self.norm_out = LayerNorm(self.inner_dim)
        self.out = nn.Dense(self.inner_dim, self.config.num_vector_embeds - 1)

    def _init_patched_inputs(self, norm_type):
        assert self.config.sample_size is not None, "Transformer2DModel over patched input must provide sample_size"

        self.height = self.config.sample_size
        self.width = self.config.sample_size

        self.patch_size = self.config.patch_size
        interpolation_scale = (
            self.config.interpolation_scale
            if self.config.interpolation_scale is not None
            else max(self.config.sample_size // 64, 1)
        )
        self.pos_embed = PatchEmbed(
            height=self.config.sample_size,
            width=self.config.sample_size,
            patch_size=self.config.patch_size,
            in_channels=self.in_channels,
            embed_dim=self.inner_dim,
            interpolation_scale=interpolation_scale,
        )

        self.transformer_blocks = nn.CellList(
            [
                BasicTransformerBlock(
                    self.inner_dim,
                    self.config.num_attention_heads,
                    self.config.attention_head_dim,
                    dropout=self.config.dropout,
                    cross_attention_dim=self.config.cross_attention_dim,
                    activation_fn=self.config.activation_fn,
                    num_embeds_ada_norm=self.config.num_embeds_ada_norm,
                    attention_bias=self.config.attention_bias,
                    only_cross_attention=self.config.only_cross_attention,
                    double_self_attention=self.config.double_self_attention,
                    upcast_attention=self.config.upcast_attention,
                    norm_type=norm_type,
                    norm_elementwise_affine=self.config.norm_elementwise_affine,
                    norm_eps=self.config.norm_eps,
                    attention_type=self.config.attention_type,
                )
                for _ in range(self.config.num_layers)
            ]
        )

        if self.config.norm_type != "ada_norm_single":
            self.norm_out = LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
            self.proj_out_1 = nn.Dense(self.inner_dim, 2 * self.inner_dim)
            self.proj_out_2 = nn.Dense(
                self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels
            )
        elif self.config.norm_type == "ada_norm_single":
            self.norm_out = LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
            self.scale_shift_table = ms.Parameter(
                ops.randn(2, self.inner_dim) / self.inner_dim**0.5, name="scale_shift_table"
            )
            self.proj_out = nn.Dense(
                self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels
            )

        # PixArt-Alpha blocks.
        self.adaln_single = None
        if self.config.norm_type == "ada_norm_single":
            # TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use
            # additional conditions until we find better name
            self.adaln_single = AdaLayerNormSingle(
                self.inner_dim, use_additional_conditions=self.use_additional_conditions
            )

        self.caption_projection = None
        if self.caption_channels is not None:
            self.caption_projection = PixArtAlphaTextProjection(
                in_features=self.caption_channels, hidden_size=self.inner_dim
            )

    def _set_gradient_checkpointing(self, module, value=False):
        if hasattr(module, "gradient_checkpointing"):
            module.gradient_checkpointing = value

    @property
    def gradient_checkpointing(self):
        return self._gradient_checkpointing

    @gradient_checkpointing.setter
    def gradient_checkpointing(self, value):
        self._gradient_checkpointing = value
        for block in self.transformer_blocks:
            block._recompute(value)

    def construct(
        self,
        hidden_states: ms.Tensor,
        encoder_hidden_states: Optional[ms.Tensor] = None,
        timestep: Optional[ms.Tensor] = None,
        added_cond_kwargs: Dict[str, ms.Tensor] = None,
        class_labels: Optional[ms.Tensor] = None,
        cross_attention_kwargs: Dict[str, Any] = None,
        attention_mask: Optional[ms.Tensor] = None,
        encoder_attention_mask: Optional[ms.Tensor] = None,
        return_dict: bool = False,
    ):
        """
        The [`Transformer2DModel`] forward method.

        Args:
            hidden_states (`ms.Tensor` of shape `(batch size, num latent pixels)` if discrete, `ms.Tensor` of shape `(batch size, channel, height, width)` if continuous):  # noqa: E501
                Input `hidden_states`.
            encoder_hidden_states ( `ms.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
                Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
                self-attention.
            timestep ( `ms.Tensor`, *optional*):
                Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
            class_labels ( `ms.Tensor` of shape `(batch size, num classes)`, *optional*):
                Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
                `AdaLayerZeroNorm`.
            cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            attention_mask ( `ms.Tensor`, *optional*):
                An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
                is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
                negative values to the attention scores corresponding to "discard" tokens.
            encoder_attention_mask ( `ms.Tensor`, *optional*):
                Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:

                    * Mask `(batch, sequence_length)` True = keep, False = discard.
                    * Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.

