Skip to content

Image-to-Video Generation with PIA (Personalized Image Animator)

Overview

PIA: Your Personalized Image Animator via Plug-and-Play Modules in Text-to-Image Models by Yiming Zhang, Zhening Xing, Yanhong Zeng, Youqing Fang, Kai Chen

Recent advancements in personalized text-to-image (T2I) models have revolutionized content creation, empowering non-experts to generate stunning images with unique styles. While promising, adding realistic motions into these personalized images by text poses significant challenges in preserving distinct styles, high-fidelity details, and achieving motion controllability by text. In this paper, we present PIA, a Personalized Image Animator that excels in aligning with condition images, achieving motion controllability by text, and the compatibility with various personalized T2I models without specific tuning. To achieve these goals, PIA builds upon a base T2I model with well-trained temporal alignment layers, allowing for the seamless transformation of any personalized T2I model into an image animation model. A key component of PIA is the introduction of the condition module, which utilizes the condition frame and inter-frame affinity as input to transfer appearance information guided by the affinity hint for individual frame synthesis in the latent space. This design mitigates the challenges of appearance-related image alignment within and allows for a stronger focus on aligning with motion-related guidance.

Project page

Available Pipelines

Pipeline Tasks Demo
PIAPipeline Image-to-Video Generation with PIA

Available checkpoints

Motion Adapter checkpoints for PIA can be found under the OpenMMLab org. These checkpoints are meant to work with any model based on Stable Diffusion 1.5

Usage example

PIA works with a MotionAdapter checkpoint and a Stable Diffusion 1.5 model checkpoint. The MotionAdapter is a collection of Motion Modules that are responsible for adding coherent motion across image frames. These modules are applied after the Resnet and Attention blocks in the Stable Diffusion UNet. In addition to the motion modules, PIA also replaces the input convolution layer of the SD 1.5 UNet model with a 9 channel input convolution layer.

The following example demonstrates how to use PIA to generate a video from a single image.

import mindspore as ms
from mindone.diffusers import (
    EulerDiscreteScheduler,
    MotionAdapter,
    PIAPipeline,
)
from mindone.diffusers.utils import export_to_gif, load_image
import numpy as np

adapter = MotionAdapter.from_pretrained("openmmlab/PIA-condition-adapter", mindspore_dtype=ms.float16)
pipe = PIAPipeline.from_pretrained(
    "SG161222/Realistic_Vision_V6.0_B1_noVAE",
    motion_adapter=adapter,
    mindspore_dtype=ms.float16,
    revision="refs/pr/8",
)

pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.enable_vae_slicing()

image = load_image(
    "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/cat_6.png?download=true"
)
image = image.resize((512, 512))
prompt = "cat in a field"
negative_prompt = "wrong white balance, dark, sketches,worst quality,low quality"

generator = np.random.Generator(np.random.PCG64(seed=0))
output = pipe(image=image, prompt=prompt, generator=generator)
frames = output[0][0]
export_to_gif(frames, "pia-animation.gif")

Here are some sample outputs:

oringinal picture.
oringinal picture
cat in a field.
cat in a field

Tip

If you plan on using a scheduler that can clip samples, make sure to disable it by setting clip_sample=False in the scheduler as this can also have an adverse effect on generated samples. Additionally, the PIA checkpoints can be sensitive to the beta schedule of the scheduler. We recommend setting this to linear.

mindone.diffusers.PIAPipeline

Bases: DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, FromSingleFileMixin

Pipeline for text-to-video generation.

This model inherits from [DiffusionPipeline]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).

The pipeline also inherits the following loading methods
  • [~loaders.TextualInversionLoaderMixin.load_textual_inversion] for loading textual inversion embeddings
  • [~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights] for loading LoRA weights
  • [~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights] for saving LoRA weights
  • [~loaders.IPAdapterMixin.load_ip_adapter] for loading IP Adapters
PARAMETER DESCRIPTION
vae

Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.

TYPE: [`AutoencoderKL`]

text_encoder

Frozen text-encoder (clip-vit-large-patch14).

TYPE: [`CLIPTextModel`]

tokenizer

A [~transformers.CLIPTokenizer] to tokenize text.

TYPE: `CLIPTokenizer`

unet

A [UNet2DConditionModel] used to create a UNetMotionModel to denoise the encoded video latents.

TYPE: [`UNet2DConditionModel`]

motion_adapter

A [MotionAdapter] to be used in combination with unet to denoise the encoded video latents.

TYPE: [`MotionAdapter`] DEFAULT: None

scheduler

A scheduler to be used in combination with unet to denoise the encoded image latents. Can be one of [DDIMScheduler], [LMSDiscreteScheduler], or [PNDMScheduler].

TYPE: [`SchedulerMixin`]

Source code in mindone/diffusers/pipelines/pia/pipeline_pia.py
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
class PIAPipeline(
    DiffusionPipeline,
    StableDiffusionMixin,
    TextualInversionLoaderMixin,
    IPAdapterMixin,
    StableDiffusionLoraLoaderMixin,
    FromSingleFileMixin,
):
    r"""
    Pipeline for text-to-video generation.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).

