Skip to content

Lumina2

LoRA

Lumina Image 2.0: A Unified and Efficient Image Generative Model is a 2 billion parameter flow-based diffusion transformer capable of generating diverse images from text descriptions.

The abstract from the paper is:

We introduce Lumina-Image 2.0, an advanced text-to-image model that surpasses previous state-of-the-art methods across multiple benchmarks, while also shedding light on its potential to evolve into a generalist vision intelligence model. Lumina-Image 2.0 exhibits three key properties: (1) Unification – it adopts a unified architecture that treats text and image tokens as a joint sequence, enabling natural cross-modal interactions and facilitating task expansion. Besides, since high-quality captioners can provide semantically better-aligned text-image training pairs, we introduce a unified captioning system, UniCaptioner, which generates comprehensive and precise captions for the model. This not only accelerates model convergence but also enhances prompt adherence, variable-length prompt handling, and task generalization via prompt templates. (2) Efficiency – to improve the efficiency of the unified architecture, we develop a set of optimization techniques that improve semantic learning and fine-grained texture generation during training while incorporating inference-time acceleration strategies without compromising image quality. (3) Transparency – we open-source all training details, code, and models to ensure full reproducibility, aiming to bridge the gap between well-resourced closed-source research teams and independent developers.

Tip

Make sure to check out the Schedulers guide to learn how to explore the tradeoff between scheduler speed and quality, and see the reuse components across pipelines section to learn how to efficiently load the same components into multiple pipelines.

mindone.diffusers.Lumina2Pipeline

Bases: DiffusionPipeline, Lumina2LoraLoaderMixin

Pipeline for text-to-image generation using Lumina-T2I.

This model inherits from [DiffusionPipeline]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

PARAMETER DESCRIPTION
vae

Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.

TYPE: [`AutoencoderKL`]

text_encoder

Frozen Gemma2 text-encoder.

TYPE: [`Gemma2PreTrainedModel`]

tokenizer

Gemma tokenizer.

TYPE: `GemmaTokenizer` or `GemmaTokenizerFast`

transformer

A text conditioned Transformer2DModel to denoise the encoded image latents.

TYPE: [`Transformer2DModel`]

scheduler

A scheduler to be used in combination with transformer to denoise the encoded image latents.

TYPE: [`SchedulerMixin`]

Source code in mindone/diffusers/pipelines/lumina2/pipeline_lumina2.py
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
class Lumina2Pipeline(DiffusionPipeline, Lumina2LoraLoaderMixin):
    r"""
    Pipeline for text-to-image generation using Lumina-T2I.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        text_encoder ([`Gemma2PreTrainedModel`]):
            Frozen Gemma2 text-encoder.
        tokenizer (`GemmaTokenizer` or `GemmaTokenizerFast`):
            Gemma tokenizer.
        transformer ([`Transformer2DModel`]):
            A text conditioned `Transformer2DModel` to denoise the encoded image latents.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
    """

    _optional_components = []
    _callback_tensor_inputs = ["latents", "prompt_embeds"]
    model_cpu_offload_seq = "text_encoder->transformer->vae"

    def __init__(
        self,
        transformer: Lumina2Transformer2DModel,
        scheduler: FlowMatchEulerDiscreteScheduler,
        vae: AutoencoderKL,
        text_encoder: Gemma2PreTrainedModel,
        tokenizer: Union[GemmaTokenizer, GemmaTokenizerFast],
    ):
        super().__init__()

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            transformer=transformer,
            scheduler=scheduler,
        )
        self.vae_scale_factor = 8
        self.default_sample_size = (
            self.transformer.config.sample_size
            if hasattr(self, "transformer") and self.transformer is not None
            else 128
        )
        self.default_image_size = self.default_sample_size * self.vae_scale_factor
        self.system_prompt = "You are an assistant designed to generate superior images with the superior degree of image-text alignment based on textual prompts or user prompts."  # noqa

        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)

        if getattr(self, "tokenizer", None) is not None:
            self.tokenizer.padding_side = "right"

    def _get_gemma_prompt_embeds(
        self,
        prompt: Union[str, List[str]],
        max_sequence_length: int = 256,
    ) -> Tuple[ms.Tensor, ms.Tensor]:
        prompt = [prompt] if isinstance(prompt, str) else prompt
        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=max_sequence_length,
            truncation=True,
            return_tensors="np",
        )

        text_input_ids = text_inputs.input_ids
        untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="np").input_ids