                If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
                above. This bias will be added to the cross-attention scores.
            return_dict (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
                tuple.

        Returns:
            If `return_dict` is True, an [`~models.transformers.transformer_2d.Transformer2DModelOutput`] is returned,
            otherwise a `tuple` where the first element is the sample tensor.
        """
        # ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
        #   we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
        #   we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
        # expects mask of shape:
        #   [batch, key_tokens]
        # adds singleton query_tokens dimension:
        #   [batch,                    1, key_tokens]
        # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
        #   [batch,  heads, query_tokens, key_tokens] (e.g. torch sdp attn)
        #   [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
        if attention_mask is not None and attention_mask.ndim == 2:
            # assume that mask is expressed as:
            #   (1 = keep,      0 = discard)
            # convert mask into a bias that can be added to attention scores:
            #       (keep = +0,     discard = -10000.0)
            attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

        # convert encoder_attention_mask to a bias the same way we do for attention_mask
        if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
            encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
            encoder_attention_mask = encoder_attention_mask.unsqueeze(1)

        # 1. Input
        # define variables outside to fool ai compiler
        embedded_timestep, batch_size, inner_dim, height, width, residual = (None,) * 6

        if self.is_input_continuous:
            batch_size, _, height, width = hidden_states.shape
            residual = hidden_states
            hidden_states, inner_dim = self._operate_on_continuous_inputs(hidden_states)
        elif self.is_input_vectorized:
            hidden_states = self.latent_image_embedding(hidden_states)
        elif self.is_input_patches:
            height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size
            hidden_states, encoder_hidden_states, timestep, embedded_timestep = self._operate_on_patched_inputs(
                hidden_states, encoder_hidden_states, timestep, added_cond_kwargs
            )

        # 2. Blocks
        for block in self.transformer_blocks:
            hidden_states = block(
                hidden_states,
                attention_mask=attention_mask,
                encoder_hidden_states=encoder_hidden_states,
                encoder_attention_mask=encoder_attention_mask,
                timestep=timestep,
                cross_attention_kwargs=cross_attention_kwargs,
                class_labels=class_labels,
            )

        # 3. Output
        output = None
        if self.is_input_continuous:
            output = self._get_output_for_continuous_inputs(
                hidden_states=hidden_states,
                residual=residual,
                batch_size=batch_size,
                height=height,
                width=width,
                inner_dim=inner_dim,
            )
        elif self.is_input_vectorized:
            output = self._get_output_for_vectorized_inputs(hidden_states)
        elif self.is_input_patches:
            output = self._get_output_for_patched_inputs(
                hidden_states=hidden_states,
                timestep=timestep,
                class_labels=class_labels,
                embedded_timestep=embedded_timestep,
                height=height,
                width=width,
            )

        if not return_dict:
            return (output,)

        return Transformer2DModelOutput(sample=output)

    def _operate_on_continuous_inputs(self, hidden_states):
        batch, _, height, width = hidden_states.shape
        hidden_states = self.norm(hidden_states)

        if not self.use_linear_projection:
            hidden_states = self.proj_in(hidden_states)
            inner_dim = hidden_states.shape[1]
            hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
        else:
            inner_dim = hidden_states.shape[1]
            hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
            hidden_states = self.proj_in(hidden_states)

        return hidden_states, inner_dim

    def _operate_on_patched_inputs(self, hidden_states, encoder_hidden_states, timestep, added_cond_kwargs):
        batch_size = hidden_states.shape[0]
        hidden_states = self.pos_embed(hidden_states)
        embedded_timestep = None

        if self.adaln_single is not None:
            if self.use_additional_conditions and added_cond_kwargs is None:
                raise ValueError(
                    "`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`."
                )
            timestep, embedded_timestep = self.adaln_single(
                timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
            )

        if self.caption_projection is not None:
            encoder_hidden_states = self.caption_projection(encoder_hidden_states)
            encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])

        return hidden_states, encoder_hidden_states, timestep, embedded_timestep

    def _get_output_for_continuous_inputs(self, hidden_states, residual, batch_size, height, width, inner_dim):
        if not self.use_linear_projection:
            hidden_states = hidden_states.reshape(batch_size, height, width, inner_dim).permute(0, 3, 1, 2)
            hidden_states = self.proj_out(hidden_states)
        else:
            hidden_states = self.proj_out(hidden_states)
            hidden_states = hidden_states.reshape(batch_size, height, width, inner_dim).permute(0, 3, 1, 2)

