Skip to content

SanaControlNetModel

The ControlNet model was introduced in Adding Conditional Control to Text-to-Image Diffusion Models by Lvmin Zhang, Anyi Rao, Maneesh Agrawala. It provides a greater degree of control over text-to-image generation by conditioning the model on additional inputs such as edge maps, depth maps, segmentation maps, and keypoints for pose detection.

The abstract from the paper is:

We present ControlNet, a neural network architecture to add spatial conditioning controls to large, pretrained text-to-image diffusion models. ControlNet locks the production-ready large diffusion models, and reuses their deep and robust encoding layers pretrained with billions of images as a strong backbone to learn a diverse set of conditional controls. The neural architecture is connected with "zero convolutions" (zero-initialized convolution layers) that progressively grow the parameters from zero and ensure that no harmful noise could affect the finetuning. We test various conditioning controls, eg, edges, depth, segmentation, human pose, etc, with Stable Diffusion, using single or multiple conditions, with or without prompts. We show that the training of ControlNets is robust with small (<50k) and large (>1m) datasets. Extensive results show that ControlNet may facilitate wider applications to control image diffusion models.

This model was contributed by ishan24. ❤️ The original codebase can be found at NVlabs/Sana, and you can find official ControlNet checkpoints on Efficient-Large-Model's Hub profile.

mindone.diffusers.SanaControlNetModel

Bases: ModelMixin, ConfigMixin, PeftAdapterMixin

Source code in mindone/diffusers/models/controlnets/controlnet_sana.py
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
class SanaControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
    _supports_gradient_checkpointing = True
    _no_split_modules = ["SanaTransformerBlock", "PatchEmbed"]
    _skip_layerwise_casting_patterns = ["patch_embed", "norm"]

    @register_to_config
    def __init__(
        self,
        in_channels: int = 32,
        out_channels: Optional[int] = 32,
        num_attention_heads: int = 70,
        attention_head_dim: int = 32,
        num_layers: int = 7,
        num_cross_attention_heads: Optional[int] = 20,
        cross_attention_head_dim: Optional[int] = 112,
        cross_attention_dim: Optional[int] = 2240,
        caption_channels: int = 2304,
        mlp_ratio: float = 2.5,
        dropout: float = 0.0,
        attention_bias: bool = False,
        sample_size: int = 32,
        patch_size: int = 1,
        norm_elementwise_affine: bool = False,
        norm_eps: float = 1e-6,
        interpolation_scale: Optional[int] = None,
    ) -> None:
        super().__init__()

        out_channels = out_channels or in_channels
        inner_dim = num_attention_heads * attention_head_dim

        # 1. Patch Embedding
        self.patch_embed = PatchEmbed(
            height=sample_size,
            width=sample_size,
            patch_size=patch_size,
            in_channels=in_channels,
            embed_dim=inner_dim,
            interpolation_scale=interpolation_scale,
            pos_embed_type="sincos" if interpolation_scale is not None else None,
        )

        # 2. Additional condition embeddings
        self.time_embed = AdaLayerNormSingle(inner_dim)

        self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim)
        self.caption_norm = RMSNorm(inner_dim, eps=1e-5, elementwise_affine=True)

        # 3. Transformer blocks
        self.transformer_blocks = nn.CellList(
            [
                SanaTransformerBlock(
                    inner_dim,
                    num_attention_heads,
                    attention_head_dim,
                    dropout=dropout,
                    num_cross_attention_heads=num_cross_attention_heads,
                    cross_attention_head_dim=cross_attention_head_dim,
                    cross_attention_dim=cross_attention_dim,
                    attention_bias=attention_bias,
                    norm_elementwise_affine=norm_elementwise_affine,
                    norm_eps=norm_eps,
                    mlp_ratio=mlp_ratio,
                )
                for _ in range(num_layers)
            ]
        )

        # controlnet_blocks
        self.controlnet_blocks = []

        self.input_block = zero_module(mint.nn.Linear(inner_dim, inner_dim))
        for _ in range(len(self.transformer_blocks)):
            controlnet_block = mint.nn.Linear(inner_dim, inner_dim)
            controlnet_block = zero_module(controlnet_block)
            self.controlnet_blocks.append(controlnet_block)

        self.controlnet_blocks = nn.CellList(self.controlnet_blocks)

        self.gradient_checkpointing = False

        self.config_patch_size = self.config.patch_size

    @property
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(name: str, module: ms.nn.Cell, processors: Dict[str, AttentionProcessor]):
            if hasattr(module, "get_processor"):
                processors[f"{name}.processor"] = module.get_processor()

            for sub_name, child in module.name_cells().items():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
        r"""
        Sets the attention processor to use to compute attention.