        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not np.array_equal(
            text_input_ids, untruncated_ids
        ):
            removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1])
            logger.warning(
                "The following part of your input was truncated because Gemma can only handle sequences up to"
                f" {max_sequence_length} tokens: {removed_text}"
            )

        prompt_attention_mask = ms.tensor(text_inputs.attention_mask)
        text_input_ids = ms.tensor(text_input_ids)
        prompt_embeds = self.text_encoder(
            text_input_ids, attention_mask=prompt_attention_mask, output_hidden_states=True
        )
        prompt_embeds = prompt_embeds[1][-2]

        if self.text_encoder is not None:
            dtype = self.text_encoder.dtype
        elif self.transformer is not None:
            dtype = self.transformer.dtype
        else:
            dtype = None

        prompt_embeds = prompt_embeds.to(dtype=dtype)

        _, seq_len, _ = prompt_embeds.shape

        return prompt_embeds, prompt_attention_mask

    # Adapted from diffusers.pipelines.deepfloyd_if.pipeline_if.encode_prompt
    def encode_prompt(
        self,
        prompt: Union[str, List[str]],
        do_classifier_free_guidance: bool = True,
        negative_prompt: Union[str, List[str]] = None,
        num_images_per_prompt: int = 1,
        prompt_embeds: Optional[ms.Tensor] = None,
        negative_prompt_embeds: Optional[ms.Tensor] = None,
        prompt_attention_mask: Optional[ms.Tensor] = None,
        negative_prompt_attention_mask: Optional[ms.Tensor] = None,
        system_prompt: Optional[str] = None,
        max_sequence_length: int = 256,
    ) -> Tuple[ms.Tensor, ms.Tensor, ms.Tensor, ms.Tensor]:
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
                instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For
                Lumina-T2I, this should be "".
            do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
                whether to use classifier free guidance or not
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                number of images that should be generated per prompt
            prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated negative text embeddings. For Lumina-T2I, it's should be the embeddings of the "" string.
            max_sequence_length (`int`, defaults to `256`):
                Maximum sequence length to use for the prompt.
        """
        prompt = [prompt] if isinstance(prompt, str) else prompt
        if prompt is not None:
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if system_prompt is None:
            system_prompt = self.system_prompt
        if prompt is not None:
            prompt = [system_prompt + " <Prompt Start> " + p for p in prompt]

        if prompt_embeds is None:
            prompt_embeds, prompt_attention_mask = self._get_gemma_prompt_embeds(
                prompt=prompt,
                max_sequence_length=max_sequence_length,
            )

        batch_size, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.tile((1, num_images_per_prompt, 1))
        prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
        prompt_attention_mask = prompt_attention_mask.tile((num_images_per_prompt, 1))
        prompt_attention_mask = prompt_attention_mask.view(batch_size * num_images_per_prompt, -1)

        # Get negative embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            negative_prompt = negative_prompt if negative_prompt is not None else ""

            # Normalize str to list
            negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt

            if prompt is not None and type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                negative_prompt = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            negative_prompt_embeds, negative_prompt_attention_mask = self._get_gemma_prompt_embeds(
                prompt=negative_prompt,
                max_sequence_length=max_sequence_length,
            )

            batch_size, seq_len, _ = negative_prompt_embeds.shape
            # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
            negative_prompt_embeds = negative_prompt_embeds.tile((1, num_images_per_prompt, 1))
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
            negative_prompt_attention_mask = negative_prompt_attention_mask.tile((num_images_per_prompt, 1))
            negative_prompt_attention_mask = negative_prompt_attention_mask.view(batch_size * num_images_per_prompt, -1)

        return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def check_inputs(
        self,
        prompt,
        height,
        width,
        negative_prompt,
        prompt_embeds=None,
        negative_prompt_embeds=None,
        prompt_attention_mask=None,
        negative_prompt_attention_mask=None,
        callback_on_step_end_tensor_inputs=None,
        max_sequence_length=None,
    ):
        if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
            raise ValueError(
                f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}."
            )