    The pipeline also inherits the following loading methods:
        - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
        - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
        - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
        - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        text_encoder ([`CLIPTextModel`]):
            Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
        tokenizer (`CLIPTokenizer`):
            A [`~transformers.CLIPTokenizer`] to tokenize text.
        unet ([`UNet2DConditionModel`]):
            A [`UNet2DConditionModel`] used to create a UNetMotionModel to denoise the encoded video latents.
        motion_adapter ([`MotionAdapter`]):
            A [`MotionAdapter`] to be used in combination with `unet` to denoise the encoded video latents.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
    """

    model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
    _optional_components = ["feature_extractor", "image_encoder", "motion_adapter"]
    _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: Union[UNet2DConditionModel, UNetMotionModel],
        scheduler: Union[
            DDIMScheduler,
            PNDMScheduler,
            LMSDiscreteScheduler,
            EulerDiscreteScheduler,
            EulerAncestralDiscreteScheduler,
            DPMSolverMultistepScheduler,
        ],
        motion_adapter: Optional[MotionAdapter] = None,
        feature_extractor: CLIPImageProcessor = None,
        image_encoder: CLIPVisionModelWithProjection = None,
    ):
        super().__init__()
        if isinstance(unet, UNet2DConditionModel):
            unet = UNetMotionModel.from_unet2d(unet, motion_adapter)

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            motion_adapter=motion_adapter,
            scheduler=scheduler,
            feature_extractor=feature_extractor,
            image_encoder=image_encoder,
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.video_processor = VideoProcessor(do_resize=False, vae_scale_factor=self.vae_scale_factor)

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt with num_images_per_prompt -> num_videos_per_prompt  # noqa: E501
    def encode_prompt(
        self,
        prompt,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[ms.Tensor] = None,
        negative_prompt_embeds: Optional[ms.Tensor] = None,
        lora_scale: Optional[float] = None,
        clip_skip: Optional[int] = None,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            lora_scale (`float`, *optional*):
                A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
        """
        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
        if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
            self._lora_scale = lora_scale

            # dynamically adjust the LoRA scale
            scale_lora_layers(self.text_encoder, lora_scale)

        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if prompt_embeds is None:
            # textual inversion: process multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                prompt = self.maybe_convert_prompt(prompt, self.tokenizer)

            text_inputs = self.tokenizer(
                prompt,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="np",
            )
            text_input_ids = text_inputs.input_ids
            untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="np").input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not np.array_equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {self.tokenizer.model_max_length} tokens: {removed_text}"
                )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = ms.Tensor(text_inputs.attention_mask)
            else:
                attention_mask = None

            if clip_skip is None:
                prompt_embeds = self.text_encoder(ms.Tensor(text_input_ids), attention_mask=attention_mask)
                prompt_embeds = prompt_embeds[0]
            else:
                prompt_embeds = self.text_encoder(
                    ms.Tensor(text_input_ids), attention_mask=attention_mask, output_hidden_states=True
                )
                # Access the `hidden_states` first, that contains a tuple of
                # all the hidden states from the encoder layers. Then index into
                # the tuple to access the hidden states from the desired layer.
                prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
                # We also need to apply the final LayerNorm here to not mess with the
                # representations. The `last_hidden_states` that we typically use for
                # obtaining the final prompt representations passes through the LayerNorm
                # layer.
                prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)

        if self.text_encoder is not None:
            prompt_embeds_dtype = self.text_encoder.dtype
        elif self.unet is not None:
            prompt_embeds_dtype = self.unet.dtype
        else:
            prompt_embeds_dtype = prompt_embeds.dtype

        prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype)

        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.tile((1, num_images_per_prompt, 1))
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif prompt is not None and type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

            # textual inversion: process multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)

            max_length = prompt_embeds.shape[1]
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="np",
            )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = ms.Tensor(uncond_input.attention_mask)
            else:
                attention_mask = None

            negative_prompt_embeds = self.text_encoder(
                ms.Tensor(uncond_input.input_ids),
                attention_mask=attention_mask,
            )
            negative_prompt_embeds = negative_prompt_embeds[0]

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

            negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype)

            negative_prompt_embeds = negative_prompt_embeds.tile((1, num_images_per_prompt, 1))
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

        if self.text_encoder is not None:
            if isinstance(self, StableDiffusionLoraLoaderMixin):
                # Retrieve the original scale by scaling back the LoRA layers
                unscale_lora_layers(self.text_encoder, lora_scale)

        return prompt_embeds, negative_prompt_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
    def encode_image(self, image, num_images_per_prompt, output_hidden_states=None):
        dtype = next(self.image_encoder.get_parameters()).dtype

        if not isinstance(image, ms.Tensor):
            image = self.feature_extractor(image, return_tensors="np").pixel_values
            image = ms.Tensor(image)

        image = image.to(dtype=dtype)
        if output_hidden_states:
            image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True)[2][-2]
            image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_enc_hidden_states = self.image_encoder(ops.zeros_like(image), output_hidden_states=True)[2][-2]
            uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
                num_images_per_prompt, dim=0
            )
            return image_enc_hidden_states, uncond_image_enc_hidden_states
        else:
            image_embeds = self.image_encoder(image)[0]
            image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_embeds = ops.zeros_like(image_embeds)

            return image_embeds, uncond_image_embeds

    # Copied from diffusers.pipelines.text_to_video_synthesis/pipeline_text_to_video_synth.TextToVideoSDPipeline.decode_latents
    def decode_latents(self, latents):
        latents = 1 / self.vae.config.scaling_factor * latents

        batch_size, channels, num_frames, height, width = latents.shape
        latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width)

        image = self.vae.decode(latents)[0]
        video = image[None, :].reshape((batch_size, num_frames, -1) + image.shape[2:]).permute(0, 2, 1, 3, 4)
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
        video = video.float()
        return video

