IP-Adapter¶
IP-Adapter is a lightweight adapter that enables prompting a diffusion model with an image. This method decouples the cross-attention layers of the image and text features. The image features are generated from an image encoder.
Tip
Learn how to load an IP-Adapter checkpoint and image in the IP-Adapter loading guide, and you can see how to use it in the usage guide.
mindone.diffusers.loaders.ip_adapter.IPAdapterMixin
¶
Mixin for handling IP Adapters.
Source code in mindone/diffusers/loaders/ip_adapter.py
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 | |
mindone.diffusers.loaders.ip_adapter.IPAdapterMixin.load_ip_adapter(pretrained_model_name_or_path_or_dict, subfolder, weight_name, image_encoder_folder='image_encoder', **kwargs)
¶
| PARAMETER | DESCRIPTION |
|---|---|
pretrained_model_name_or_path_or_dict
|
Can be either:
TYPE:
|
subfolder
|
The subfolder location of a model file within a larger model repository on the Hub or locally. If a
list is passed, it should have the same length as
TYPE:
|
weight_name
|
The name of the weight file to load. If a list is passed, it should have the same length as
TYPE:
|
image_encoder_folder
|
The subfolder location of the image encoder within a larger model repository on the Hub or locally.
Pass
TYPE:
|
cache_dir
|
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache is not used.
TYPE:
|
force_download
|
Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist.
TYPE:
|
proxies
|
A dictionary of proxy servers to use by protocol or endpoint, for example,
TYPE:
|
local_files_only
|
Whether to only load local model weights and configuration files or not. If set to
TYPE:
|
token
|
The token to use as HTTP bearer authorization for remote files. If
TYPE:
|
revision
|
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier allowed by Git.
TYPE:
|
Source code in mindone/diffusers/loaders/ip_adapter.py
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 | |
mindone.diffusers.loaders.ip_adapter.IPAdapterMixin.set_ip_adapter_scale(scale)
¶
Set IP-Adapter scales per-transformer block. Input scale could be a single config or a list of configs for
granular control over each IP-Adapter behavior. A config can be a float or a dictionary.
Example:
# To use original IP-Adapter
scale = 1.0
pipeline.set_ip_adapter_scale(scale)
# To use style block only
scale = {
"up": {"block_0": [0.0, 1.0, 0.0]},
}
pipeline.set_ip_adapter_scale(scale)
# To use style+layout blocks
scale = {
"down": {"block_2": [0.0, 1.0]},
"up": {"block_0": [0.0, 1.0, 0.0]},
}
pipeline.set_ip_adapter_scale(scale)
# To use style and layout from 2 reference images
scales = [{"down": {"block_2": [0.0, 1.0]}}, {"up": {"block_0": [0.0, 1.0, 0.0]}}]
pipeline.set_ip_adapter_scale(scales)
Source code in mindone/diffusers/loaders/ip_adapter.py
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 | |
mindone.diffusers.loaders.ip_adapter.IPAdapterMixin.unload_ip_adapter()
¶
Unloads the IP Adapter weights
Examples:
>>> # Assuming `pipeline` is already loaded with the IP Adapter weights.
>>> pipeline.unload_ip_adapter()
>>> ...
Source code in mindone/diffusers/loaders/ip_adapter.py
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 | |
mindone.diffusers.image_processor.IPAdapterMaskProcessor
¶
Bases: VaeImageProcessor
Image processor for IP Adapter image masks.
| PARAMETER | DESCRIPTION |
|---|---|
do_resize
|
Whether to downscale the image's (height, width) dimensions to multiples of
TYPE:
|
vae_scale_factor
|
VAE scale factor. If
TYPE:
|
resample
|
Resampling filter to use when resizing the image.
TYPE:
|
do_normalize
|
Whether to normalize the image to [-1,1].
TYPE:
|
do_binarize
|
Whether to binarize the image to 0/1.
TYPE:
|
do_convert_grayscale
|
Whether to convert the images to grayscale format.
TYPE:
|
Source code in mindone/diffusers/image_processor.py
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 | |
mindone.diffusers.image_processor.IPAdapterMaskProcessor.downsample(mask, batch_size, num_queries, value_embed_dim)
staticmethod
¶
Downsamples the provided mask tensor to match the expected dimensions for scaled dot-product attention. If the aspect ratio of the mask does not match the aspect ratio of the output image, a warning is issued.
| PARAMETER | DESCRIPTION |
|---|---|
mask
|
The input mask tensor generated with
TYPE:
|
batch_size
|
The batch size.
TYPE:
|
num_queries
|
The number of queries.
TYPE:
|
value_embed_dim
|
The dimensionality of the value embeddings.
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
|
|
Source code in mindone/diffusers/image_processor.py
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 | |