Skip to content

LTXVideoTransformer3DModel

A Diffusion Transformer model for 3D data from LTX was introduced by Lightricks.

The model can be loaded with the following code snippet.

from mindone.diffusers import LTXVideoTransformer3DModel
import mindspore as ms

transformer = LTXVideoTransformer3DModel.from_pretrained("Lightricks/LTX-Video", subfolder="transformer", mindspore_dtype=ms.bfloat16)

mindone.diffusers.LTXVideoTransformer3DModel

Bases: ModelMixin, ConfigMixin, FromOriginalModelMixin, PeftAdapterMixin

A Transformer model for video-like data used in LTX.

PARAMETER DESCRIPTION
in_channels

The number of channels in the input.

TYPE: `int`, defaults to `128` DEFAULT: 128

out_channels

The number of channels in the output.

TYPE: `int`, defaults to `128` DEFAULT: 128

patch_size

The size of the spatial patches to use in the patch embedding layer.

TYPE: `int`, defaults to `1` DEFAULT: 1

patch_size_t

The size of the tmeporal patches to use in the patch embedding layer.

TYPE: `int`, defaults to `1` DEFAULT: 1

num_attention_heads

The number of heads to use for multi-head attention.

TYPE: `int`, defaults to `32` DEFAULT: 32

attention_head_dim

The number of channels in each head.

TYPE: `int`, defaults to `64` DEFAULT: 64

cross_attention_dim

The number of channels for cross attention heads.

TYPE: `int`, defaults to `2048 ` DEFAULT: 2048

num_layers

The number of layers of Transformer blocks to use.

TYPE: `int`, defaults to `28` DEFAULT: 28

activation_fn

Activation function to use in feed-forward.

TYPE: `str`, defaults to `"gelu-approximate"` DEFAULT: 'gelu-approximate'

qk_norm

The normalization layer to use.

TYPE: `str`, defaults to `"rms_norm_across_heads"` DEFAULT: 'rms_norm_across_heads'

Source code in mindone/diffusers/models/transformers/transformer_ltx.py
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
class LTXVideoTransformer3DModel(ModelMixin, ConfigMixin, FromOriginalModelMixin, PeftAdapterMixin):
    r"""
    A Transformer model for video-like data used in [LTX](https://huggingface.co/Lightricks/LTX-Video).

    Args:
        in_channels (`int`, defaults to `128`):
            The number of channels in the input.
        out_channels (`int`, defaults to `128`):
            The number of channels in the output.
        patch_size (`int`, defaults to `1`):
            The size of the spatial patches to use in the patch embedding layer.
        patch_size_t (`int`, defaults to `1`):
            The size of the tmeporal patches to use in the patch embedding layer.
        num_attention_heads (`int`, defaults to `32`):
            The number of heads to use for multi-head attention.
        attention_head_dim (`int`, defaults to `64`):
            The number of channels in each head.
        cross_attention_dim (`int`, defaults to `2048 `):
            The number of channels for cross attention heads.
        num_layers (`int`, defaults to `28`):
            The number of layers of Transformer blocks to use.
        activation_fn (`str`, defaults to `"gelu-approximate"`):
            Activation function to use in feed-forward.
        qk_norm (`str`, defaults to `"rms_norm_across_heads"`):
            The normalization layer to use.
    """

    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(
        self,
        in_channels: int = 128,
        out_channels: int = 128,
        patch_size: int = 1,
        patch_size_t: int = 1,
        num_attention_heads: int = 32,
        attention_head_dim: int = 64,
        cross_attention_dim: int = 2048,
        num_layers: int = 28,
        activation_fn: str = "gelu-approximate",
        qk_norm: str = "rms_norm_across_heads",
        norm_elementwise_affine: bool = False,
        norm_eps: float = 1e-6,
        caption_channels: int = 4096,
        attention_bias: bool = True,
        attention_out_bias: bool = True,
    ) -> None:
        super().__init__()

        out_channels = out_channels or in_channels
        inner_dim = num_attention_heads * attention_head_dim

        self.proj_in = nn.Dense(in_channels, inner_dim)

