Consistency Decoder¶
Consistency decoder can be used to decode the latents from the denoising UNet in the StableDiffusionPipeline
. This decoder was introduced in the DALL-E 3 technical report.
The original codebase can be found at openai/consistencydecoder.
Warning
Inference is only supported for 2 iterations as of now.
The pipeline could not have been contributed without the help of madebyollin and mrsteyk from this issue.
mindone.diffusers.ConsistencyDecoderVAE
¶
Bases: ModelMixin
, ConfigMixin
The consistency decoder used with DALL-E 3.
Examples:
>>> import mindspore
>>> from mindone.diffusers import StableDiffusionPipeline, ConsistencyDecoderVAE
>>> vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", mindspore_dtype=mindspore.float16)
>>> pipe = StableDiffusionPipeline.from_pretrained(
... "runwayml/stable-diffusion-v1-5", vae=vae, mindspore_dtype=mindspore.float16
... )
>>> image = pipe("horse")[0][0]
>>> image
Source code in mindone/diffusers/models/autoencoders/consistency_decoder_vae.py
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
|
mindone.diffusers.ConsistencyDecoderVAE.attn_processors: Dict[str, AttentionProcessor]
property
¶
RETURNS | DESCRIPTION |
---|---|
Dict[str, AttentionProcessor]
|
|
Dict[str, AttentionProcessor]
|
indexed by its weight name. |
mindone.diffusers.ConsistencyDecoderVAE.construct(sample, sample_posterior=False, return_dict=False, generator=None)
¶
PARAMETER | DESCRIPTION |
---|---|
sample |
Input sample.
TYPE:
|
sample_posterior |
Whether to sample from the posterior.
TYPE:
|
return_dict |
Whether or not to return a [
TYPE:
|
generator |
Generator to use for sampling.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[DecoderOutput, Tuple[Tensor]]
|
[ |
Source code in mindone/diffusers/models/autoencoders/consistency_decoder_vae.py
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
|
mindone.diffusers.ConsistencyDecoderVAE.decode(z, generator=None, return_dict=False, num_inference_steps=2)
¶
Decodes the input latent vector z
using the consistency decoder VAE model.
PARAMETER | DESCRIPTION |
---|---|
z |
The input latent vector.
TYPE:
|
generator |
The random number generator. Default is None.
TYPE:
|
return_dict |
Whether to return the output as a dictionary. Default is True.
TYPE:
|
num_inference_steps |
The number of inference steps. Default is 2.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[DecoderOutput, Tuple[Tensor]]
|
Union[DecoderOutput, Tuple[ms.Tensor]]: The decoded output. |
Source code in mindone/diffusers/models/autoencoders/consistency_decoder_vae.py
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
|
mindone.diffusers.ConsistencyDecoderVAE.disable_slicing()
¶
Disable sliced VAE decoding. If enable_slicing
was previously enabled, this method will go back to computing
decoding in one step.
Source code in mindone/diffusers/models/autoencoders/consistency_decoder_vae.py
183 184 185 186 187 188 |
|
mindone.diffusers.ConsistencyDecoderVAE.disable_tiling()
¶
Disable tiled VAE decoding. If enable_tiling
was previously enabled, this method will go back to computing
decoding in one step.
Source code in mindone/diffusers/models/autoencoders/consistency_decoder_vae.py
167 168 169 170 171 172 |
|
mindone.diffusers.ConsistencyDecoderVAE.enable_slicing()
¶
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
Source code in mindone/diffusers/models/autoencoders/consistency_decoder_vae.py
175 176 177 178 179 180 |
|
mindone.diffusers.ConsistencyDecoderVAE.enable_tiling(use_tiling=True)
¶
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images.
Source code in mindone/diffusers/models/autoencoders/consistency_decoder_vae.py
158 159 160 161 162 163 164 |
|
mindone.diffusers.ConsistencyDecoderVAE.encode(x, return_dict=False)
¶
Encode a batch of images into latents.
PARAMETER | DESCRIPTION |
---|---|
x |
Input batch of images.
TYPE:
|
return_dict |
Whether to return a [
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[ConsistencyDecoderVAEOutput, Tuple[DiagonalGaussianDistribution]]
|
The latent representations of the encoded images. If |
Union[ConsistencyDecoderVAEOutput, Tuple[DiagonalGaussianDistribution]]
|
[ |
Union[ConsistencyDecoderVAEOutput, Tuple[DiagonalGaussianDistribution]]
|
plain |
Source code in mindone/diffusers/models/autoencoders/consistency_decoder_vae.py
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
|
mindone.diffusers.ConsistencyDecoderVAE.set_attn_processor(processor)
¶
Sets the attention processor to use to compute attention.
Parameters:
processor (dict
of AttentionProcessor
or only AttentionProcessor
):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for all Attention
layers.
If processor
is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
Source code in mindone/diffusers/models/autoencoders/consistency_decoder_vae.py
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
|
mindone.diffusers.ConsistencyDecoderVAE.set_default_attn_processor()
¶
Disables custom attention processors and sets the default attention implementation.
Source code in mindone/diffusers/models/autoencoders/consistency_decoder_vae.py
248 249 250 251 252 253 254 255 256 257 258 259 |
|
mindone.diffusers.ConsistencyDecoderVAE.tiled_encode(x, return_dict=False)
¶
Encode a batch of images using a tiled encoder.
When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several steps. This is useful to keep memory use constant regardless of image size. The end result of tiled encoding is different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the output, but they should be much less noticeable.
PARAMETER | DESCRIPTION |
---|---|
x |
Input batch of images.
TYPE:
|
return_dict |
Whether or not to return a [
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[ConsistencyDecoderVAEOutput, Tuple]
|
[ |
Source code in mindone/diffusers/models/autoencoders/consistency_decoder_vae.py
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
|