        output = hidden_states + residual
        return output

    def _get_output_for_vectorized_inputs(self, hidden_states):
        hidden_states = self.norm_out(hidden_states)
        logits = self.out(hidden_states)
        # (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
        logits = logits.permute(0, 2, 1)
        # log(p(x_0))
        output = ops.log_softmax(logits.float(), axis=1).to(hidden_states.dtype)
        return output

    def _get_output_for_patched_inputs(
        self, hidden_states, timestep, class_labels, embedded_timestep, height=None, width=None
    ):
        if self.config.norm_type != "ada_norm_single":
            conditioning = self.transformer_blocks[0].norm1.emb(
                timestep, class_labels, hidden_dtype=hidden_states.dtype
            )
            shift, scale = self.proj_out_1(ops.silu(conditioning)).chunk(2, axis=1)
            hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
            hidden_states = self.proj_out_2(hidden_states)
        elif self.config.norm_type == "ada_norm_single":
            shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, axis=1)
            hidden_states = self.norm_out(hidden_states)
            # Modulation
            hidden_states = hidden_states * (1 + scale) + shift
            hidden_states = self.proj_out(hidden_states)
            if hidden_states.shape[1] == 1:
                hidden_states = hidden_states.squeeze(1)

        # unpatchify
        if self.adaln_single is None:
            height = width = int(hidden_states.shape[1] ** 0.5)
        hidden_states = hidden_states.reshape(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
        # hidden_states = ops.einsum("nhwpqc->nchpwq", hidden_states)
        hidden_states = hidden_states.transpose(0, 5, 1, 3, 2, 4)
        output = hidden_states.reshape(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
        return output

mindone.diffusers.Transformer2DModel.construct(hidden_states, encoder_hidden_states=None, timestep=None, added_cond_kwargs=None, class_labels=None, cross_attention_kwargs=None, attention_mask=None, encoder_attention_mask=None, return_dict=False)

The [Transformer2DModel] forward method.

PARAMETER DESCRIPTION
hidden_states

noqa: E501

Input hidden_states.

TYPE: `ms.Tensor` of shape `(batch size, num latent pixels)` if discrete, `ms.Tensor` of shape `(batch size, channel, height, width)` if continuous

encoder_hidden_states

Conditional embeddings for cross attention layer. If not given, cross-attention defaults to self-attention.

TYPE: `ms.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional* DEFAULT: None

timestep

Used to indicate denoising step. Optional timestep to be applied as an embedding in AdaLayerNorm.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

class_labels

Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in AdaLayerZeroNorm.

TYPE: `ms.Tensor` of shape `(batch size, num classes)`, *optional* DEFAULT: None

cross_attention_kwargs

A kwargs dictionary that if specified is passed along to the AttentionProcessor as defined under self.processor in diffusers.models.attention_processor.

TYPE: `Dict[str, Any]`, *optional* DEFAULT: None

attention_mask

An attention mask of shape (batch, key_tokens) is applied to encoder_hidden_states. If 1 the mask is kept, otherwise if 0 it is discarded. Mask will be converted into a bias, which adds large negative values to the attention scores corresponding to "discard" tokens.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

encoder_attention_mask

Cross-attention mask applied to encoder_hidden_states. Two formats supported:

* Mask `(batch, sequence_length)` True = keep, False = discard.
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.

If ndim == 2: will be interpreted as a mask, then converted into a bias consistent with the format above. This bias will be added to the cross-attention scores.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

return_dict

Whether or not to return a [~models.unets.unet_2d_condition.UNet2DConditionOutput] instead of a plain tuple.

TYPE: `bool`, *optional*, defaults to `False` DEFAULT: False

RETURNS DESCRIPTION

If return_dict is True, an [~models.transformers.transformer_2d.Transformer2DModelOutput] is returned,

otherwise a tuple where the first element is the sample tensor.

Source code in mindone/diffusers/models/transformers/transformer_2d.py
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
def construct(
    self,
    hidden_states: ms.Tensor,
    encoder_hidden_states: Optional[ms.Tensor] = None,
    timestep: Optional[ms.Tensor] = None,
    added_cond_kwargs: Dict[str, ms.Tensor] = None,
    class_labels: Optional[ms.Tensor] = None,
    cross_attention_kwargs: Dict[str, Any] = None,
    attention_mask: Optional[ms.Tensor] = None,
    encoder_attention_mask: Optional[ms.Tensor] = None,
    return_dict: bool = False,
):
    """
    The [`Transformer2DModel`] forward method.

