AutoencoderKL¶
The variational autoencoder (VAE) model with KL loss was introduced in Auto-Encoding Variational Bayes by Diederik P. Kingma and Max Welling. The model is used in 🤗 Diffusers to encode images into latents and to decode latent representations into images.
The abstract from the paper is:
How can we perform efficient inference and learning in directed probabilistic models, in the presence of continuous latent variables with intractable posterior distributions, and large datasets? We introduce a stochastic variational inference and learning algorithm that scales to large datasets and, under some mild differentiability conditions, even works in the intractable case. Our contributions are two-fold. First, we show that a reparameterization of the variational lower bound yields a lower bound estimator that can be straightforwardly optimized using standard stochastic gradient methods. Second, we show that for i.i.d. datasets with continuous latent variables per datapoint, posterior inference can be made especially efficient by fitting an approximate inference model (also called a recognition model) to the intractable posterior using the proposed lower bound estimator. Theoretical advantages are reflected in experimental results.
Loading from the original format¶
By default the AutoencoderKL
should be loaded with from_pretrained
, but it can also be loaded
from the original format using [from_single_file
] as follows:
from mindone.diffusers import AutoencoderKL
url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors" # can also be a local file
model = AutoencoderKL.from_single_file(url)
mindone.diffusers.AutoencoderKL
¶
Bases: ModelMixin
, ConfigMixin
, FromOriginalModelMixin
A VAE model with KL loss for encoding images into latents and decoding latent representations into images.
This model inherits from [ModelMixin
]. Check the superclass documentation for it's generic methods implemented
for all models (such as downloading or saving).
PARAMETER | DESCRIPTION |
---|---|
in_channels |
Number of channels in the input image.
TYPE:
|
out_channels |
Number of channels in the output.
TYPE:
|
down_block_types |
Tuple of downsample block types.
TYPE:
|
up_block_types |
Tuple of upsample block types.
TYPE:
|
block_out_channels |
Tuple of block output channels.
TYPE:
|
act_fn |
The activation function to use.
TYPE:
|
latent_channels |
Number of channels in the latent space.
TYPE:
|
sample_size |
Sample input size.
TYPE:
|
scaling_factor |
The component-wise standard deviation of the trained latent space computed using the first batch of the
training set. This is used to scale the latent space to have unit variance when training the diffusion
model. The latents are scaled with the formula
TYPE:
|
force_upcast |
If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
can be fine-tuned / trained to a lower range without loosing too much precision in which case
TYPE:
|
mid_block_add_attention |
If enabled, the mid_block of the Encoder and Decoder will have attention blocks. If set to false, the mid_block will only have resnet blocks
TYPE:
|
Source code in mindone/diffusers/models/autoencoders/autoencoder_kl.py
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 |
|
mindone.diffusers.AutoencoderKL.attn_processors: Dict[str, AttentionProcessor]
property
¶
RETURNS | DESCRIPTION |
---|---|
Dict[str, AttentionProcessor]
|
|
Dict[str, AttentionProcessor]
|
indexed by its weight name. |
mindone.diffusers.AutoencoderKL.construct(sample, sample_posterior=False, return_dict=False, generator=None)
¶
PARAMETER | DESCRIPTION |
---|---|
sample |
Input sample.
TYPE:
|
sample_posterior |
Whether to sample from the posterior.
TYPE:
|
return_dict |
Whether or not to return a [
TYPE:
|
Source code in mindone/diffusers/models/autoencoders/autoencoder_kl.py
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 |
|
mindone.diffusers.AutoencoderKL.decode(z, return_dict=False, generator=None)
¶
Decode a batch of images.
PARAMETER | DESCRIPTION |
---|---|
z |
Input batch of latent vectors.
TYPE:
|
return_dict |
Whether to return a [
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[DecoderOutput, Tuple[Tensor]]
|
[ |
Source code in mindone/diffusers/models/autoencoders/autoencoder_kl.py
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
|
mindone.diffusers.AutoencoderKL.disable_slicing()
¶
Disable sliced VAE decoding. If enable_slicing
was previously enabled, this method will go back to computing
decoding in one step.