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def check_inputs(
        self,
        prompt,
        height,
        width,
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
        ip_adapter_image=None,
        ip_adapter_image_embeds=None,
        callback_on_step_end_tensor_inputs=None,
    ):
        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"  # noqa: E501
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

        if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
            raise ValueError(
                "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
            )

        if ip_adapter_image_embeds is not None:
            if not isinstance(ip_adapter_image_embeds, list):
                raise ValueError(
                    f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
                )
            elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
                raise ValueError(
                    f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
                )

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
    def prepare_ip_adapter_image_embeds(
        self, ip_adapter_image, ip_adapter_image_embeds, num_images_per_prompt, do_classifier_free_guidance
    ):
        image_embeds = []
        if do_classifier_free_guidance:
            negative_image_embeds = []
        if ip_adapter_image_embeds is None:
            if not isinstance(ip_adapter_image, list):
                ip_adapter_image = [ip_adapter_image]

            if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
                raise ValueError(
                    f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."  # noqa: E501
                )

            for single_ip_adapter_image, image_proj_layer in zip(
                ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
            ):
                output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
                single_image_embeds, single_negative_image_embeds = self.encode_image(
                    single_ip_adapter_image, 1, output_hidden_state
                )

                image_embeds.append(single_image_embeds[None, :])
                if do_classifier_free_guidance:
                    negative_image_embeds.append(single_negative_image_embeds[None, :])
        else:
            for single_image_embeds in ip_adapter_image_embeds:
                if do_classifier_free_guidance:
                    single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
                    negative_image_embeds.append(single_negative_image_embeds)
                image_embeds.append(single_image_embeds)

        ip_adapter_image_embeds = []
        for i, single_image_embeds in enumerate(image_embeds):
            single_image_embeds = ops.cat([single_image_embeds] * num_images_per_prompt, axis=0)
            if do_classifier_free_guidance:
                single_negative_image_embeds = ops.cat([negative_image_embeds[i]] * num_images_per_prompt, axis=0)
                single_image_embeds = ops.cat([single_negative_image_embeds, single_image_embeds], axis=0)

            ip_adapter_image_embeds.append(single_image_embeds)

        return ip_adapter_image_embeds

    # Copied from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_synth.TextToVideoSDPipeline.prepare_latents
    def prepare_latents(
        self, batch_size, num_channels_latents, num_frames, height, width, dtype, generator, latents=None
    ):
        shape = (
            batch_size,
            num_channels_latents,
            num_frames,
            height // self.vae_scale_factor,
            width // self.vae_scale_factor,
        )
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(shape, generator=generator, dtype=dtype)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        latents = latents.to(dtype=dtype)
        return latents

    def prepare_masked_condition(
        self,
        image,
        batch_size,
        num_channels_latents,
        num_frames,
        height,
        width,
        dtype,
        generator,
        motion_scale=0,
    ):
        shape = (
            batch_size,
            num_channels_latents,
            num_frames,
            height // self.vae_scale_factor,
            width // self.vae_scale_factor,
        )
        _, _, _, scaled_height, scaled_width = shape

        image = self.video_processor.preprocess(image)
        image = image.to(dtype)

        if isinstance(generator, list):
            image_latent = [
                self.vae.diag_gauss_dist.sample(self.vae.encode(image[k : k + 1])[0], generator[k])
                for k in range(batch_size)
            ]
            image_latent = ops.cat(image_latent, axis=0)
        else:
            image_latent = self.vae.diag_gauss_dist.sample(self.vae.encode(image)[0], generator)

        image_latent = image_latent.to(dtype=dtype)
        image_latent = ops.interpolate(image_latent, size=[scaled_height, scaled_width])
        image_latent_padding = image_latent.copy() * self.vae.config.scaling_factor

        mask = ops.zeros((batch_size, 1, num_frames, scaled_height, scaled_width)).to(dtype=dtype)
        mask_coef = prepare_mask_coef_by_statistics(num_frames, 0, motion_scale)
        masked_image = ops.zeros((batch_size, 4, num_frames, scaled_height, scaled_width)).to(dtype=self.unet.dtype)
        for f in range(num_frames):
            mask[:, :, f, :, :] = mask_coef[f]
            masked_image[:, :, f, :, :] = image_latent_padding.copy()

        mask = ops.cat([mask] * 2) if self.do_classifier_free_guidance else mask
        masked_image = ops.cat([masked_image] * 2) if self.do_classifier_free_guidance else masked_image

        return mask, masked_image

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
    def get_timesteps(self, num_inference_steps, strength):
        # get the original timestep using init_timestep
        init_timestep = min(int(num_inference_steps * strength), num_inference_steps)

        t_start = max(num_inference_steps - init_timestep, 0)
        timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
        if hasattr(self.scheduler, "set_begin_index"):
            self.scheduler.set_begin_index(t_start * self.scheduler.order)

        return timesteps, num_inference_steps - t_start

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def clip_skip(self):
        return self._clip_skip

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1

    @property
    def cross_attention_kwargs(self):
        return self._cross_attention_kwargs

    @property
    def num_timesteps(self):
        return self._num_timesteps

    def __call__(
        self,
        image: PipelineImageInput,
        prompt: Union[str, List[str]] = None,
        strength: float = 1.0,
        num_frames: Optional[int] = 16,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_videos_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
        latents: Optional[ms.Tensor] = None,
        prompt_embeds: Optional[ms.Tensor] = None,
        negative_prompt_embeds: Optional[ms.Tensor] = None,
        ip_adapter_image: Optional[PipelineImageInput] = None,
        ip_adapter_image_embeds: Optional[List[ms.Tensor]] = None,
        motion_scale: int = 0,
        output_type: Optional[str] = "pil",
        return_dict: bool = False,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        clip_skip: Optional[int] = None,
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
    ):
        r"""
        The call function to the pipeline for generation.

