Skip to content

ChromaTransformer2DModel

A modified flux Transformer model from Chroma

mindone.diffusers.ChromaTransformer2DModel

Bases: ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, FluxTransformer2DLoadersMixin, CacheMixin, AttentionMixin

The Transformer model introduced in Flux, modified for Chroma.

Reference: https://huggingface.co/lodestones/Chroma

PARAMETER DESCRIPTION
patch_size

Patch size to turn the input data into small patches.

TYPE: `int`, defaults to `1` DEFAULT: 1

in_channels

The number of channels in the input.

TYPE: `int`, defaults to `64` DEFAULT: 64

out_channels

The number of channels in the output. If not specified, it defaults to in_channels.

TYPE: `int`, *optional*, defaults to `None` DEFAULT: None

num_layers

The number of layers of dual stream DiT blocks to use.

TYPE: `int`, defaults to `19` DEFAULT: 19

num_single_layers

The number of layers of single stream DiT blocks to use.

TYPE: `int`, defaults to `38` DEFAULT: 38

attention_head_dim

The number of dimensions to use for each attention head.

TYPE: `int`, defaults to `128` DEFAULT: 128

num_attention_heads

The number of attention heads to use.

TYPE: `int`, defaults to `24` DEFAULT: 24

joint_attention_dim

The number of dimensions to use for the joint attention (embedding/channel dimension of encoder_hidden_states).

TYPE: `int`, defaults to `4096` DEFAULT: 4096

axes_dims_rope

The dimensions to use for the rotary positional embeddings.

TYPE: `Tuple[int]`, defaults to `(16, 56, 56)` DEFAULT: (16, 56, 56)

Source code in mindone/diffusers/models/transformers/transformer_chroma.py
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
class ChromaTransformer2DModel(
    ModelMixin,
    ConfigMixin,
    PeftAdapterMixin,
    FromOriginalModelMixin,
    FluxTransformer2DLoadersMixin,
    CacheMixin,
    AttentionMixin,
):
    """
    The Transformer model introduced in Flux, modified for Chroma.

    Reference: https://huggingface.co/lodestones/Chroma

    Args:
        patch_size (`int`, defaults to `1`):
            Patch size to turn the input data into small patches.
        in_channels (`int`, defaults to `64`):
            The number of channels in the input.
        out_channels (`int`, *optional*, defaults to `None`):
            The number of channels in the output. If not specified, it defaults to `in_channels`.
        num_layers (`int`, defaults to `19`):
            The number of layers of dual stream DiT blocks to use.
        num_single_layers (`int`, defaults to `38`):
            The number of layers of single stream DiT blocks to use.
        attention_head_dim (`int`, defaults to `128`):
            The number of dimensions to use for each attention head.
        num_attention_heads (`int`, defaults to `24`):
            The number of attention heads to use.
        joint_attention_dim (`int`, defaults to `4096`):
            The number of dimensions to use for the joint attention (embedding/channel dimension of
            `encoder_hidden_states`).
        axes_dims_rope (`Tuple[int]`, defaults to `(16, 56, 56)`):
            The dimensions to use for the rotary positional embeddings.
    """

    _supports_gradient_checkpointing = True
    _no_split_modules = ["ChromaTransformerBlock", "ChromaSingleTransformerBlock"]
    _repeated_blocks = ["ChromaTransformerBlock", "ChromaSingleTransformerBlock"]
    _skip_layerwise_casting_patterns = ["pos_embed", "norm"]

    @register_to_config
    def __init__(
        self,
        patch_size: int = 1,
        in_channels: int = 64,
        out_channels: Optional[int] = None,
        num_layers: int = 19,
        num_single_layers: int = 38,
        attention_head_dim: int = 128,
        num_attention_heads: int = 24,
        joint_attention_dim: int = 4096,
        axes_dims_rope: Tuple[int, ...] = (16, 56, 56),
        approximator_num_channels: int = 64,
        approximator_hidden_dim: int = 5120,
        approximator_layers: int = 5,
    ):
        super().__init__()
        self.out_channels = out_channels or in_channels
        self.inner_dim = num_attention_heads * attention_head_dim