Source code in mindone/diffusers/models/autoencoders/autoencoder_kl.py
163 164 165 166 167 168 |
|
mindone.diffusers.AutoencoderKL.disable_tiling()
¶
Disable tiled VAE decoding. If enable_tiling
was previously enabled, this method will go back to computing
decoding in one step.
Source code in mindone/diffusers/models/autoencoders/autoencoder_kl.py
149 150 151 152 153 154 |
|
mindone.diffusers.AutoencoderKL.enable_slicing()
¶
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
Source code in mindone/diffusers/models/autoencoders/autoencoder_kl.py
156 157 158 159 160 161 |
|
mindone.diffusers.AutoencoderKL.enable_tiling(use_tiling=True)
¶
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images.
Source code in mindone/diffusers/models/autoencoders/autoencoder_kl.py
141 142 143 144 145 146 147 |
|
mindone.diffusers.AutoencoderKL.encode(x, return_dict=False)
¶
Encode a batch of images into latents.
PARAMETER | DESCRIPTION |
---|---|
x |
Input batch of images.
TYPE:
|
return_dict |
Whether to return a [
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[AutoencoderKLOutput, Tuple[Tensor]]
|
The latent representations of the encoded images. If |
Union[AutoencoderKLOutput, Tuple[Tensor]]
|
[ |
Source code in mindone/diffusers/models/autoencoders/autoencoder_kl.py
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
|
mindone.diffusers.AutoencoderKL.set_attn_processor(processor)
¶
Sets the attention processor to use to compute attention.
PARAMETER | DESCRIPTION |
---|---|
processor |
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for all If
TYPE:
|
Source code in mindone/diffusers/models/autoencoders/autoencoder_kl.py
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
|
mindone.diffusers.AutoencoderKL.set_default_attn_processor()
¶
Disables custom attention processors and sets the default attention implementation.
Source code in mindone/diffusers/models/autoencoders/autoencoder_kl.py
231 232 233 234 235 236 237 238 239 240 241 242 |
|
mindone.diffusers.AutoencoderKL.tiled_decode(z, return_dict=False)
¶
Decode a batch of images using a tiled decoder.
PARAMETER | DESCRIPTION |
---|---|
z |
Input batch of latent vectors.
TYPE:
|
return_dict |
Whether or not to return a [
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[DecoderOutput, Tensor]
|
[ |
Source code in mindone/diffusers/models/autoencoders/autoencoder_kl.py
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
|
mindone.diffusers.AutoencoderKL.tiled_encode(x, return_dict=False)
¶
Encode a batch of images using a tiled encoder.
When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several steps. This is useful to keep memory use constant regardless of image size. The end result of tiled encoding is different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the output, but they should be much less noticeable.
PARAMETER | DESCRIPTION |
---|---|
x |
Input batch of images.
TYPE:
|
return_dict |
Whether or not to return a [
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
AutoencoderKLOutput
|
[ |
Source code in mindone/diffusers/models/autoencoders/autoencoder_kl.py
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
|
mindone.diffusers.models.autoencoders.autoencoder_kl.AutoencoderKLOutput
dataclass
¶
Bases: BaseOutput
Output of AutoencoderKL encoding method.
PARAMETER | DESCRIPTION |
---|---|
latent |
Encoded outputs of
TYPE:
|
Source code in mindone/diffusers/models/modeling_outputs.py
8 9 10 11 12 13 14 15 16 17 18 19 |
|
mindone.diffusers.models.autoencoders.vae.DecoderOutput
dataclass
¶
Bases: BaseOutput
Output of decoding method.
PARAMETER | DESCRIPTION |
---|---|
sample |
The decoded output sample from the last layer of the model.
TYPE:
|
Source code in mindone/diffusers/models/autoencoders/vae.py
31 32 33 34 35 36 37 38 39 40 41 42 |
|