        Args:
            image (`PipelineImageInput`):
                The input image to be used for video generation.
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
            strength (`float`, *optional*, defaults to 1.0):
                Indicates extent to transform the reference `image`. Must be between 0 and 1.
            height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
                The height in pixels of the generated video.
            width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
                The width in pixels of the generated video.
            num_frames (`int`, *optional*, defaults to 16):
                The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds
                amounts to 2 seconds of video.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality videos at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
            generator (`np.random.Generator` or `List[np.random.Generator]`, *optional*):
                A [`np.random.Generator`](https://numpy.org/doc/stable/reference/random/generator.html) to make
                generation deterministic.
            latents (`ms.Tensor`, *optional*):
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor is generated by sampling using the supplied random `generator`. Latents should be of shape
                `(batch_size, num_channel, num_frames, height, width)`.
            prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument.
            negative_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
            ip_adapter_image: (`PipelineImageInput`, *optional*):
                Optional image input to work with IP Adapters.
            ip_adapter_image_embeds (`List[ms.Tensor]`, *optional*):
                Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
                IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
                contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
                provided, embeddings are computed from the `ip_adapter_image` input argument.
            motion_scale: (`int`, *optional*, defaults to 0):
                Parameter that controls the amount and type of motion that is added to the image. Increasing the value
                increases the amount of motion, while specific ranges of values control the type of motion that is
                added. Must be between 0 and 8. Set between 0-2 to only increase the amount of motion. Set between 3-5
                to create looping motion. Set between 6-8 to perform motion with image style transfer.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generated video. Choose between `ms.Tensor`, `PIL.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] instead
                of a plain tuple.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
            callback_on_step_end (`Callable`, *optional*):
                A function that calls at the end of each denoising steps during the inference. The function is called
                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
                `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
                `._callback_tensor_inputs` attribute of your pipeline class.

        Examples:

        Returns:
            [`~pipelines.pia.pipeline_pia.PIAPipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.pia.pipeline_pia.PIAPipelineOutput`] is returned, otherwise a
                `tuple` is returned where the first element is a list with the generated frames.
        """
        # 0. Default height and width to unet
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor

        num_videos_per_prompt = 1

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            height,
            width,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
            ip_adapter_image,
            ip_adapter_image_embeds,
            callback_on_step_end_tensor_inputs,
        )

        self._guidance_scale = guidance_scale
        self._clip_skip = clip_skip
        self._cross_attention_kwargs = cross_attention_kwargs

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        # 3. Encode input prompt
        text_encoder_lora_scale = (
            self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
        )
        prompt_embeds, negative_prompt_embeds = self.encode_prompt(
            prompt,
            num_videos_per_prompt,
            self.do_classifier_free_guidance,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=text_encoder_lora_scale,
            clip_skip=self.clip_skip,
        )
        # For classifier free guidance, we need to do two forward passes.
        # Here we concatenate the unconditional and text embeddings into a single batch
        # to avoid doing two forward passes
        if self.do_classifier_free_guidance:
            prompt_embeds = ops.cat([negative_prompt_embeds, prompt_embeds])

        prompt_embeds = prompt_embeds.repeat_interleave(repeats=num_frames, dim=0)

        if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
            image_embeds = self.prepare_ip_adapter_image_embeds(
                ip_adapter_image,
                ip_adapter_image_embeds,
                batch_size * num_videos_per_prompt,
                self.do_classifier_free_guidance,
            )

        # 4. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps)
        timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength)
        latent_timestep = timesteps[:1].repeat(batch_size * num_videos_per_prompt)
        self._num_timesteps = len(timesteps)

        # 5. Prepare latent variables
        latents = self.prepare_latents(
            batch_size * num_videos_per_prompt,
            4,
            num_frames,
            height,
            width,
            prompt_embeds.dtype,
            generator,
            latents=latents,
        )
        mask, masked_image = self.prepare_masked_condition(
            image,
            batch_size * num_videos_per_prompt,
            4,
            num_frames=num_frames,
            height=height,
            width=width,
            dtype=self.unet.dtype,
            generator=generator,
            motion_scale=motion_scale,
        )
        if strength < 1.0:
            noise = randn_tensor(latents.shape, generator=generator, dtype=latents.dtype)
            latents = self.scheduler.add_noise(masked_image[0], noise, latent_timestep)

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 7. Add image embeds for IP-Adapter
        added_cond_kwargs = (
            {"image_embeds": image_embeds}
            if ip_adapter_image is not None or ip_adapter_image_embeds is not None
            else None
        )

        # 8. Denoising loop
        self._num_timesteps = len(timesteps)
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order

        with self.progress_bar(total=self._num_timesteps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = ops.cat([latents] * 2) if self.do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
                latent_model_input = ops.cat([latent_model_input, mask, masked_image], axis=1)