        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"  # noqa
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and prompt_attention_mask is None:
            raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")

        if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
            raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )
            if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
                raise ValueError(
                    "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
                    f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
                    f" {negative_prompt_attention_mask.shape}."
                )

        if max_sequence_length is not None and max_sequence_length > 512:
            raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")

    def enable_vae_slicing(self):
        r"""
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
        """
        self.vae.enable_slicing()

    def disable_vae_slicing(self):
        r"""
        Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
        computing decoding in one step.
        """
        self.vae.disable_slicing()

    def enable_vae_tiling(self):
        r"""
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
        processing larger images.
        """
        self.vae.enable_tiling()

    def disable_vae_tiling(self):
        r"""
        Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
        computing decoding in one step.
        """
        self.vae.disable_tiling()

    def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, generator, latents=None):
        # VAE applies 8x compression on images but we must also account for packing which requires
        # latent height and width to be divisible by 2.
        height = 2 * (int(height) // (self.vae_scale_factor * 2))
        width = 2 * (int(width) // (self.vae_scale_factor * 2))

        shape = (batch_size, num_channels_latents, height, width)

        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(shape, generator=generator, dtype=dtype)

        return latents

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def attention_kwargs(self):
        return self._attention_kwargs

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1

    @property
    def num_timesteps(self):
        return self._num_timesteps

    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        width: Optional[int] = None,
        height: Optional[int] = None,
        num_inference_steps: int = 30,
        guidance_scale: float = 4.0,
        negative_prompt: Union[str, List[str]] = None,
        sigmas: List[float] = None,
        num_images_per_prompt: Optional[int] = 1,
        generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
        latents: Optional[ms.Tensor] = None,
        prompt_embeds: Optional[ms.Tensor] = None,
        negative_prompt_embeds: Optional[ms.Tensor] = None,
        prompt_attention_mask: Optional[ms.Tensor] = None,
        negative_prompt_attention_mask: Optional[ms.Tensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = False,
        attention_kwargs: Optional[Dict[str, Any]] = None,
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        system_prompt: Optional[str] = None,
        cfg_trunc_ratio: float = 1.0,
        cfg_normalization: bool = True,
        max_sequence_length: int = 256,
    ) -> Union[ImagePipelineOutput, Tuple]:
        """
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
                instead.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            num_inference_steps (`int`, *optional*, defaults to 30):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            sigmas (`List[float]`, *optional*):
                Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
                their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
                will be used.
            guidance_scale (`float`, *optional*, defaults to 4.0):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            height (`int`, *optional*, defaults to self.unet.config.sample_size):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to self.unet.config.sample_size):
                The width in pixels of the generated image.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [`schedulers.DDIMScheduler`], will be ignored for others.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            latents (`ms.Tensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            prompt_attention_mask (`ms.Tensor`, *optional*): Pre-generated attention mask for text embeddings.
            negative_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated negative text embeddings. For Lumina-T2I this negative prompt should be "". If not
                provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
            negative_prompt_attention_mask (`ms.Tensor`, *optional*):
                Pre-generated attention mask for negative text embeddings.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
            attention_kwargs:
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            callback_on_step_end (`Callable`, *optional*):
                A function that calls at the end of each denoising steps during the inference. The function is called
                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
                `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
                `._callback_tensor_inputs` attribute of your pipeline class.
            system_prompt (`str`, *optional*):
                The system prompt to use for the image generation.
            cfg_trunc_ratio (`float`, *optional*, defaults to `1.0`):
                The ratio of the timestep interval to apply normalization-based guidance scale.
            cfg_normalization (`bool`, *optional*, defaults to `True`):
                Whether to apply normalization-based guidance scale.
            max_sequence_length (`int`, defaults to `256`):
                Maximum sequence length to use with the `prompt`.

        Examples:

        Returns:
            [`~pipelines.ImagePipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
                returned where the first element is a list with the generated images
        """
        height = height or self.default_sample_size * self.vae_scale_factor
        width = width or self.default_sample_size * self.vae_scale_factor
        self._guidance_scale = guidance_scale
        self._attention_kwargs = attention_kwargs

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            height,
            width,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            prompt_attention_mask=prompt_attention_mask,
            negative_prompt_attention_mask=negative_prompt_attention_mask,
            max_sequence_length=max_sequence_length,
            callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
        )

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        # 3. Encode input prompt
        (
            prompt_embeds,
            prompt_attention_mask,
            negative_prompt_embeds,
            negative_prompt_attention_mask,
        ) = self.encode_prompt(
            prompt,
            self.do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            num_images_per_prompt=num_images_per_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            prompt_attention_mask=prompt_attention_mask,
            negative_prompt_attention_mask=negative_prompt_attention_mask,
            max_sequence_length=max_sequence_length,
            system_prompt=system_prompt,
        )

        # 4. Prepare latents.
        latent_channels = self.transformer.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            latent_channels,
            height,
            width,
            prompt_embeds.dtype,
            generator,
            latents,
        )