        self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)

        self.time_text_embed = ChromaCombinedTimestepTextProjEmbeddings(
            num_channels=approximator_num_channels // 4,
            out_dim=3 * num_single_layers + 2 * 6 * num_layers + 2,
        )
        self.distilled_guidance_layer = ChromaApproximator(
            in_dim=approximator_num_channels,
            out_dim=self.inner_dim,
            hidden_dim=approximator_hidden_dim,
            n_layers=approximator_layers,
        )

        self.context_embedder = mint.nn.Linear(joint_attention_dim, self.inner_dim)
        self.x_embedder = mint.nn.Linear(in_channels, self.inner_dim)

        self.transformer_blocks = nn.CellList(
            [
                ChromaTransformerBlock(
                    dim=self.inner_dim,
                    num_attention_heads=num_attention_heads,
                    attention_head_dim=attention_head_dim,
                )
                for _ in range(num_layers)
            ]
        )

        self.single_transformer_blocks = nn.CellList(
            [
                ChromaSingleTransformerBlock(
                    dim=self.inner_dim,
                    num_attention_heads=num_attention_heads,
                    attention_head_dim=attention_head_dim,
                )
                for _ in range(num_single_layers)
            ]
        )

        self.norm_out = ChromaAdaLayerNormContinuousPruned(
            self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6
        )
        self.proj_out = mint.nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)

        self.gradient_checkpointing = False

    def construct(
        self,
        hidden_states: ms.Tensor,
        encoder_hidden_states: ms.Tensor = None,
        timestep: ms.Tensor = None,
        img_ids: ms.Tensor = None,
        txt_ids: ms.Tensor = None,
        attention_mask: ms.Tensor = None,
        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
        controlnet_block_samples=None,
        controlnet_single_block_samples=None,
        return_dict: bool = False,
        controlnet_blocks_repeat: bool = False,
    ) -> Union[ms.Tensor, Transformer2DModelOutput]:
        """
        The [`FluxTransformer2DModel`] forward method.

        Args:
            hidden_states (`ms.Tensor` of shape `(batch_size, image_sequence_length, in_channels)`):
                Input `hidden_states`.
            encoder_hidden_states (`ms.Tensor` of shape `(batch_size, text_sequence_length, joint_attention_dim)`):
                Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
            timestep ( `ms.Tensor`):
                Used to indicate denoising step.
            block_controlnet_hidden_states: (`list` of `ms.Tensor`):
                A list of tensors that if specified are added to the residuals of transformer blocks.
            joint_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
                tuple.

        Returns:
            If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
            `tuple` where the first element is the sample tensor.
        """
        hidden_states = self.x_embedder(hidden_states)

        timestep = timestep.to(hidden_states.dtype) * 1000

        input_vec = self.time_text_embed(timestep)
        pooled_temb = self.distilled_guidance_layer(input_vec)

        encoder_hidden_states = self.context_embedder(encoder_hidden_states)

        if txt_ids.ndim == 3:
            logger.warning(
                "Passing `txt_ids` 3d ms.Tensor is deprecated."
                "Please remove the batch dimension and pass it as a 2d mindspore Tensor"
            )
            txt_ids = txt_ids[0]
        if img_ids.ndim == 3:
            logger.warning(
                "Passing `img_ids` 3d ms.Tensor is deprecated."
                "Please remove the batch dimension and pass it as a 2d mindspore Tensor"
            )
            img_ids = img_ids[0]

        ids = mint.cat((txt_ids, img_ids), dim=0)
        image_rotary_emb = self.pos_embed(ids)

        if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs:
            ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds")
            ip_hidden_states = self.encoder_hid_proj(ip_adapter_image_embeds)
            joint_attention_kwargs.update({"ip_hidden_states": ip_hidden_states})

        for index_block, block in enumerate(self.transformer_blocks):
            img_offset = 3 * len(self.single_transformer_blocks)
            txt_offset = img_offset + 6 * len(self.transformer_blocks)
            img_modulation = img_offset + 6 * index_block
            text_modulation = txt_offset + 6 * index_block
            temb = mint.cat(
                (
                    pooled_temb[:, img_modulation : img_modulation + 6],
                    pooled_temb[:, text_modulation : text_modulation + 6],
                ),
                dim=1,
            )

            encoder_hidden_states, hidden_states = block(
                hidden_states=hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                temb=temb,
                image_rotary_emb=image_rotary_emb,
                attention_mask=attention_mask,
                joint_attention_kwargs=joint_attention_kwargs,
            )

