EasyAnimate¶
EasyAnimate by Alibaba PAI.
The description from it's GitHub page: EasyAnimate is a pipeline based on the transformer architecture, designed for generating AI images and videos, and for training baseline models and Lora models for Diffusion Transformer. We support direct prediction from pre-trained EasyAnimate models, allowing for the generation of videos with various resolutions, approximately 6 seconds in length, at 8fps (EasyAnimateV5.1, 1 to 49 frames). Additionally, users can train their own baseline and Lora models for specific style transformations.
This pipeline was contributed by bubbliiiing. The original codebase can be found here. The original weights can be found under hf.co/alibaba-pai.
There are two official EasyAnimate checkpoints for text-to-video and video-to-video.
checkpoints | recommended inference dtype |
---|---|
alibaba-pai/EasyAnimateV5.1-12b-zh |
mindspore.float16 |
alibaba-pai/EasyAnimateV5.1-12b-zh-InP |
mindspore.float16 |
There is one official EasyAnimate checkpoints available for image-to-video and video-to-video.
checkpoints | recommended inference dtype |
---|---|
alibaba-pai/EasyAnimateV5.1-12b-zh-InP |
mindspore.float16 |
There are two official EasyAnimate checkpoints available for control-to-video.
checkpoints | recommended inference dtype |
---|---|
alibaba-pai/EasyAnimateV5.1-12b-zh-Control |
mindspore.float16 |
alibaba-pai/EasyAnimateV5.1-12b-zh-Control-Camera |
mindspore.float16 |
For the EasyAnimateV5.1 series: - Text-to-video (T2V) and Image-to-video (I2V) works for multiple resolutions. The width and height can vary from 256 to 1024. - Both T2V and I2V models support generation with 1~49 frames and work best at this value. Exporting videos at 8 FPS is recommended.
mindone.diffusers.EasyAnimatePipeline
¶
Bases: DiffusionPipeline
Pipeline for text-to-video generation using EasyAnimate.
This model inherits from [DiffusionPipeline
]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
EasyAnimate uses one text encoder qwen2 vl in V5.1.
PARAMETER | DESCRIPTION |
---|---|
vae |
Variational Auto-Encoder (VAE) Model to encode and decode video to and from latent representations.
TYPE:
|
text_encoder |
EasyAnimate uses qwen2 vl in V5.1.
TYPE:
|
tokenizer |
A
TYPE:
|
transformer |
The EasyAnimate model designed by EasyAnimate Team.
TYPE:
|
scheduler |
A scheduler to be used in combination with EasyAnimate to denoise the encoded image latents.
TYPE:
|
Source code in mindone/diffusers/pipelines/easyanimate/pipeline_easyanimate.py
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 |
|
mindone.diffusers.EasyAnimatePipeline.__call__(prompt=None, num_frames=49, height=512, width=512, num_inference_steps=50, guidance_scale=5.0, negative_prompt=None, num_images_per_prompt=1, eta=0.0, generator=None, latents=None, prompt_embeds=None, timesteps=None, negative_prompt_embeds=None, prompt_attention_mask=None, negative_prompt_attention_mask=None, output_type='pil', return_dict=False, callback_on_step_end=None, callback_on_step_end_tensor_inputs=['latents'], guidance_rescale=0.0)
¶
Generates images or video using the EasyAnimate pipeline based on the provided prompts.