        Parameters:
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: nn.Cell, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))

            for sub_name, child in module.name_cells().items():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.name_cells().items():
            fn_recursive_attn_processor(name, module, processor)

    def construct(
        self,
        hidden_states: ms.Tensor,
        encoder_hidden_states: ms.Tensor,
        timestep: ms.Tensor,
        controlnet_cond: ms.Tensor,
        conditioning_scale: float = 1.0,
        encoder_attention_mask: Optional[ms.Tensor] = None,
        attention_mask: Optional[ms.Tensor] = None,
        attention_kwargs: Optional[Dict[str, Any]] = None,
        return_dict: bool = False,
    ) -> Union[Tuple[ms.Tensor, ...], Transformer2DModelOutput]:
        if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
            # weight the lora layers by setting `lora_scale` for each PEFT layer here
            # and remove `lora_scale` from each PEFT layer at the end.
            # scale_lora_layers & unscale_lora_layers maybe contains some operation forbidden in graph mode
            raise RuntimeError(
                f"You are trying to set scaling of lora layer by passing {attention_kwargs['scale']}. "
                f"However it's not allowed in on-the-fly model forwarding. "
                f"Please manually call `scale_lora_layers(model, lora_scale)` before model forwarding and "
                f"`unscale_lora_layers(model, lora_scale)` after model forwarding. "
                f"For example, it can be done in a pipeline call like `StableDiffusionPipeline.__call__`."
            )

        # ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
        #   we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
        #   we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
        # expects mask of shape:
        #   [batch, key_tokens]
        # adds singleton query_tokens dimension:
        #   [batch,                    1, key_tokens]
        # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
        #   [batch,  heads, query_tokens, key_tokens] (e.g. torch sdp attn)
        #   [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
        if attention_mask is not None and attention_mask.ndim == 2:
            # assume that mask is expressed as:
            #   (1 = keep,      0 = discard)
            # convert mask into a bias that can be added to attention scores:
            #       (keep = +0,     discard = -10000.0)
            attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

        # convert encoder_attention_mask to a bias the same way we do for attention_mask
        if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
            encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
            encoder_attention_mask = encoder_attention_mask.unsqueeze(1)

        # 1. Input
        batch_size, num_channels, height, width = hidden_states.shape
        p = self.config_patch_size
        post_patch_height, post_patch_width = height // p, width // p

        hidden_states = self.patch_embed(hidden_states)
        hidden_states = hidden_states + self.input_block(self.patch_embed(controlnet_cond.to(hidden_states.dtype)))

        timestep, embedded_timestep = self.time_embed(timestep, batch_size=batch_size, hidden_dtype=hidden_states.dtype)

        encoder_hidden_states = self.caption_projection(encoder_hidden_states)
        encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])

        encoder_hidden_states = self.caption_norm(encoder_hidden_states)

        # 2. Transformer blocks
        block_res_samples = ()
        for block in self.transformer_blocks:
            hidden_states = block(
                hidden_states,
                attention_mask,
                encoder_hidden_states,
                encoder_attention_mask,
                timestep,
                post_patch_height,
                post_patch_width,
            )
            block_res_samples = block_res_samples + (hidden_states,)

        # 3. ControlNet blocks
        controlnet_block_res_samples = ()
        for block_res_sample, controlnet_block in zip(block_res_samples, self.controlnet_blocks):
            block_res_sample = controlnet_block(block_res_sample)
            controlnet_block_res_samples = controlnet_block_res_samples + (block_res_sample,)

        controlnet_block_res_samples = [sample * conditioning_scale for sample in controlnet_block_res_samples]

        if not return_dict:
            return (controlnet_block_res_samples,)

        return SanaControlNetOutput(controlnet_block_samples=controlnet_block_res_samples)

mindone.diffusers.SanaControlNetModel.attn_processors property

RETURNS DESCRIPTION
Dict[str, AttentionProcessor]

dict of attention processors: A dictionary containing all attention processors used in the model with

Dict[str, AttentionProcessor]

indexed by its weight name.

mindone.diffusers.SanaControlNetModel.set_attn_processor(processor)

Sets the attention processor to use to compute attention.

PARAMETER DESCRIPTION
processor

The instantiated processor class or a dictionary of processor classes that will be set as the processor for all Attention layers.

If processor is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors.

TYPE: `dict` of `AttentionProcessor` or only `AttentionProcessor`

Source code in mindone/diffusers/models/controlnets/controlnet_sana.py
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
    r"""
    Sets the attention processor to use to compute attention.

    Parameters:
        processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
            The instantiated processor class or a dictionary of processor classes that will be set as the processor
            for **all** `Attention` layers.

            If `processor` is a dict, the key needs to define the path to the corresponding cross attention
            processor. This is strongly recommended when setting trainable attention processors.

    """
    count = len(self.attn_processors.keys())

    if isinstance(processor, dict) and len(processor) != count:
        raise ValueError(
            f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
            f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
        )

    def fn_recursive_attn_processor(name: str, module: nn.Cell, processor):
        if hasattr(module, "set_processor"):
            if not isinstance(processor, dict):
                module.set_processor(processor)
            else:
                module.set_processor(processor.pop(f"{name}.processor"))

        for sub_name, child in module.name_cells().items():
            fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

    for name, module in self.name_cells().items():
        fn_recursive_attn_processor(name, module, processor)

mindone.diffusers.models.controlnets.controlnet_sana.SanaControlNetOutput dataclass

Bases: BaseOutput

Source code in mindone/diffusers/models/controlnets/controlnet_sana.py
38
39
40
@dataclass
class SanaControlNetOutput(BaseOutput):
    controlnet_block_samples: Tuple[ms.Tensor]