                # predict the noise residual
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    cross_attention_kwargs=cross_attention_kwargs,
                    added_cond_kwargs=added_cond_kwargs,
                )[0]

                # perform guidance
                if self.do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs)[0]

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()

        # 9. Post processing
        if output_type == "latent":
            video = latents
        else:
            video_tensor = self.decode_latents(latents)
            video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type)

        if not return_dict:
            return (video,)

        return PIAPipelineOutput(frames=video)

mindone.diffusers.PIAPipeline.__call__(image, prompt=None, strength=1.0, num_frames=16, height=None, width=None, num_inference_steps=50, guidance_scale=7.5, negative_prompt=None, num_videos_per_prompt=1, eta=0.0, generator=None, latents=None, prompt_embeds=None, negative_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, motion_scale=0, output_type='pil', return_dict=False, cross_attention_kwargs=None, clip_skip=None, callback_on_step_end=None, callback_on_step_end_tensor_inputs=['latents'])

The call function to the pipeline for generation.

PARAMETER DESCRIPTION
image

The input image to be used for video generation.

TYPE: `PipelineImageInput`

prompt

The prompt or prompts to guide image generation. If not defined, you need to pass prompt_embeds.

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

strength

Indicates extent to transform the reference image. Must be between 0 and 1.

TYPE: `float`, *optional*, defaults to 1.0 DEFAULT: 1.0

height

The height in pixels of the generated video.

TYPE: `int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor` DEFAULT: None

width

The width in pixels of the generated video.

TYPE: `int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor` DEFAULT: None

num_frames

The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds amounts to 2 seconds of video.

TYPE: `int`, *optional*, defaults to 16 DEFAULT: 16

num_inference_steps

The number of denoising steps. More denoising steps usually lead to a higher quality videos at the expense of slower inference.

TYPE: `int`, *optional*, defaults to 50 DEFAULT: 50

guidance_scale

A higher guidance scale value encourages the model to generate images closely linked to the text prompt at the expense of lower image quality. Guidance scale is enabled when guidance_scale > 1.

TYPE: `float`, *optional*, defaults to 7.5 DEFAULT: 7.5

negative_prompt

The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass negative_prompt_embeds instead. Ignored when not using guidance (guidance_scale < 1).

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

eta

Corresponds to parameter eta (η) from the DDIM paper. Only applies to the [~schedulers.DDIMScheduler], and is ignored in other schedulers.

TYPE: `float`, *optional*, defaults to 0.0 DEFAULT: 0.0

generator

A np.random.Generator to make generation deterministic.

TYPE: `np.random.Generator` or `List[np.random.Generator]`, *optional* DEFAULT: None

latents

Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random generator. Latents should be of shape (batch_size, num_channel, num_frames, height, width).

TYPE: `ms.Tensor`, *optional* DEFAULT: None

prompt_embeds

Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_prompt_embeds

Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, negative_prompt_embeds are generated from the negative_prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

ip_adapter_image

(PipelineImageInput, optional): Optional image input to work with IP Adapters.

TYPE: Optional[PipelineImageInput] DEFAULT: None

ip_adapter_image_embeds

Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters. Each element should be a tensor of shape (batch_size, num_images, emb_dim). It should contain the negative image embedding if do_classifier_free_guidance is set to True. If not provided, embeddings are computed from the ip_adapter_image input argument.

TYPE: `List[ms.Tensor]`, *optional* DEFAULT: None

motion_scale

(int, optional, defaults to 0): Parameter that controls the amount and type of motion that is added to the image. Increasing the value increases the amount of motion, while specific ranges of values control the type of motion that is added. Must be between 0 and 8. Set between 0-2 to only increase the amount of motion. Set between 3-5 to create looping motion. Set between 6-8 to perform motion with image style transfer.

TYPE: int DEFAULT: 0

output_type

The output format of the generated video. Choose between ms.Tensor, PIL.Image or np.array.

TYPE: `str`, *optional*, defaults to `"pil"` DEFAULT: 'pil'

return_dict

Whether or not to return a [~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput] instead of a plain tuple.

TYPE: `bool`, *optional*, defaults to `False` DEFAULT: False

cross_attention_kwargs

A kwargs dictionary that if specified is passed along to the [AttentionProcessor] as defined in self.processor.

TYPE: `dict`, *optional* DEFAULT: None

clip_skip

Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings.

TYPE: `int`, *optional* DEFAULT: None

callback_on_step_end

A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict). callback_kwargs will include a list of all tensors as specified by callback_on_step_end_tensor_inputs.

TYPE: `Callable`, *optional* DEFAULT: None

callback_on_step_end_tensor_inputs

The list of tensor inputs for the callback_on_step_end function. The tensors specified in the list will be passed as callback_kwargs argument. You will only be able to include variables listed in the ._callback_tensor_inputs attribute of your pipeline class.

TYPE: `List`, *optional* DEFAULT: ['latents']

RETURNS DESCRIPTION

[~pipelines.pia.pipeline_pia.PIAPipelineOutput] or tuple: If return_dict is True, [~pipelines.pia.pipeline_pia.PIAPipelineOutput] is returned, otherwise a tuple is returned where the first element is a list with the generated frames.

