Lumina2Transformer2DModel¶
A Diffusion Transformer model for 3D video-like data was introduced in Lumina Image 2.0 by Alpha-VLLM.
mindone.diffusers.Lumina2Transformer2DModel
¶
Bases: ModelMixin
, ConfigMixin
, PeftAdapterMixin
, FromOriginalModelMixin
PARAMETER | DESCRIPTION |
---|---|
sample_size |
The width of the latent images. This is fixed during training since it is used to learn a number of position embeddings.
TYPE:
|
patch_size |
The size of each patch in the image. This parameter defines the resolution of patches fed into the model.
TYPE:
|
in_channels |
The number of input channels for the model. Typically, this matches the number of channels in the input images.
TYPE:
|
hidden_size |
The dimensionality of the hidden layers in the model. This parameter determines the width of the model's hidden representations.
TYPE:
|
num_layers |
The number of layers in the model. This defines the depth of the neural network.
TYPE:
|
num_attention_heads |
The number of attention heads in each attention layer. This parameter specifies how many separate attention mechanisms are used.
TYPE:
|
num_kv_heads |
The number of key-value heads in the attention mechanism, if different from the number of attention heads. If None, it defaults to num_attention_heads.
TYPE:
|
multiple_of |
A factor that the hidden size should be a multiple of. This can help optimize certain hardware configurations.
TYPE:
|
ffn_dim_multiplier |
A multiplier for the dimensionality of the feed-forward network. If None, it uses a default value based on the model configuration.
TYPE:
|
norm_eps |
A small value added to the denominator for numerical stability in normalization layers.
TYPE:
|
scaling_factor |
A scaling factor applied to certain parameters or layers in the model. This can be used for adjusting the overall scale of the model's operations.
TYPE:
|
Source code in mindone/diffusers/models/transformers/transformer_lumina2.py
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 |
|
mindone.diffusers.models.modeling_outputs.Transformer2DModelOutput
dataclass
¶
Bases: BaseOutput
The output of [Transformer2DModel
].
PARAMETER | DESCRIPTION |
---|---|
`(batch |
The hidden states output conditioned on the
TYPE:
|
Source code in mindone/diffusers/models/modeling_outputs.py
22 23 24 25 26 27 28 29 30 31 32 33 34 |
|