        # 5. Prepare timesteps
        sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
        image_seq_len = latents.shape[1]
        mu = calculate_shift(
            image_seq_len,
            self.scheduler.config.get("base_image_seq_len", 256),
            self.scheduler.config.get("max_image_seq_len", 4096),
            self.scheduler.config.get("base_shift", 0.5),
            self.scheduler.config.get("max_shift", 1.15),
        )
        timesteps, num_inference_steps = retrieve_timesteps(
            self.scheduler,
            num_inference_steps,
            sigmas=sigmas,
            mu=mu,
        )
        num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
        self._num_timesteps = len(timesteps)

        # 6. Denoising loop
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # compute whether apply classifier-free truncation on this timestep
                do_classifier_free_truncation = (i + 1) / num_inference_steps > cfg_trunc_ratio
                # reverse the timestep since Lumina uses t=0 as the noise and t=1 as the image
                current_timestep = 1 - t / self.scheduler.config.num_train_timesteps
                # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
                current_timestep = current_timestep.broadcast_to((latents.shape[0],))

                noise_pred_cond = self.transformer(
                    hidden_states=latents,
                    timestep=current_timestep,
                    encoder_hidden_states=prompt_embeds,
                    encoder_attention_mask=prompt_attention_mask,
                    return_dict=False,
                    attention_kwargs=self.attention_kwargs,
                )[0]

                # perform normalization-based guidance scale on a truncated timestep interval
                if self.do_classifier_free_guidance and not do_classifier_free_truncation:
                    noise_pred_uncond = self.transformer(
                        hidden_states=latents,
                        timestep=current_timestep,
                        encoder_hidden_states=negative_prompt_embeds,
                        encoder_attention_mask=negative_prompt_attention_mask,
                        return_dict=False,
                        attention_kwargs=self.attention_kwargs,
                    )[0]
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
                    # apply normalization after classifier-free guidance
                    if cfg_normalization:
                        cond_norm = mint.norm(noise_pred_cond, dim=-1, keepdim=True)
                        noise_norm = mint.norm(noise_pred, dim=-1, keepdim=True)
                        noise_pred = noise_pred * (cond_norm / noise_norm)
                else:
                    noise_pred = noise_pred_cond

                # compute the previous noisy sample x_t -> x_t-1
                noise_pred = -noise_pred
                latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()

        if not output_type == "latent":
            latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
            image = self.vae.decode(latents, return_dict=False)[0]
            image = self.image_processor.postprocess(image, output_type=output_type)
        else:
            image = latents

        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)

mindone.diffusers.Lumina2Pipeline.__call__(prompt=None, width=None, height=None, num_inference_steps=30, guidance_scale=4.0, negative_prompt=None, sigmas=None, num_images_per_prompt=1, generator=None, latents=None, prompt_embeds=None, negative_prompt_embeds=None, prompt_attention_mask=None, negative_prompt_attention_mask=None, output_type='pil', return_dict=False, attention_kwargs=None, callback_on_step_end=None, callback_on_step_end_tensor_inputs=['latents'], system_prompt=None, cfg_trunc_ratio=1.0, cfg_normalization=True, max_sequence_length=256)

Function invoked when calling the pipeline for generation.

PARAMETER DESCRIPTION
prompt

The prompt or prompts to guide the image generation. If not defined, one has to pass prompt_embeds. instead.

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

negative_prompt

The prompt or prompts not to guide the image generation. If not defined, one has to pass negative_prompt_embeds instead. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1).

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

num_inference_steps

The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.

TYPE: `int`, *optional*, defaults to 30 DEFAULT: 30

sigmas

Custom sigmas to use for the denoising process with schedulers which support a sigmas argument in their set_timesteps method. If not defined, the default behavior when num_inference_steps is passed will be used.

TYPE: `List[float]`, *optional* DEFAULT: None

guidance_scale

Guidance scale as defined in Classifier-Free Diffusion Guidance. guidance_scale is defined as w of equation 2. of Imagen Paper. Guidance scale is enabled by setting guidance_scale > 1. Higher guidance scale encourages to generate images that are closely linked to the text prompt, usually at the expense of lower image quality.

TYPE: `float`, *optional*, defaults to 4.0 DEFAULT: 4.0

num_images_per_prompt

The number of images to generate per prompt.

TYPE: `int`, *optional*, defaults to 1 DEFAULT: 1

height

The height in pixels of the generated image.

TYPE: `int`, *optional*, defaults to self.unet.config.sample_size DEFAULT: None

width

The width in pixels of the generated image.