    Args:
        hidden_states (`ms.Tensor` of shape `(batch size, num latent pixels)` if discrete, `ms.Tensor` of shape `(batch size, channel, height, width)` if continuous):  # noqa: E501
            Input `hidden_states`.
        encoder_hidden_states ( `ms.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
            Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
            self-attention.
        timestep ( `ms.Tensor`, *optional*):
            Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
        class_labels ( `ms.Tensor` of shape `(batch size, num classes)`, *optional*):
            Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
            `AdaLayerZeroNorm`.
        cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
            A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
            `self.processor` in
            [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
        attention_mask ( `ms.Tensor`, *optional*):
            An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
            is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
            negative values to the attention scores corresponding to "discard" tokens.
        encoder_attention_mask ( `ms.Tensor`, *optional*):
            Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:

                * Mask `(batch, sequence_length)` True = keep, False = discard.
                * Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.

            If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
            above. This bias will be added to the cross-attention scores.
        return_dict (`bool`, *optional*, defaults to `False`):
            Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
            tuple.

    Returns:
        If `return_dict` is True, an [`~models.transformers.transformer_2d.Transformer2DModelOutput`] is returned,
        otherwise a `tuple` where the first element is the sample tensor.
    """
    # ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
    #   we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
    #   we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
    # expects mask of shape:
    #   [batch, key_tokens]
    # adds singleton query_tokens dimension:
    #   [batch,                    1, key_tokens]
    # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
    #   [batch,  heads, query_tokens, key_tokens] (e.g. torch sdp attn)
    #   [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
    if attention_mask is not None and attention_mask.ndim == 2:
        # assume that mask is expressed as:
        #   (1 = keep,      0 = discard)
        # convert mask into a bias that can be added to attention scores:
        #       (keep = +0,     discard = -10000.0)
        attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
        attention_mask = attention_mask.unsqueeze(1)

    # convert encoder_attention_mask to a bias the same way we do for attention_mask
    if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
        encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
        encoder_attention_mask = encoder_attention_mask.unsqueeze(1)

    # 1. Input
    # define variables outside to fool ai compiler
    embedded_timestep, batch_size, inner_dim, height, width, residual = (None,) * 6

    if self.is_input_continuous:
        batch_size, _, height, width = hidden_states.shape
        residual = hidden_states
        hidden_states, inner_dim = self._operate_on_continuous_inputs(hidden_states)
    elif self.is_input_vectorized:
        hidden_states = self.latent_image_embedding(hidden_states)
    elif self.is_input_patches:
        height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size
        hidden_states, encoder_hidden_states, timestep, embedded_timestep = self._operate_on_patched_inputs(
            hidden_states, encoder_hidden_states, timestep, added_cond_kwargs
        )

    # 2. Blocks
    for block in self.transformer_blocks:
        hidden_states = block(
            hidden_states,
            attention_mask=attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            timestep=timestep,
            cross_attention_kwargs=cross_attention_kwargs,
            class_labels=class_labels,
        )

    # 3. Output
    output = None
    if self.is_input_continuous:
        output = self._get_output_for_continuous_inputs(
            hidden_states=hidden_states,
            residual=residual,
            batch_size=batch_size,
            height=height,
            width=width,
            inner_dim=inner_dim,
        )
    elif self.is_input_vectorized:
        output = self._get_output_for_vectorized_inputs(hidden_states)
    elif self.is_input_patches:
        output = self._get_output_for_patched_inputs(
            hidden_states=hidden_states,
            timestep=timestep,
            class_labels=class_labels,
            embedded_timestep=embedded_timestep,
            height=height,
            width=width,
        )

    if not return_dict:
        return (output,)

    return Transformer2DModelOutput(sample=output)

mindone.diffusers.models.transformers.transformer_2d.Transformer2DModelOutput

Bases: Transformer2DModelOutput

Source code in mindone/diffusers/models/transformers/transformer_2d.py
30
31
32
33
34
class Transformer2DModelOutput(Transformer2DModelOutput):
    def __init__(self, *args, **kwargs):
        deprecation_message = "Importing `Transformer2DModelOutput` from `diffusers.models.transformer_2d` is deprecated and this will be removed in a future version. Please use `from mindone.diffusers.models.modeling_outputs import Transformer2DModelOutput`, instead."  # noqa: E501
        deprecate("Transformer2DModelOutput", "1.0.0", deprecation_message)
        super().__init__(*args, **kwargs)