Examples:
prompt (str
or List[str]
, optional):
Text prompts to guide the image or video generation. If not provided, use prompt_embeds
instead.
num_frames (int
, optional):
Length of the generated video (in frames).
height (int
, optional):
Height of the generated image in pixels.
width (int
, optional):
Width of the generated image in pixels.
num_inference_steps (int
, optional, defaults to 50):
Number of denoising steps during generation. More steps generally yield higher quality images but slow
down inference.
guidance_scale (float
, optional, defaults to 5.0):
Encourages the model to align outputs with prompts. A higher value may decrease image quality.
negative_prompt (str
or List[str]
, optional):
Prompts indicating what to exclude in generation. If not specified, use negative_prompt_embeds
.
num_images_per_prompt (int
, optional, defaults to 1):
Number of images to generate for each prompt.
eta (float
, optional, defaults to 0.0):
Applies to DDIM scheduling. Controlled by the eta parameter from the related literature.
generator (np.random.Generator
or List[np.random.Generator]
, optional):
A generator to ensure reproducibility in image generation.
latents (ms.Tensor
, optional):
Predefined latent tensors to condition generation.
prompt_embeds (ms.Tensor
, optional):
Text embeddings for the prompts. Overrides prompt string inputs for more flexibility.
negative_prompt_embeds (ms.Tensor
, optional):
Embeddings for negative prompts. Overrides string inputs if defined.
prompt_attention_mask (ms.Tensor
, optional):
Attention mask for the primary prompt embeddings.
negative_prompt_attention_mask (ms.Tensor
, optional):
Attention mask for negative prompt embeddings.
output_type (str
, optional, defaults to "latent"):
Format of the generated output, either as a PIL image or as a NumPy array.
return_dict (bool
, optional, defaults to False
):
If True
, returns a structured output. Otherwise returns a simple tuple.
callback_on_step_end (Callable
, optional):
Functions called at the end of each denoising step.
callback_on_step_end_tensor_inputs (List[str]
, optional):
Tensor names to be included in callback function calls.
guidance_rescale (float
, optional, defaults to 0.0):
Adjusts noise levels based on guidance scale.
original_size (Tuple[int, int]
, optional, defaults to (1024, 1024)
):
Original dimensions of the output.
target_size (Tuple[int, int]
, optional):
Desired output dimensions for calculations.
crops_coords_top_left (Tuple[int, int]
, optional, defaults to (0, 0)
):
Coordinates for cropping.
RETURNS | DESCRIPTION |
---|---|
[ |
Source code in mindone/diffusers/pipelines/easyanimate/pipeline_easyanimate.py
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 |
|
mindone.diffusers.EasyAnimatePipeline.encode_prompt(prompt, num_images_per_prompt=1, do_classifier_free_guidance=True, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, prompt_attention_mask=None, negative_prompt_attention_mask=None, dtype=None, max_sequence_length=256)
¶
Encodes the prompt into text encoder hidden states.
PARAMETER | DESCRIPTION |
---|---|
prompt |
prompt to be encoded
TYPE:
|
dtype |
mindspore dtype
TYPE:
|
num_images_per_prompt |
number of images that should be generated per prompt
TYPE:
|
do_classifier_free_guidance |
whether to use classifier free guidance or not
TYPE:
|
negative_prompt |
The prompt or prompts not to guide the image generation. If not defined, one has to pass
TYPE:
|
prompt_embeds |
Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not
provided, text embeddings will be generated from
TYPE:
|
negative_prompt_embeds |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt
weighting. If not provided, negative_prompt_embeds will be generated from
TYPE:
|
prompt_attention_mask |
Attention mask for the prompt. Required when
TYPE:
|
negative_prompt_attention_mask |
Attention mask for the negative prompt. Required when
TYPE:
|
max_sequence_length |
maximum sequence length to use for the prompt.
TYPE:
|
Source code in mindone/diffusers/pipelines/easyanimate/pipeline_easyanimate.py
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
|
mindone.diffusers.pipelines.easyanimate.pipeline_output.EasyAnimatePipelineOutput
dataclass
¶
Bases: BaseOutput
Output class for EasyAnimate pipelines.
PARAMETER | DESCRIPTION |
---|---|
frames |
List of video outputs - It can be a nested list of length
TYPE:
|
Source code in mindone/diffusers/pipelines/easyanimate/pipeline_output.py
8 9 10 11 12 13 14 15 16 17 18 19 20 |
|