TYPE: `int`, *optional*, defaults to self.unet.config.sample_size DEFAULT: None

eta

Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [schedulers.DDIMScheduler], will be ignored for others.

TYPE: `float`, *optional*, defaults to 0.0

generator

One or a list of torch generator(s) to make generation deterministic.

TYPE: `torch.Generator` or `List[torch.Generator]`, *optional* DEFAULT: None

latents

Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random generator.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

prompt_embeds

Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

prompt_attention_mask

Pre-generated attention mask for text embeddings.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_prompt_embeds

Pre-generated negative text embeddings. For Lumina-T2I this negative prompt should be "". If not provided, negative_prompt_embeds will be generated from negative_prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_prompt_attention_mask

Pre-generated attention mask for negative text embeddings.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

output_type

The output format of the generate image. Choose between PIL: PIL.Image.Image or np.array.

TYPE: `str`, *optional*, defaults to `"pil"` DEFAULT: 'pil'

return_dict

Whether or not to return a [~pipelines.stable_diffusion.IFPipelineOutput] instead of a plain tuple.

TYPE: `bool`, *optional*, defaults to `False` DEFAULT: False

attention_kwargs

A kwargs dictionary that if specified is passed along to the AttentionProcessor as defined under self.processor in diffusers.models.attention_processor.

TYPE: Optional[Dict[str, Any]] DEFAULT: None

callback_on_step_end

A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict). callback_kwargs will include a list of all tensors as specified by callback_on_step_end_tensor_inputs.

TYPE: `Callable`, *optional* DEFAULT: None

callback_on_step_end_tensor_inputs

The list of tensor inputs for the callback_on_step_end function. The tensors specified in the list will be passed as callback_kwargs argument. You will only be able to include variables listed in the ._callback_tensor_inputs attribute of your pipeline class.

TYPE: `List`, *optional* DEFAULT: ['latents']

system_prompt

The system prompt to use for the image generation.

TYPE: `str`, *optional* DEFAULT: None

cfg_trunc_ratio

The ratio of the timestep interval to apply normalization-based guidance scale.

TYPE: `float`, *optional*, defaults to `1.0` DEFAULT: 1.0

cfg_normalization

Whether to apply normalization-based guidance scale.

TYPE: `bool`, *optional*, defaults to `True` DEFAULT: True

max_sequence_length

Maximum sequence length to use with the prompt.

TYPE: `int`, defaults to `256` DEFAULT: 256

RETURNS DESCRIPTION
Union[ImagePipelineOutput, Tuple]

[~pipelines.ImagePipelineOutput] or tuple: If return_dict is True, [~pipelines.ImagePipelineOutput] is returned, otherwise a tuple is returned where the first element is a list with the generated images

Source code in mindone/diffusers/pipelines/lumina2/pipeline_lumina2.py
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
def __call__(
    self,
    prompt: Union[str, List[str]] = None,
    width: Optional[int] = None,
    height: Optional[int] = None,
    num_inference_steps: int = 30,
    guidance_scale: float = 4.0,
    negative_prompt: Union[str, List[str]] = None,
    sigmas: List[float] = None,
    num_images_per_prompt: Optional[int] = 1,
    generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
    latents: Optional[ms.Tensor] = None,
    prompt_embeds: Optional[ms.Tensor] = None,
    negative_prompt_embeds: Optional[ms.Tensor] = None,
    prompt_attention_mask: Optional[ms.Tensor] = None,
    negative_prompt_attention_mask: Optional[ms.Tensor] = None,
    output_type: Optional[str] = "pil",
    return_dict: bool = False,
    attention_kwargs: Optional[Dict[str, Any]] = None,
    callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
    callback_on_step_end_tensor_inputs: List[str] = ["latents"],
    system_prompt: Optional[str] = None,
    cfg_trunc_ratio: float = 1.0,
    cfg_normalization: bool = True,
    max_sequence_length: int = 256,
) -> Union[ImagePipelineOutput, Tuple]:
    """
    Function invoked when calling the pipeline for generation.