Source code in mindone/diffusers/pipelines/pia/pipeline_pia.py
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
def __call__(
    self,
    image: PipelineImageInput,
    prompt: Union[str, List[str]] = None,
    strength: float = 1.0,
    num_frames: Optional[int] = 16,
    height: Optional[int] = None,
    width: Optional[int] = None,
    num_inference_steps: int = 50,
    guidance_scale: float = 7.5,
    negative_prompt: Optional[Union[str, List[str]]] = None,
    num_videos_per_prompt: Optional[int] = 1,
    eta: float = 0.0,
    generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
    latents: Optional[ms.Tensor] = None,
    prompt_embeds: Optional[ms.Tensor] = None,
    negative_prompt_embeds: Optional[ms.Tensor] = None,
    ip_adapter_image: Optional[PipelineImageInput] = None,
    ip_adapter_image_embeds: Optional[List[ms.Tensor]] = None,
    motion_scale: int = 0,
    output_type: Optional[str] = "pil",
    return_dict: bool = False,
    cross_attention_kwargs: Optional[Dict[str, Any]] = None,
    clip_skip: Optional[int] = None,
    callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
    callback_on_step_end_tensor_inputs: List[str] = ["latents"],
):
    r"""
    The call function to the pipeline for generation.

    Args:
        image (`PipelineImageInput`):
            The input image to be used for video generation.
        prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
        strength (`float`, *optional*, defaults to 1.0):
            Indicates extent to transform the reference `image`. Must be between 0 and 1.
        height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
            The height in pixels of the generated video.
        width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
            The width in pixels of the generated video.
        num_frames (`int`, *optional*, defaults to 16):
            The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds
            amounts to 2 seconds of video.
        num_inference_steps (`int`, *optional*, defaults to 50):
            The number of denoising steps. More denoising steps usually lead to a higher quality videos at the
            expense of slower inference.
        guidance_scale (`float`, *optional*, defaults to 7.5):
            A higher guidance scale value encourages the model to generate images closely linked to the text
            `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
        negative_prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts to guide what to not include in image generation. If not defined, you need to
            pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
        eta (`float`, *optional*, defaults to 0.0):
            Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
            to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
        generator (`np.random.Generator` or `List[np.random.Generator]`, *optional*):
            A [`np.random.Generator`](https://numpy.org/doc/stable/reference/random/generator.html) to make
            generation deterministic.
        latents (`ms.Tensor`, *optional*):
            Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video
            generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
            tensor is generated by sampling using the supplied random `generator`. Latents should be of shape
            `(batch_size, num_channel, num_frames, height, width)`.
        prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
            provided, text embeddings are generated from the `prompt` input argument.
        negative_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
            not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
        ip_adapter_image: (`PipelineImageInput`, *optional*):
            Optional image input to work with IP Adapters.
        ip_adapter_image_embeds (`List[ms.Tensor]`, *optional*):
            Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
            IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
            contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
            provided, embeddings are computed from the `ip_adapter_image` input argument.
        motion_scale: (`int`, *optional*, defaults to 0):
            Parameter that controls the amount and type of motion that is added to the image. Increasing the value
            increases the amount of motion, while specific ranges of values control the type of motion that is
            added. Must be between 0 and 8. Set between 0-2 to only increase the amount of motion. Set between 3-5
            to create looping motion. Set between 6-8 to perform motion with image style transfer.
        output_type (`str`, *optional*, defaults to `"pil"`):
            The output format of the generated video. Choose between `ms.Tensor`, `PIL.Image` or `np.array`.
        return_dict (`bool`, *optional*, defaults to `False`):
            Whether or not to return a [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] instead
            of a plain tuple.
        cross_attention_kwargs (`dict`, *optional*):
            A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
            [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
        clip_skip (`int`, *optional*):
            Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
            the output of the pre-final layer will be used for computing the prompt embeddings.
        callback_on_step_end (`Callable`, *optional*):
            A function that calls at the end of each denoising steps during the inference. The function is called
            with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
            callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
            `callback_on_step_end_tensor_inputs`.
        callback_on_step_end_tensor_inputs (`List`, *optional*):
            The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
            will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
            `._callback_tensor_inputs` attribute of your pipeline class.

    Examples:

    Returns:
        [`~pipelines.pia.pipeline_pia.PIAPipelineOutput`] or `tuple`:
            If `return_dict` is `True`, [`~pipelines.pia.pipeline_pia.PIAPipelineOutput`] is returned, otherwise a
            `tuple` is returned where the first element is a list with the generated frames.
    """
    # 0. Default height and width to unet
    height = height or self.unet.config.sample_size * self.vae_scale_factor
    width = width or self.unet.config.sample_size * self.vae_scale_factor

    num_videos_per_prompt = 1

    # 1. Check inputs. Raise error if not correct
    self.check_inputs(
        prompt,
        height,
        width,
        negative_prompt,
        prompt_embeds,
        negative_prompt_embeds,
        ip_adapter_image,
        ip_adapter_image_embeds,
        callback_on_step_end_tensor_inputs,
    )

    self._guidance_scale = guidance_scale
    self._clip_skip = clip_skip
    self._cross_attention_kwargs = cross_attention_kwargs

    # 2. Define call parameters
    if prompt is not None and isinstance(prompt, str):
        batch_size = 1
    elif prompt is not None and isinstance(prompt, list):
        batch_size = len(prompt)
    else:
        batch_size = prompt_embeds.shape[0]