            # controlnet residual
            if controlnet_block_samples is not None:
                interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
                interval_control = int(np.ceil(interval_control))
                # For Xlabs ControlNet.
                if controlnet_blocks_repeat:
                    hidden_states = (
                        hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)]
                    )
                else:
                    hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
        hidden_states = mint.cat([encoder_hidden_states, hidden_states], dim=1)

        for index_block, block in enumerate(self.single_transformer_blocks):
            start_idx = 3 * index_block
            temb = pooled_temb[:, start_idx : start_idx + 3]
            hidden_states = block(
                hidden_states=hidden_states,
                temb=temb,
                image_rotary_emb=image_rotary_emb,
                attention_mask=attention_mask,
                joint_attention_kwargs=joint_attention_kwargs,
            )

            # controlnet residual
            if controlnet_single_block_samples is not None:
                interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples)
                interval_control = int(np.ceil(interval_control))
                hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
                    hidden_states[:, encoder_hidden_states.shape[1] :, ...]
                    + controlnet_single_block_samples[index_block // interval_control]
                )

        hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]

        temb = pooled_temb[:, -2:]
        hidden_states = self.norm_out(hidden_states, temb)
        output = self.proj_out(hidden_states)

        if not return_dict:
            return (output,)

        return Transformer2DModelOutput(sample=output)

mindone.diffusers.ChromaTransformer2DModel.construct(hidden_states, encoder_hidden_states=None, timestep=None, img_ids=None, txt_ids=None, attention_mask=None, joint_attention_kwargs=None, controlnet_block_samples=None, controlnet_single_block_samples=None, return_dict=False, controlnet_blocks_repeat=False)

The [FluxTransformer2DModel] forward method.

PARAMETER DESCRIPTION
hidden_states

Input hidden_states.

TYPE: `ms.Tensor` of shape `(batch_size, image_sequence_length, in_channels)`

encoder_hidden_states

Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.

TYPE: `ms.Tensor` of shape `(batch_size, text_sequence_length, joint_attention_dim)` DEFAULT: None

timestep

Used to indicate denoising step.

TYPE: `ms.Tensor` DEFAULT: None

block_controlnet_hidden_states

(list of ms.Tensor): A list of tensors that if specified are added to the residuals of transformer blocks.

joint_attention_kwargs

A kwargs dictionary that if specified is passed along to the AttentionProcessor as defined under self.processor in diffusers.models.attention_processor.

TYPE: `dict`, *optional* DEFAULT: None

return_dict

Whether or not to return a [~models.transformer_2d.Transformer2DModelOutput] instead of a plain tuple.

TYPE: `bool`, *optional*, defaults to `True` DEFAULT: False

RETURNS DESCRIPTION
Union[Tensor, Transformer2DModelOutput]

If return_dict is True, an [~models.transformer_2d.Transformer2DModelOutput] is returned, otherwise a

Union[Tensor, Transformer2DModelOutput]

tuple where the first element is the sample tensor.

Source code in mindone/diffusers/models/transformers/transformer_chroma.py
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
def construct(
    self,
    hidden_states: ms.Tensor,
    encoder_hidden_states: ms.Tensor = None,
    timestep: ms.Tensor = None,
    img_ids: ms.Tensor = None,
    txt_ids: ms.Tensor = None,
    attention_mask: ms.Tensor = None,
    joint_attention_kwargs: Optional[Dict[str, Any]] = None,
    controlnet_block_samples=None,
    controlnet_single_block_samples=None,
    return_dict: bool = False,
    controlnet_blocks_repeat: bool = False,
) -> Union[ms.Tensor, Transformer2DModelOutput]:
    """
    The [`FluxTransformer2DModel`] forward method.