        self.scale_shift_table = ms.Parameter(ops.randn(2, inner_dim) / inner_dim**0.5, name="scale_shift_table")
        self.time_embed = AdaLayerNormSingle(inner_dim, use_additional_conditions=False)

        self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim)

        self.rope = LTXVideoRotaryPosEmbed(
            dim=inner_dim,
            base_num_frames=20,
            base_height=2048,
            base_width=2048,
            patch_size=patch_size,
            patch_size_t=patch_size_t,
            theta=10000.0,
        )

        self.transformer_blocks = nn.CellList(
            [
                LTXVideoTransformerBlock(
                    dim=inner_dim,
                    num_attention_heads=num_attention_heads,
                    attention_head_dim=attention_head_dim,
                    cross_attention_dim=cross_attention_dim,
                    qk_norm=qk_norm,
                    activation_fn=activation_fn,
                    attention_bias=attention_bias,
                    attention_out_bias=attention_out_bias,
                    eps=norm_eps,
                    elementwise_affine=norm_elementwise_affine,
                )
                for _ in range(num_layers)
            ]
        )

        self.norm_out = LayerNorm(inner_dim, eps=1e-6)
        self.proj_out = nn.Dense(inner_dim, out_channels)

        self.gradient_checkpointing = False

    def _set_gradient_checkpointing(self, module, value=False):
        if hasattr(module, "gradient_checkpointing"):
            module.gradient_checkpointing = value

    def construct(
        self,
        hidden_states: ms.Tensor,
        encoder_hidden_states: ms.Tensor,
        timestep: ms.Tensor,
        encoder_attention_mask: ms.Tensor,
        num_frames: int,
        height: int,
        width: int,
        rope_interpolation_scale: Optional[Tuple[float, float, float]] = None,
        attention_kwargs: Optional[Dict[str, Any]] = None,
        return_dict: bool = False,
    ) -> ms.Tensor:
        if attention_kwargs is not None:
            attention_kwargs = attention_kwargs.copy()

        image_rotary_emb = self.rope(hidden_states, num_frames, height, width, rope_interpolation_scale)

        # convert encoder_attention_mask to a bias the same way we do for attention_mask
        if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
            encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
            encoder_attention_mask = encoder_attention_mask.unsqueeze(1)

        batch_size = hidden_states.shape[0]
        hidden_states = self.proj_in(hidden_states)

        temb, embedded_timestep = self.time_embed(
            timestep.flatten(),
            batch_size=batch_size,
            hidden_dtype=hidden_states.dtype,
        )

        temb = temb.view(batch_size, -1, temb.shape[-1])
        embedded_timestep = embedded_timestep.view(batch_size, -1, embedded_timestep.shape[-1])

        encoder_hidden_states = self.caption_projection(encoder_hidden_states)
        encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])

        for block in self.transformer_blocks:
            hidden_states = block(
                hidden_states=hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                temb=temb,
                image_rotary_emb=image_rotary_emb,
                encoder_attention_mask=encoder_attention_mask,
            )

        scale_shift_values = self.scale_shift_table[None, None] + embedded_timestep[:, :, None]
        shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1]

        hidden_states = self.norm_out(hidden_states)
        hidden_states = hidden_states * (1 + scale) + shift
        output = self.proj_out(hidden_states)

        if not return_dict:
            return (output,)
        return Transformer2DModelOutput(sample=output)

mindone.diffusers.models.modeling_outputs.Transformer2DModelOutput dataclass

Bases: BaseOutput

The output of [Transformer2DModel].

PARAMETER DESCRIPTION
`(batch

The hidden states output conditioned on the encoder_hidden_states input. If discrete, returns probability distributions for the unnoised latent pixels.

TYPE: size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete

Source code in mindone/diffusers/models/modeling_outputs.py
22
23
24
25
26
27
28
29
30
31
32
33
34
@dataclass
class Transformer2DModelOutput(BaseOutput):
    """
    The output of [`Transformer2DModel`].

    Args:
        sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` or
        `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
            The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
            distributions for the unnoised latent pixels.
    """

    sample: "ms.Tensor"  # noqa: F821