    # 3. Encode input prompt
    text_encoder_lora_scale = (
        self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
    )
    prompt_embeds, negative_prompt_embeds = self.encode_prompt(
        prompt,
        num_videos_per_prompt,
        self.do_classifier_free_guidance,
        negative_prompt,
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=negative_prompt_embeds,
        lora_scale=text_encoder_lora_scale,
        clip_skip=self.clip_skip,
    )
    # For classifier free guidance, we need to do two forward passes.
    # Here we concatenate the unconditional and text embeddings into a single batch
    # to avoid doing two forward passes
    if self.do_classifier_free_guidance:
        prompt_embeds = ops.cat([negative_prompt_embeds, prompt_embeds])

    prompt_embeds = prompt_embeds.repeat_interleave(repeats=num_frames, dim=0)

    if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
        image_embeds = self.prepare_ip_adapter_image_embeds(
            ip_adapter_image,
            ip_adapter_image_embeds,
            batch_size * num_videos_per_prompt,
            self.do_classifier_free_guidance,
        )

    # 4. Prepare timesteps
    self.scheduler.set_timesteps(num_inference_steps)
    timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength)
    latent_timestep = timesteps[:1].repeat(batch_size * num_videos_per_prompt)
    self._num_timesteps = len(timesteps)

    # 5. Prepare latent variables
    latents = self.prepare_latents(
        batch_size * num_videos_per_prompt,
        4,
        num_frames,
        height,
        width,
        prompt_embeds.dtype,
        generator,
        latents=latents,
    )
    mask, masked_image = self.prepare_masked_condition(
        image,
        batch_size * num_videos_per_prompt,
        4,
        num_frames=num_frames,
        height=height,
        width=width,
        dtype=self.unet.dtype,
        generator=generator,
        motion_scale=motion_scale,
    )
    if strength < 1.0:
        noise = randn_tensor(latents.shape, generator=generator, dtype=latents.dtype)
        latents = self.scheduler.add_noise(masked_image[0], noise, latent_timestep)

    # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
    extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

    # 7. Add image embeds for IP-Adapter
    added_cond_kwargs = (
        {"image_embeds": image_embeds}
        if ip_adapter_image is not None or ip_adapter_image_embeds is not None
        else None
    )

    # 8. Denoising loop
    self._num_timesteps = len(timesteps)
    num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order

    with self.progress_bar(total=self._num_timesteps) as progress_bar:
        for i, t in enumerate(timesteps):
            # expand the latents if we are doing classifier free guidance
            latent_model_input = ops.cat([latents] * 2) if self.do_classifier_free_guidance else latents
            latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
            latent_model_input = ops.cat([latent_model_input, mask, masked_image], axis=1)

            # predict the noise residual
            noise_pred = self.unet(
                latent_model_input,
                t,
                encoder_hidden_states=prompt_embeds,
                cross_attention_kwargs=cross_attention_kwargs,
                added_cond_kwargs=added_cond_kwargs,
            )[0]

            # perform guidance
            if self.do_classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

            # compute the previous noisy sample x_t -> x_t-1
            latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs)[0]

            if callback_on_step_end is not None:
                callback_kwargs = {}
                for k in callback_on_step_end_tensor_inputs:
                    callback_kwargs[k] = locals()[k]
                callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                latents = callback_outputs.pop("latents", latents)
                prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

            # call the callback, if provided
            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                progress_bar.update()

    # 9. Post processing
    if output_type == "latent":
        video = latents
    else:
        video_tensor = self.decode_latents(latents)
        video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type)

    if not return_dict:
        return (video,)

    return PIAPipelineOutput(frames=video)

mindone.diffusers.PIAPipeline.encode_prompt(prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, lora_scale=None, clip_skip=None)

Encodes the prompt into text encoder hidden states.

PARAMETER DESCRIPTION
prompt

prompt to be encoded

TYPE: `str` or `List[str]`, *optional*

num_images_per_prompt

number of images that should be generated per prompt

TYPE: `int`

do_classifier_free_guidance

whether to use classifier free guidance or not

TYPE: `bool`

negative_prompt

The prompt or prompts not to guide the image generation. If not defined, one has to pass negative_prompt_embeds instead. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1).

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

prompt_embeds

Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_prompt_embeds

Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

lora_scale

A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.

TYPE: `float`, *optional* DEFAULT: None

clip_skip

Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings.

TYPE: `int`, *optional* DEFAULT: None

Source code in mindone/diffusers/pipelines/pia/pipeline_pia.py
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
def encode_prompt(
    self,
    prompt,
    num_images_per_prompt,
    do_classifier_free_guidance,
    negative_prompt=None,
    prompt_embeds: Optional[ms.Tensor] = None,
    negative_prompt_embeds: Optional[ms.Tensor] = None,
    lora_scale: Optional[float] = None,
    clip_skip: Optional[int] = None,
):
    r"""
    Encodes the prompt into text encoder hidden states.