    Args:
        prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
            instead.
        negative_prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts not to guide the image generation. If not defined, one has to pass
            `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
            less than `1`).
        num_inference_steps (`int`, *optional*, defaults to 30):
            The number of denoising steps. More denoising steps usually lead to a higher quality image at the
            expense of slower inference.
        sigmas (`List[float]`, *optional*):
            Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
            their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
            will be used.
        guidance_scale (`float`, *optional*, defaults to 4.0):
            Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
            `guidance_scale` is defined as `w` of equation 2. of [Imagen
            Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
            1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
            usually at the expense of lower image quality.
        num_images_per_prompt (`int`, *optional*, defaults to 1):
            The number of images to generate per prompt.
        height (`int`, *optional*, defaults to self.unet.config.sample_size):
            The height in pixels of the generated image.
        width (`int`, *optional*, defaults to self.unet.config.sample_size):
            The width in pixels of the generated image.
        eta (`float`, *optional*, defaults to 0.0):
            Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
            [`schedulers.DDIMScheduler`], will be ignored for others.
        generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
            One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
            to make generation deterministic.
        latents (`ms.Tensor`, *optional*):
            Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
            generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
            tensor will ge generated by sampling using the supplied random `generator`.
        prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
            provided, text embeddings will be generated from `prompt` input argument.
        prompt_attention_mask (`ms.Tensor`, *optional*): Pre-generated attention mask for text embeddings.
        negative_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated negative text embeddings. For Lumina-T2I this negative prompt should be "". If not
            provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
        negative_prompt_attention_mask (`ms.Tensor`, *optional*):
            Pre-generated attention mask for negative text embeddings.
        output_type (`str`, *optional*, defaults to `"pil"`):
            The output format of the generate image. Choose between
            [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
        return_dict (`bool`, *optional*, defaults to `False`):
            Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
        attention_kwargs:
            A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
            `self.processor` in
            [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
        callback_on_step_end (`Callable`, *optional*):
            A function that calls at the end of each denoising steps during the inference. The function is called
            with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
            callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
            `callback_on_step_end_tensor_inputs`.
        callback_on_step_end_tensor_inputs (`List`, *optional*):
            The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
            will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
            `._callback_tensor_inputs` attribute of your pipeline class.
        system_prompt (`str`, *optional*):
            The system prompt to use for the image generation.
        cfg_trunc_ratio (`float`, *optional*, defaults to `1.0`):
            The ratio of the timestep interval to apply normalization-based guidance scale.
        cfg_normalization (`bool`, *optional*, defaults to `True`):
            Whether to apply normalization-based guidance scale.
        max_sequence_length (`int`, defaults to `256`):
            Maximum sequence length to use with the `prompt`.

    Examples:

    Returns:
        [`~pipelines.ImagePipelineOutput`] or `tuple`:
            If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
            returned where the first element is a list with the generated images
    """
    height = height or self.default_sample_size * self.vae_scale_factor
    width = width or self.default_sample_size * self.vae_scale_factor
    self._guidance_scale = guidance_scale
    self._attention_kwargs = attention_kwargs

    # 1. Check inputs. Raise error if not correct
    self.check_inputs(
        prompt,
        height,
        width,
        negative_prompt,
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=negative_prompt_embeds,
        prompt_attention_mask=prompt_attention_mask,
        negative_prompt_attention_mask=negative_prompt_attention_mask,
        max_sequence_length=max_sequence_length,
        callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
    )

    # 2. Define call parameters
    if prompt is not None and isinstance(prompt, str):
        batch_size = 1
    elif prompt is not None and isinstance(prompt, list):
        batch_size = len(prompt)
    else:
        batch_size = prompt_embeds.shape[0]

    # 3. Encode input prompt
    (
        prompt_embeds,
        prompt_attention_mask,
        negative_prompt_embeds,
        negative_prompt_attention_mask,
    ) = self.encode_prompt(
        prompt,
        self.do_classifier_free_guidance,
        negative_prompt=negative_prompt,
        num_images_per_prompt=num_images_per_prompt,
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=negative_prompt_embeds,
        prompt_attention_mask=prompt_attention_mask,
        negative_prompt_attention_mask=negative_prompt_attention_mask,
        max_sequence_length=max_sequence_length,
        system_prompt=system_prompt,
    )

    # 4. Prepare latents.
    latent_channels = self.transformer.config.in_channels
    latents = self.prepare_latents(
        batch_size * num_images_per_prompt,
        latent_channels,
        height,
        width,
        prompt_embeds.dtype,
        generator,
        latents,
    )

    # 5. Prepare timesteps
    sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
    image_seq_len = latents.shape[1]
    mu = calculate_shift(
        image_seq_len,
        self.scheduler.config.get("base_image_seq_len", 256),
        self.scheduler.config.get("max_image_seq_len", 4096),
        self.scheduler.config.get("base_shift", 0.5),
        self.scheduler.config.get("max_shift", 1.15),
    )
    timesteps, num_inference_steps = retrieve_timesteps(
        self.scheduler,
        num_inference_steps,
        sigmas=sigmas,
        mu=mu,
    )
    num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
    self._num_timesteps = len(timesteps)

