AutoencoderKLCosmos¶
Supported models: - nvidia/Cosmos-1.0-Tokenizer-CV8x8x8
The model can be loaded with the following code snippet.
from mindone.diffusers import AutoencoderKLCosmos
vae = AutoencoderKLCosmos.from_pretrained("nvidia/Cosmos-1.0-Tokenizer-CV8x8x8", subfolder="vae")
mindone.diffusers.models.autoencoders.autoencoder_kl_cosmos.AutoencoderKLCosmos
¶
Bases: ModelMixin
, ConfigMixin
Autoencoder used in Cosmos.
PARAMETER | DESCRIPTION |
---|---|
in_channels
|
Number of input channels.
TYPE:
|
out_channels
|
Number of output channels.
TYPE:
|
latent_channels
|
Number of latent channels.
TYPE:
|
encoder_block_out_channels
|
Number of output channels for each encoder down block.
TYPE:
|
decode_block_out_channels
|
Number of output channels for each decoder up block.
TYPE:
|
attention_resolutions
|
List of image/video resolutions at which to apply attention.
TYPE:
|
resolution
|
Base image/video resolution used for computing whether a block should have attention layers.
TYPE:
|
num_layers
|
Number of resnet blocks in each encoder/decoder block.
TYPE:
|
patch_size
|
Patch size used for patching the input image/video.
TYPE:
|
patch_type
|
Patch type used for patching the input image/video. Can be either
TYPE:
|
scaling_factor
|
The component-wise standard deviation of the trained latent space computed using the first batch of the
training set. This is used to scale the latent space to have unit variance when training the diffusion
model. The latents are scaled with the formula
TYPE:
|
spatial_compression_ratio
|
The spatial compression ratio to apply in the VAE. The number of downsample blocks is determined using this.
TYPE:
|
temporal_compression_ratio
|
The temporal compression ratio to apply in the VAE. The number of downsample blocks is determined using this.
TYPE:
|
Source code in mindone/diffusers/models/autoencoders/autoencoder_kl_cosmos.py
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 |
|
mindone.diffusers.models.autoencoders.autoencoder_kl_cosmos.AutoencoderKLCosmos.disable_slicing()
¶
Disable sliced VAE decoding. If enable_slicing
was previously enabled, this method will go back to computing
decoding in one step.
Source code in mindone/diffusers/models/autoencoders/autoencoder_kl_cosmos.py
1087 1088 1089 1090 1091 1092 |
|
mindone.diffusers.models.autoencoders.autoencoder_kl_cosmos.AutoencoderKLCosmos.disable_tiling()
¶
Disable tiled VAE decoding. If enable_tiling
was previously enabled, this method will go back to computing
decoding in one step.
Source code in mindone/diffusers/models/autoencoders/autoencoder_kl_cosmos.py
1073 1074 1075 1076 1077 1078 |
|
mindone.diffusers.models.autoencoders.autoencoder_kl_cosmos.AutoencoderKLCosmos.enable_slicing()
¶
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
Source code in mindone/diffusers/models/autoencoders/autoencoder_kl_cosmos.py
1080 1081 1082 1083 1084 1085 |
|
mindone.diffusers.models.autoencoders.autoencoder_kl_cosmos.AutoencoderKLCosmos.enable_tiling(tile_sample_min_height=None, tile_sample_min_width=None, tile_sample_min_num_frames=None, tile_sample_stride_height=None, tile_sample_stride_width=None, tile_sample_stride_num_frames=None)
¶
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images.
PARAMETER | DESCRIPTION |
---|---|
tile_sample_min_height
|
The minimum height required for a sample to be separated into tiles across the height dimension.
TYPE:
|
tile_sample_min_width
|
The minimum width required for a sample to be separated into tiles across the width dimension.
TYPE:
|
tile_sample_stride_height
|
The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are no tiling artifacts produced across the height dimension.
TYPE:
|
tile_sample_stride_width
|
The stride between two consecutive horizontal tiles. This is to ensure that there are no tiling artifacts produced across the width dimension.
TYPE:
|
Source code in mindone/diffusers/models/autoencoders/autoencoder_kl_cosmos.py
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 |
|
mindone.diffusers.models.autoencoders.autoencoder_kl.AutoencoderKLOutput
dataclass
¶
Bases: BaseOutput
Output of AutoencoderKL encoding method.
PARAMETER | DESCRIPTION |
---|---|
latent
|
Encoded outputs of
TYPE:
|
Source code in mindone/diffusers/models/modeling_outputs.py
10 11 12 13 14 15 16 17 18 19 20 21 |
|
mindone.diffusers.models.autoencoders.vae.DecoderOutput
dataclass
¶
Bases: BaseOutput
Output of decoding method.
PARAMETER | DESCRIPTION |
---|---|
sample
|
The decoded output sample from the last layer of the model.
TYPE:
|
Source code in mindone/diffusers/models/autoencoders/vae.py
46 47 48 49 50 51 52 53 54 55 56 57 |
|