    Args:
        prompt (`str` or `List[str]`, *optional*):
            prompt to be encoded
        num_images_per_prompt (`int`):
            number of images that should be generated per prompt
        do_classifier_free_guidance (`bool`):
            whether to use classifier free guidance or not
        negative_prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts not to guide the image generation. If not defined, one has to pass
            `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
            less than `1`).
        prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
            provided, text embeddings will be generated from `prompt` input argument.
        negative_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
            weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
            argument.
        lora_scale (`float`, *optional*):
            A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
        clip_skip (`int`, *optional*):
            Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
            the output of the pre-final layer will be used for computing the prompt embeddings.
    """
    # set lora scale so that monkey patched LoRA
    # function of text encoder can correctly access it
    if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
        self._lora_scale = lora_scale

        # dynamically adjust the LoRA scale
        scale_lora_layers(self.text_encoder, lora_scale)

    if prompt is not None and isinstance(prompt, str):
        batch_size = 1
    elif prompt is not None and isinstance(prompt, list):
        batch_size = len(prompt)
    else:
        batch_size = prompt_embeds.shape[0]

    if prompt_embeds is None:
        # textual inversion: process multi-vector tokens if necessary
        if isinstance(self, TextualInversionLoaderMixin):
            prompt = self.maybe_convert_prompt(prompt, self.tokenizer)

        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
            truncation=True,
            return_tensors="np",
        )
        text_input_ids = text_inputs.input_ids
        untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="np").input_ids

        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not np.array_equal(
            text_input_ids, untruncated_ids
        ):
            removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
            logger.warning(
                "The following part of your input was truncated because CLIP can only handle sequences up to"
                f" {self.tokenizer.model_max_length} tokens: {removed_text}"
            )

        if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
            attention_mask = ms.Tensor(text_inputs.attention_mask)
        else:
            attention_mask = None

        if clip_skip is None:
            prompt_embeds = self.text_encoder(ms.Tensor(text_input_ids), attention_mask=attention_mask)
            prompt_embeds = prompt_embeds[0]
        else:
            prompt_embeds = self.text_encoder(
                ms.Tensor(text_input_ids), attention_mask=attention_mask, output_hidden_states=True
            )
            # Access the `hidden_states` first, that contains a tuple of
            # all the hidden states from the encoder layers. Then index into
            # the tuple to access the hidden states from the desired layer.
            prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
            # We also need to apply the final LayerNorm here to not mess with the
            # representations. The `last_hidden_states` that we typically use for
            # obtaining the final prompt representations passes through the LayerNorm
            # layer.
            prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)

    if self.text_encoder is not None:
        prompt_embeds_dtype = self.text_encoder.dtype
    elif self.unet is not None:
        prompt_embeds_dtype = self.unet.dtype
    else:
        prompt_embeds_dtype = prompt_embeds.dtype

    prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype)

    bs_embed, seq_len, _ = prompt_embeds.shape
    # duplicate text embeddings for each generation per prompt, using mps friendly method
    prompt_embeds = prompt_embeds.tile((1, num_images_per_prompt, 1))
    prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

    # get unconditional embeddings for classifier free guidance
    if do_classifier_free_guidance and negative_prompt_embeds is None:
        uncond_tokens: List[str]
        if negative_prompt is None:
            uncond_tokens = [""] * batch_size
        elif prompt is not None and type(prompt) is not type(negative_prompt):
            raise TypeError(
                f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                f" {type(prompt)}."
            )
        elif isinstance(negative_prompt, str):
            uncond_tokens = [negative_prompt]
        elif batch_size != len(negative_prompt):
            raise ValueError(
                f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                " the batch size of `prompt`."
            )
        else:
            uncond_tokens = negative_prompt

        # textual inversion: process multi-vector tokens if necessary
        if isinstance(self, TextualInversionLoaderMixin):
            uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)

        max_length = prompt_embeds.shape[1]
        uncond_input = self.tokenizer(
            uncond_tokens,
            padding="max_length",
            max_length=max_length,
            truncation=True,
            return_tensors="np",
        )

        if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
            attention_mask = ms.Tensor(uncond_input.attention_mask)
        else:
            attention_mask = None

        negative_prompt_embeds = self.text_encoder(
            ms.Tensor(uncond_input.input_ids),
            attention_mask=attention_mask,
        )
        negative_prompt_embeds = negative_prompt_embeds[0]

    if do_classifier_free_guidance:
        # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
        seq_len = negative_prompt_embeds.shape[1]

        negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype)

        negative_prompt_embeds = negative_prompt_embeds.tile((1, num_images_per_prompt, 1))
        negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

    if self.text_encoder is not None:
        if isinstance(self, StableDiffusionLoraLoaderMixin):
            # Retrieve the original scale by scaling back the LoRA layers
            unscale_lora_layers(self.text_encoder, lora_scale)

    return prompt_embeds, negative_prompt_embeds

mindone.diffusers.pipelines.pia.PIAPipelineOutput dataclass

Bases: BaseOutput

Output class for PIAPipeline.

PARAMETER DESCRIPTION
frames

Nested list of length batch_size with denoised PIL image sequences of length num_frames, NumPy array of shape (batch_size, num_frames, channels, height, width, MindSpore tensor of shape(batch_size, num_frames, channels, height, width)`.

TYPE: `ms.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]

Source code in mindone/diffusers/pipelines/pia/pipeline_pia.py
105
106
107
108
109
110
111
112
113
114
115
116
117
@dataclass
class PIAPipelineOutput(BaseOutput):
    r"""
    Output class for PIAPipeline.

    Args:
        frames (`ms.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]):
            Nested list of length `batch_size` with denoised PIL image sequences of length `num_frames`, NumPy array of
            shape `(batch_size, num_frames, channels, height, width, MindSpore tensor of shape `(batch_size, num_frames,
            channels, height, width)`.
    """

    frames: Union[ms.Tensor, np.ndarray, List[List[PIL.Image.Image]]]