    Args:
        hidden_states (`ms.Tensor` of shape `(batch_size, image_sequence_length, in_channels)`):
            Input `hidden_states`.
        encoder_hidden_states (`ms.Tensor` of shape `(batch_size, text_sequence_length, joint_attention_dim)`):
            Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
        timestep ( `ms.Tensor`):
            Used to indicate denoising step.
        block_controlnet_hidden_states: (`list` of `ms.Tensor`):
            A list of tensors that if specified are added to the residuals of transformer blocks.
        joint_attention_kwargs (`dict`, *optional*):
            A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
            `self.processor` in
            [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
        return_dict (`bool`, *optional*, defaults to `True`):
            Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
            tuple.

    Returns:
        If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
        `tuple` where the first element is the sample tensor.
    """
    hidden_states = self.x_embedder(hidden_states)

    timestep = timestep.to(hidden_states.dtype) * 1000

    input_vec = self.time_text_embed(timestep)
    pooled_temb = self.distilled_guidance_layer(input_vec)

    encoder_hidden_states = self.context_embedder(encoder_hidden_states)

    if txt_ids.ndim == 3:
        logger.warning(
            "Passing `txt_ids` 3d ms.Tensor is deprecated."
            "Please remove the batch dimension and pass it as a 2d mindspore Tensor"
        )
        txt_ids = txt_ids[0]
    if img_ids.ndim == 3:
        logger.warning(
            "Passing `img_ids` 3d ms.Tensor is deprecated."
            "Please remove the batch dimension and pass it as a 2d mindspore Tensor"
        )
        img_ids = img_ids[0]

    ids = mint.cat((txt_ids, img_ids), dim=0)
    image_rotary_emb = self.pos_embed(ids)

    if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs:
        ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds")
        ip_hidden_states = self.encoder_hid_proj(ip_adapter_image_embeds)
        joint_attention_kwargs.update({"ip_hidden_states": ip_hidden_states})

    for index_block, block in enumerate(self.transformer_blocks):
        img_offset = 3 * len(self.single_transformer_blocks)
        txt_offset = img_offset + 6 * len(self.transformer_blocks)
        img_modulation = img_offset + 6 * index_block
        text_modulation = txt_offset + 6 * index_block
        temb = mint.cat(
            (
                pooled_temb[:, img_modulation : img_modulation + 6],
                pooled_temb[:, text_modulation : text_modulation + 6],
            ),
            dim=1,
        )

        encoder_hidden_states, hidden_states = block(
            hidden_states=hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            temb=temb,
            image_rotary_emb=image_rotary_emb,
            attention_mask=attention_mask,
            joint_attention_kwargs=joint_attention_kwargs,
        )

        # controlnet residual
        if controlnet_block_samples is not None:
            interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
            interval_control = int(np.ceil(interval_control))
            # For Xlabs ControlNet.
            if controlnet_blocks_repeat:
                hidden_states = (
                    hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)]
                )
            else:
                hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
    hidden_states = mint.cat([encoder_hidden_states, hidden_states], dim=1)

    for index_block, block in enumerate(self.single_transformer_blocks):
        start_idx = 3 * index_block
        temb = pooled_temb[:, start_idx : start_idx + 3]
        hidden_states = block(
            hidden_states=hidden_states,
            temb=temb,
            image_rotary_emb=image_rotary_emb,
            attention_mask=attention_mask,
            joint_attention_kwargs=joint_attention_kwargs,
        )

        # controlnet residual
        if controlnet_single_block_samples is not None:
            interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples)
            interval_control = int(np.ceil(interval_control))
            hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
                hidden_states[:, encoder_hidden_states.shape[1] :, ...]
                + controlnet_single_block_samples[index_block // interval_control]
            )

    hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]

    temb = pooled_temb[:, -2:]
    hidden_states = self.norm_out(hidden_states, temb)
    output = self.proj_out(hidden_states)

    if not return_dict:
        return (output,)

    return Transformer2DModelOutput(sample=output)