    # 6. Denoising loop
    with self.progress_bar(total=num_inference_steps) as progress_bar:
        for i, t in enumerate(timesteps):
            # compute whether apply classifier-free truncation on this timestep
            do_classifier_free_truncation = (i + 1) / num_inference_steps > cfg_trunc_ratio
            # reverse the timestep since Lumina uses t=0 as the noise and t=1 as the image
            current_timestep = 1 - t / self.scheduler.config.num_train_timesteps
            # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
            current_timestep = current_timestep.broadcast_to((latents.shape[0],))

            noise_pred_cond = self.transformer(
                hidden_states=latents,
                timestep=current_timestep,
                encoder_hidden_states=prompt_embeds,
                encoder_attention_mask=prompt_attention_mask,
                return_dict=False,
                attention_kwargs=self.attention_kwargs,
            )[0]

            # perform normalization-based guidance scale on a truncated timestep interval
            if self.do_classifier_free_guidance and not do_classifier_free_truncation:
                noise_pred_uncond = self.transformer(
                    hidden_states=latents,
                    timestep=current_timestep,
                    encoder_hidden_states=negative_prompt_embeds,
                    encoder_attention_mask=negative_prompt_attention_mask,
                    return_dict=False,
                    attention_kwargs=self.attention_kwargs,
                )[0]
                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
                # apply normalization after classifier-free guidance
                if cfg_normalization:
                    cond_norm = mint.norm(noise_pred_cond, dim=-1, keepdim=True)
                    noise_norm = mint.norm(noise_pred, dim=-1, keepdim=True)
                    noise_pred = noise_pred * (cond_norm / noise_norm)
            else:
                noise_pred = noise_pred_cond

            # compute the previous noisy sample x_t -> x_t-1
            noise_pred = -noise_pred
            latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]

            if callback_on_step_end is not None:
                callback_kwargs = {}
                for k in callback_on_step_end_tensor_inputs:
                    callback_kwargs[k] = locals()[k]
                callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                latents = callback_outputs.pop("latents", latents)
                prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)

            # call the callback, if provided
            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                progress_bar.update()

    if not output_type == "latent":
        latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
        image = self.vae.decode(latents, return_dict=False)[0]
        image = self.image_processor.postprocess(image, output_type=output_type)
    else:
        image = latents

    if not return_dict:
        return (image,)

    return ImagePipelineOutput(images=image)

mindone.diffusers.Lumina2Pipeline.disable_vae_slicing()

Disable sliced VAE decoding. If enable_vae_slicing was previously enabled, this method will go back to computing decoding in one step.

Source code in mindone/diffusers/pipelines/lumina2/pipeline_lumina2.py
417
418
419
420
421
422
def disable_vae_slicing(self):
    r"""
    Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
    computing decoding in one step.
    """
    self.vae.disable_slicing()

mindone.diffusers.Lumina2Pipeline.disable_vae_tiling()

Disable tiled VAE decoding. If enable_vae_tiling was previously enabled, this method will go back to computing decoding in one step.

Source code in mindone/diffusers/pipelines/lumina2/pipeline_lumina2.py
432
433
434
435
436
437
def disable_vae_tiling(self):
    r"""
    Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
    computing decoding in one step.
    """
    self.vae.disable_tiling()

mindone.diffusers.Lumina2Pipeline.enable_vae_slicing()

Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.

Source code in mindone/diffusers/pipelines/lumina2/pipeline_lumina2.py
410
411
412
413
414
415
def enable_vae_slicing(self):
    r"""
    Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
    compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
    """
    self.vae.enable_slicing()

mindone.diffusers.Lumina2Pipeline.enable_vae_tiling()

Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images.

Source code in mindone/diffusers/pipelines/lumina2/pipeline_lumina2.py
424
425
426
427
428
429
430
def enable_vae_tiling(self):
    r"""
    Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
    compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
    processing larger images.
    """
    self.vae.enable_tiling()

mindone.diffusers.Lumina2Pipeline.encode_prompt(prompt, do_classifier_free_guidance=True, negative_prompt=None, num_images_per_prompt=1, prompt_embeds=None, negative_prompt_embeds=None, prompt_attention_mask=None, negative_prompt_attention_mask=None, system_prompt=None, max_sequence_length=256)

Encodes the prompt into text encoder hidden states.

PARAMETER DESCRIPTION
prompt

prompt to be encoded

TYPE: `str` or `List[str]`, *optional*

negative_prompt

The prompt not to guide the image generation. If not defined, one has to pass negative_prompt_embeds instead. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1). For Lumina-T2I, this should be "".

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

do_classifier_free_guidance

whether to use classifier free guidance or not

TYPE: `bool`, *optional*, defaults to `True` DEFAULT: True

num_images_per_prompt

number of images that should be generated per prompt

TYPE: `int`, *optional*, defaults to 1 DEFAULT: 1

prompt_embeds

Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_prompt_embeds

Pre-generated negative text embeddings. For Lumina-T2I, it's should be the embeddings of the "" string.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

max_sequence_length

Maximum sequence length to use for the prompt.

TYPE: `int`, defaults to `256` DEFAULT: 256

Source code in mindone/diffusers/pipelines/lumina2/pipeline_lumina2.py
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
def encode_prompt(
    self,
    prompt: Union[str, List[str]],
    do_classifier_free_guidance: bool = True,
    negative_prompt: Union[str, List[str]] = None,
    num_images_per_prompt: int = 1,
    prompt_embeds: Optional[ms.Tensor] = None,
    negative_prompt_embeds: Optional[ms.Tensor] = None,
    prompt_attention_mask: Optional[ms.Tensor] = None,
    negative_prompt_attention_mask: Optional[ms.Tensor] = None,
    system_prompt: Optional[str] = None,
    max_sequence_length: int = 256,
) -> Tuple[ms.Tensor, ms.Tensor, ms.Tensor, ms.Tensor]:
    r"""
    Encodes the prompt into text encoder hidden states.

    Args:
        prompt (`str` or `List[str]`, *optional*):
            prompt to be encoded
        negative_prompt (`str` or `List[str]`, *optional*):
            The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
            instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For
            Lumina-T2I, this should be "".
        do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
            whether to use classifier free guidance or not
        num_images_per_prompt (`int`, *optional*, defaults to 1):
            number of images that should be generated per prompt
        prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
            provided, text embeddings will be generated from `prompt` input argument.
        negative_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated negative text embeddings. For Lumina-T2I, it's should be the embeddings of the "" string.
        max_sequence_length (`int`, defaults to `256`):
            Maximum sequence length to use for the prompt.
    """
    prompt = [prompt] if isinstance(prompt, str) else prompt
    if prompt is not None:
        batch_size = len(prompt)
    else:
        batch_size = prompt_embeds.shape[0]

    if system_prompt is None:
        system_prompt = self.system_prompt
    if prompt is not None:
        prompt = [system_prompt + " <Prompt Start> " + p for p in prompt]

    if prompt_embeds is None:
        prompt_embeds, prompt_attention_mask = self._get_gemma_prompt_embeds(
            prompt=prompt,
            max_sequence_length=max_sequence_length,
        )

    batch_size, seq_len, _ = prompt_embeds.shape
    # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
    prompt_embeds = prompt_embeds.tile((1, num_images_per_prompt, 1))
    prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
    prompt_attention_mask = prompt_attention_mask.tile((num_images_per_prompt, 1))
    prompt_attention_mask = prompt_attention_mask.view(batch_size * num_images_per_prompt, -1)

    # Get negative embeddings for classifier free guidance
    if do_classifier_free_guidance and negative_prompt_embeds is None:
        negative_prompt = negative_prompt if negative_prompt is not None else ""

        # Normalize str to list
        negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt

        if prompt is not None and type(prompt) is not type(negative_prompt):
            raise TypeError(
                f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                f" {type(prompt)}."
            )
        elif isinstance(negative_prompt, str):
            negative_prompt = [negative_prompt]
        elif batch_size != len(negative_prompt):
            raise ValueError(
                f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                " the batch size of `prompt`."
            )
        negative_prompt_embeds, negative_prompt_attention_mask = self._get_gemma_prompt_embeds(
            prompt=negative_prompt,
            max_sequence_length=max_sequence_length,
        )

        batch_size, seq_len, _ = negative_prompt_embeds.shape
        # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
        negative_prompt_embeds = negative_prompt_embeds.tile((1, num_images_per_prompt, 1))
        negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
        negative_prompt_attention_mask = negative_prompt_attention_mask.tile((num_images_per_prompt, 1))
        negative_prompt_attention_mask = negative_prompt_attention_mask.view(batch_size * num_images_per_prompt, -1)

    return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask