Skip to content

AutoencoderKLLTXVideo

The 3D variational autoencoder (VAE) model with KL loss used in LTX was introduced by Lightricks.

The model can be loaded with the following code snippet.

from mindone.diffusers import AutoencoderKLLTXVideo
import mindspore as ms

vae = AutoencoderKLLTXVideo.from_pretrained("Lightricks/LTX-Video", subfolder="vae", mindspore_dtype=ms.float32)

mindone.diffusers.AutoencoderKLLTXVideo

Bases: ModelMixin, ConfigMixin, FromOriginalModelMixin

A VAE model with KL loss for encoding images into latents and decoding latent representations into images. Used in LTX.

This model inherits from [ModelMixin]. Check the superclass documentation for it's generic methods implemented for all models (such as downloading or saving).

PARAMETER DESCRIPTION
in_channels

Number of input channels.

TYPE: `int`, defaults to `3` DEFAULT: 3

out_channels

Number of output channels.

TYPE: `int`, defaults to `3` DEFAULT: 3

latent_channels

Number of latent channels.

TYPE: `int`, defaults to `128` DEFAULT: 128

block_out_channels

The number of output channels for each block.

TYPE: `Tuple[int, ...]`, defaults to `(128, 256, 512, 512)` DEFAULT: (128, 256, 512, 512)

spatio_temporal_scaling

Whether a block should contain spatio-temporal downscaling or not.

TYPE: `Tuple[bool, ...], defaults to `(True, True, True, False)` DEFAULT: (True, True, True, False)

layers_per_block

The number of layers per block.

TYPE: `Tuple[int, ...]`, defaults to `(4, 3, 3, 3, 4)` DEFAULT: (4, 3, 3, 3, 4)

patch_size

The size of spatial patches.

TYPE: `int`, defaults to `4` DEFAULT: 4

patch_size_t

The size of temporal patches.

TYPE: `int`, defaults to `1` DEFAULT: 1

resnet_norm_eps

Epsilon value for ResNet normalization layers.

TYPE: `float`, defaults to `1e-6` DEFAULT: 1e-06

scaling_factor

The component-wise standard deviation of the trained latent space computed using the first batch of the training set. This is used to scale the latent space to have unit variance when training the diffusion model. The latents are scaled with the formula z = z * scaling_factor before being passed to the diffusion model. When decoding, the latents are scaled back to the original scale with the formula: z = 1 / scaling_factor * z. For more details, refer to sections 4.3.2 and D.1 of the High-Resolution Image Synthesis with Latent Diffusion Models paper.

TYPE: `float`, *optional*, defaults to `1.0` DEFAULT: 1.0

encoder_causal

Whether the encoder should behave causally (future frames depend only on past frames) or not.

TYPE: `bool`, defaults to `True` DEFAULT: True

decoder_causal

Whether the decoder should behave causally (future frames depend only on past frames) or not.

TYPE: `bool`, defaults to `False` DEFAULT: False

Source code in mindone/diffusers/models/autoencoders/autoencoder_kl_ltx.py
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
class AutoencoderKLLTXVideo(ModelMixin, ConfigMixin, FromOriginalModelMixin):
    r"""
    A VAE model with KL loss for encoding images into latents and decoding latent representations into images. Used in
    [LTX](https://huggingface.co/Lightricks/LTX-Video).

    This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
    for all models (such as downloading or saving).

    Args:
        in_channels (`int`, defaults to `3`):
            Number of input channels.
        out_channels (`int`, defaults to `3`):
            Number of output channels.
        latent_channels (`int`, defaults to `128`):
            Number of latent channels.
        block_out_channels (`Tuple[int, ...]`, defaults to `(128, 256, 512, 512)`):
            The number of output channels for each block.
        spatio_temporal_scaling (`Tuple[bool, ...], defaults to `(True, True, True, False)`:
            Whether a block should contain spatio-temporal downscaling or not.
        layers_per_block (`Tuple[int, ...]`, defaults to `(4, 3, 3, 3, 4)`):
            The number of layers per block.
        patch_size (`int`, defaults to `4`):
            The size of spatial patches.
        patch_size_t (`int`, defaults to `1`):
            The size of temporal patches.
        resnet_norm_eps (`float`, defaults to `1e-6`):
            Epsilon value for ResNet normalization layers.
        scaling_factor (`float`, *optional*, defaults to `1.0`):
            The component-wise standard deviation of the trained latent space computed using the first batch of the
            training set. This is used to scale the latent space to have unit variance when training the diffusion
            model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
            diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
            / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
            Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
        encoder_causal (`bool`, defaults to `True`):
            Whether the encoder should behave causally (future frames depend only on past frames) or not.
        decoder_causal (`bool`, defaults to `False`):
            Whether the decoder should behave causally (future frames depend only on past frames) or not.
    """

    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(
        self,
        in_channels: int = 3,
        out_channels: int = 3,
        latent_channels: int = 128,
        block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
        decoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
        layers_per_block: Tuple[int, ...] = (4, 3, 3, 3, 4),
        decoder_layers_per_block: Tuple[int, ...] = (4, 3, 3, 3, 4),
        spatio_temporal_scaling: Tuple[bool, ...] = (True, True, True, False),
        decoder_spatio_temporal_scaling: Tuple[bool, ...] = (True, True, True, False),
        decoder_inject_noise: Tuple[bool, ...] = (False, False, False, False, False),
        upsample_residual: Tuple[bool, ...] = (False, False, False, False),
        upsample_factor: Tuple[int, ...] = (1, 1, 1, 1),
        timestep_conditioning: bool = False,
        patch_size: int = 4,
        patch_size_t: int = 1,
        resnet_norm_eps: float = 1e-6,
        scaling_factor: float = 1.0,
        encoder_causal: bool = True,
        decoder_causal: bool = False,
    ) -> None:
        super().__init__()

        self.encoder = LTXVideoEncoder3d(
            in_channels=in_channels,
            out_channels=latent_channels,
            block_out_channels=block_out_channels,
            spatio_temporal_scaling=spatio_temporal_scaling,
            layers_per_block=layers_per_block,
            patch_size=patch_size,
            patch_size_t=patch_size_t,
            resnet_norm_eps=resnet_norm_eps,
            is_causal=encoder_causal,
        )
        self.decoder = LTXVideoDecoder3d(
            in_channels=latent_channels,
            out_channels=out_channels,
            block_out_channels=decoder_block_out_channels,
            spatio_temporal_scaling=decoder_spatio_temporal_scaling,
            layers_per_block=decoder_layers_per_block,
            patch_size=patch_size,
            patch_size_t=patch_size_t,
            resnet_norm_eps=resnet_norm_eps,
            is_causal=decoder_causal,
            timestep_conditioning=timestep_conditioning,
            inject_noise=decoder_inject_noise,
            upsample_residual=upsample_residual,
            upsample_factor=upsample_factor,
        )

        self.latents_mean = ms.Parameter(ops.zeros((latent_channels,)), requires_grad=False, name="latents_mean")
        self.latents_std = ms.Parameter(ops.ones((latent_channels,)), requires_grad=False, name="latents_std")

        self.spatial_compression_ratio = patch_size * 2 ** sum(spatio_temporal_scaling)
        self.temporal_compression_ratio = patch_size_t * 2 ** sum(spatio_temporal_scaling)

        self.diag_gauss_dist = DiagonalGaussianDistribution()

        # When decoding a batch of video latents at a time, one can save memory by slicing across the batch dimension
        # to perform decoding of a single video latent at a time.
        self.use_slicing = False

        # When decoding spatially large video latents, the memory requirement is very high. By breaking the video latent
        # frames spatially into smaller tiles and performing multiple forward passes for decoding, and then blending the
        # intermediate tiles together, the memory requirement can be lowered.
        self.use_tiling = False

        # When decoding temporally long video latents, the memory requirement is very high. By decoding latent frames
        # at a fixed frame batch size (based on `self.num_latent_frames_batch_sizes`), the memory requirement can be lowered.
        self.use_framewise_encoding = False
        self.use_framewise_decoding = False

        # This can be configured based on the amount of GPU memory available.
        # `16` for sample frames and `2` for latent frames are sensible defaults for consumer GPUs.
        # Setting it to higher values results in higher memory usage.
        self.num_sample_frames_batch_size = 16
        self.num_latent_frames_batch_size = 2

        # The minimal tile height and width for spatial tiling to be used
        self.tile_sample_min_height = 512
        self.tile_sample_min_width = 512

        # The minimal distance between two spatial tiles
        self.tile_sample_stride_height = 448
        self.tile_sample_stride_width = 448

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, (LTXVideoEncoder3d, LTXVideoDecoder3d)):
            module.gradient_checkpointing = value

    def enable_tiling(
        self,
        tile_sample_min_height: Optional[int] = None,
        tile_sample_min_width: Optional[int] = None,
        tile_sample_stride_height: Optional[float] = None,
        tile_sample_stride_width: Optional[float] = None,
    ) -> None:
        r"""
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
        processing larger images.

        Args:
            tile_sample_min_height (`int`, *optional*):
                The minimum height required for a sample to be separated into tiles across the height dimension.
            tile_sample_min_width (`int`, *optional*):
                The minimum width required for a sample to be separated into tiles across the width dimension.
            tile_sample_stride_height (`int`, *optional*):
                The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are
                no tiling artifacts produced across the height dimension.
            tile_sample_stride_width (`int`, *optional*):
                The stride between two consecutive horizontal tiles. This is to ensure that there are no tiling
                artifacts produced across the width dimension.
        """
        self.use_tiling = True
        self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height
        self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width
        self.tile_sample_stride_height = tile_sample_stride_height or self.tile_sample_stride_height
        self.tile_sample_stride_width = tile_sample_stride_width or self.tile_sample_stride_width

    def disable_tiling(self) -> None:
        r"""
        Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
        decoding in one step.
        """
        self.use_tiling = False

    def enable_slicing(self) -> None:
        r"""
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
        """
        self.use_slicing = True

    def disable_slicing(self) -> None:
        r"""
        Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
        decoding in one step.
        """
        self.use_slicing = False

    def _encode(self, x: ms.Tensor) -> ms.Tensor:
        batch_size, num_channels, num_frames, height, width = x.shape

        if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height):
            return self.tiled_encode(x)

        if self.use_framewise_encoding:
            # TODO(aryan): requires investigation
            raise NotImplementedError(
                "Frame-wise encoding has not been implemented for AutoencoderKLLTXVideo, at the moment, due to "
                "quality issues caused by splitting inference across frame dimension. If you believe this "
                "should be possible, please submit a PR to https://github.com/huggingface/diffusers/pulls."
            )
        else:
            enc = self.encoder(x)

        return enc

    def encode(
        self, x: ms.Tensor, return_dict: bool = False
    ) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
        """
        Encode a batch of images into latents.

        Args:
            x (`torch.Tensor`): Input batch of images.
            return_dict (`bool`, *optional*, defaults to `False`):
                Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.

        Returns:
                The latent representations of the encoded videos. If `return_dict` is True, a
                [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
        """
        if self.use_slicing and x.shape[0] > 1:
            encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)]
            h = ops.cat(encoded_slices)
        else:
            h = self._encode(x)

        # we cannot use class in graph mode, even for jit_class or subclass of Tensor. :-(
        # posterior = DiagonalGaussianDistribution(h)

        if not return_dict:
            return (h,)
        return AutoencoderKLOutput(latent_dist=h)

    def _decode(
        self, z: ms.Tensor, temb: Optional[ms.Tensor] = None, return_dict: bool = False
    ) -> Union[DecoderOutput, ms.Tensor]:
        batch_size, num_channels, num_frames, height, width = z.shape
        tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
        tile_latent_min_width = self.tile_sample_stride_width // self.spatial_compression_ratio

        if self.use_tiling and (width > tile_latent_min_width or height > tile_latent_min_height):
            return self.tiled_decode(z, temb, return_dict=return_dict)

        if self.use_framewise_decoding:
            # TODO(aryan): requires investigation
            raise NotImplementedError(
                "Frame-wise decoding has not been implemented for AutoencoderKLLTXVideo, at the moment, due to "
                "quality issues caused by splitting inference across frame dimension. If you believe this "
                "should be possible, please submit a PR to https://github.com/huggingface/diffusers/pulls."
            )
        else:
            dec = self.decoder(z, temb)

        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)

    def decode(
        self, z: ms.Tensor, temb: Optional[ms.Tensor] = None, return_dict: bool = False
    ) -> Union[DecoderOutput, ms.Tensor]:
        """
        Decode a batch of images.

        Args:
            z (`torch.Tensor`): Input batch of latent vectors.
            return_dict (`bool`, *optional*, defaults to `False`):
                Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.

        Returns:
            [`~models.vae.DecoderOutput`] or `tuple`:
                If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
                returned.
        """
        if self.use_slicing and z.shape[0] > 1:
            if temb is not None:
                decoded_slices = [self._decode(z_slice, t_slice)[0] for z_slice, t_slice in (z.split(1), temb.split(1))]
            else:
                decoded_slices = [self._decode(z_slice)[0] for z_slice in z.split(1)]
            decoded = ops.cat(decoded_slices)
        else:
            decoded = self._decode(z, temb)[0]

        if not return_dict:
            return (decoded,)

        return DecoderOutput(sample=decoded)

    def blend_v(self, a: ops.Tensor, b: ops.Tensor, blend_extent: int) -> ops.Tensor:
        blend_extent = min(a.shape[3], b.shape[3], blend_extent)
        for y in range(blend_extent):
            b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (
                y / blend_extent
            )
        return b

    def blend_h(self, a: ops.Tensor, b: ops.Tensor, blend_extent: int) -> ops.Tensor:
        blend_extent = min(a.shape[4], b.shape[4], blend_extent)
        for x in range(blend_extent):
            b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (
                x / blend_extent
            )
        return b

    def tiled_encode(self, x: ops.Tensor) -> ops.Tensor:
        r"""Encode a batch of images using a tiled encoder.

        Args:
            x (`torch.Tensor`): Input batch of videos.

        Returns:
            `torch.Tensor`:
                The latent representation of the encoded videos.
        """
        batch_size, num_channels, num_frames, height, width = x.shape
        latent_height = height // self.spatial_compression_ratio
        latent_width = width // self.spatial_compression_ratio

        tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
        tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
        tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
        tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio

        blend_height = tile_latent_min_height - tile_latent_stride_height
        blend_width = tile_latent_min_width - tile_latent_stride_width

        # Split x into overlapping tiles and encode them separately.
        # The tiles have an overlap to avoid seams between tiles.
        rows = []
        for i in range(0, height, self.tile_sample_stride_height):
            row = []
            for j in range(0, width, self.tile_sample_stride_width):
                if self.use_framewise_encoding:
                    # TODO(aryan): requires investigation
                    raise NotImplementedError(
                        "Frame-wise encoding has not been implemented for AutoencoderKLLTXVideo, at the moment, due to "
                        "quality issues caused by splitting inference across frame dimension. If you believe this "
                        "should be possible, please submit a PR to https://github.com/huggingface/diffusers/pulls."
                    )
                else:
                    time = self.encoder(
                        x[:, :, :, i : i + self.tile_sample_min_height, j : j + self.tile_sample_min_width]
                    )

                row.append(time)
            rows.append(row)

        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                # blend the above tile and the left tile
                # to the current tile and add the current tile to the result row
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_height)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_width)
                result_row.append(tile[:, :, :, :tile_latent_stride_height, :tile_latent_stride_width])
            result_rows.append(ops.cat(result_row, axis=4))

        enc = ops.cat(result_rows, axis=3)[:, :, :, :latent_height, :latent_width]
        return enc

    def tiled_decode(
        self, z: ms.Tensor, temb: Optional[ms.Tensor], return_dict: bool = False
    ) -> Union[DecoderOutput, ms.Tensor]:
        r"""
        Decode a batch of images using a tiled decoder.

        Args:
            z (`torch.Tensor`): Input batch of latent vectors.
            return_dict (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.

        Returns:
            [`~models.vae.DecoderOutput`] or `tuple`:
                If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
                returned.
        """

        batch_size, num_channels, num_frames, height, width = z.shape
        sample_height = height * self.spatial_compression_ratio
        sample_width = width * self.spatial_compression_ratio

        tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
        tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
        tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
        tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio

        blend_height = self.tile_sample_min_height - self.tile_sample_stride_height
        blend_width = self.tile_sample_min_width - self.tile_sample_stride_width

        # Split z into overlapping tiles and decode them separately.
        # The tiles have an overlap to avoid seams between tiles.
        rows = []
        for i in range(0, height, tile_latent_stride_height):
            row = []
            for j in range(0, width, tile_latent_stride_width):
                if self.use_framewise_decoding:
                    # TODO(aryan): requires investigation
                    raise NotImplementedError(
                        "Frame-wise decoding has not been implemented for AutoencoderKLLTXVideo, at the moment, due to "
                        "quality issues caused by splitting inference across frame dimension. If you believe this "
                        "should be possible, please submit a PR to https://github.com/huggingface/diffusers/pulls."
                    )
                else:
                    time = self.decoder(z[:, :, :, i : i + tile_latent_min_height, j : j + tile_latent_min_width], temb)

                row.append(time)
            rows.append(row)

        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                # blend the above tile and the left tile
                # to the current tile and add the current tile to the result row
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_height)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_width)
                result_row.append(tile[:, :, :, : self.tile_sample_stride_height, : self.tile_sample_stride_width])
            result_rows.append(ops.cat(result_row, axis=4))

        dec = ops.cat(result_rows, axis=3)[:, :, :, :sample_height, :sample_width]

        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)

    def construct(
        self,
        sample: ms.Tensor,
        temb: Optional[ms.Tensor] = None,
        sample_posterior: bool = False,
        return_dict: bool = False,
        generator: Optional[np.random.Generator] = None,
    ) -> Union[ms.Tensor, ms.Tensor]:
        x = sample
        posterior = self.encode(x)[0]
        if sample_posterior:
            z = self.diag_gauss_dist.sample(posterior, generator=generator)
        else:
            z = self.diag_gauss_dist.mode(posterior)
        dec = self.decode(z, temb)[0]
        if not return_dict:
            return (dec,)
        return dec

mindone.diffusers.AutoencoderKLLTXVideo.decode(z, temb=None, return_dict=False)

Decode a batch of images.

PARAMETER DESCRIPTION
z

Input batch of latent vectors.

TYPE: `torch.Tensor`

return_dict

Whether to return a [~models.vae.DecoderOutput] instead of a plain tuple.

TYPE: `bool`, *optional*, defaults to `False` DEFAULT: False

RETURNS DESCRIPTION
Union[DecoderOutput, Tensor]

[~models.vae.DecoderOutput] or tuple: If return_dict is True, a [~models.vae.DecoderOutput] is returned, otherwise a plain tuple is returned.

Source code in mindone/diffusers/models/autoencoders/autoencoder_kl_ltx.py
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
def decode(
    self, z: ms.Tensor, temb: Optional[ms.Tensor] = None, return_dict: bool = False
) -> Union[DecoderOutput, ms.Tensor]:
    """
    Decode a batch of images.

    Args:
        z (`torch.Tensor`): Input batch of latent vectors.
        return_dict (`bool`, *optional*, defaults to `False`):
            Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.

    Returns:
        [`~models.vae.DecoderOutput`] or `tuple`:
            If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
            returned.
    """
    if self.use_slicing and z.shape[0] > 1:
        if temb is not None:
            decoded_slices = [self._decode(z_slice, t_slice)[0] for z_slice, t_slice in (z.split(1), temb.split(1))]
        else:
            decoded_slices = [self._decode(z_slice)[0] for z_slice in z.split(1)]
        decoded = ops.cat(decoded_slices)
    else:
        decoded = self._decode(z, temb)[0]

    if not return_dict:
        return (decoded,)

    return DecoderOutput(sample=decoded)

mindone.diffusers.AutoencoderKLLTXVideo.disable_slicing()

Disable sliced VAE decoding. If enable_slicing was previously enabled, this method will go back to computing decoding in one step.

Source code in mindone/diffusers/models/autoencoders/autoencoder_kl_ltx.py
1020
1021
1022
1023
1024
1025
def disable_slicing(self) -> None:
    r"""
    Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
    decoding in one step.
    """
    self.use_slicing = False

mindone.diffusers.AutoencoderKLLTXVideo.disable_tiling()

Disable tiled VAE decoding. If enable_tiling was previously enabled, this method will go back to computing decoding in one step.

Source code in mindone/diffusers/models/autoencoders/autoencoder_kl_ltx.py
1006
1007
1008
1009
1010
1011
def disable_tiling(self) -> None:
    r"""
    Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
    decoding in one step.
    """
    self.use_tiling = False

mindone.diffusers.AutoencoderKLLTXVideo.enable_slicing()

Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.

Source code in mindone/diffusers/models/autoencoders/autoencoder_kl_ltx.py
1013
1014
1015
1016
1017
1018
def enable_slicing(self) -> None:
    r"""
    Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
    compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
    """
    self.use_slicing = True

mindone.diffusers.AutoencoderKLLTXVideo.enable_tiling(tile_sample_min_height=None, tile_sample_min_width=None, tile_sample_stride_height=None, tile_sample_stride_width=None)

Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images.

PARAMETER DESCRIPTION
tile_sample_min_height

The minimum height required for a sample to be separated into tiles across the height dimension.

TYPE: `int`, *optional* DEFAULT: None

tile_sample_min_width

The minimum width required for a sample to be separated into tiles across the width dimension.

TYPE: `int`, *optional* DEFAULT: None

tile_sample_stride_height

The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are no tiling artifacts produced across the height dimension.

TYPE: `int`, *optional* DEFAULT: None

tile_sample_stride_width

The stride between two consecutive horizontal tiles. This is to ensure that there are no tiling artifacts produced across the width dimension.

TYPE: `int`, *optional* DEFAULT: None

Source code in mindone/diffusers/models/autoencoders/autoencoder_kl_ltx.py
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
def enable_tiling(
    self,
    tile_sample_min_height: Optional[int] = None,
    tile_sample_min_width: Optional[int] = None,
    tile_sample_stride_height: Optional[float] = None,
    tile_sample_stride_width: Optional[float] = None,
) -> None:
    r"""
    Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
    compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
    processing larger images.

    Args:
        tile_sample_min_height (`int`, *optional*):
            The minimum height required for a sample to be separated into tiles across the height dimension.
        tile_sample_min_width (`int`, *optional*):
            The minimum width required for a sample to be separated into tiles across the width dimension.
        tile_sample_stride_height (`int`, *optional*):
            The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are
            no tiling artifacts produced across the height dimension.
        tile_sample_stride_width (`int`, *optional*):
            The stride between two consecutive horizontal tiles. This is to ensure that there are no tiling
            artifacts produced across the width dimension.
    """
    self.use_tiling = True
    self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height
    self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width
    self.tile_sample_stride_height = tile_sample_stride_height or self.tile_sample_stride_height
    self.tile_sample_stride_width = tile_sample_stride_width or self.tile_sample_stride_width

mindone.diffusers.AutoencoderKLLTXVideo.encode(x, return_dict=False)

Encode a batch of images into latents.

PARAMETER DESCRIPTION
x

Input batch of images.

TYPE: `torch.Tensor`

return_dict

Whether to return a [~models.autoencoder_kl.AutoencoderKLOutput] instead of a plain tuple.

TYPE: `bool`, *optional*, defaults to `False` DEFAULT: False

RETURNS DESCRIPTION
Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]

The latent representations of the encoded videos. If return_dict is True, a

Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]

[~models.autoencoder_kl.AutoencoderKLOutput] is returned, otherwise a plain tuple is returned.

Source code in mindone/diffusers/models/autoencoders/autoencoder_kl_ltx.py
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
def encode(
    self, x: ms.Tensor, return_dict: bool = False
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
    """
    Encode a batch of images into latents.

    Args:
        x (`torch.Tensor`): Input batch of images.
        return_dict (`bool`, *optional*, defaults to `False`):
            Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.

    Returns:
            The latent representations of the encoded videos. If `return_dict` is True, a
            [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
    """
    if self.use_slicing and x.shape[0] > 1:
        encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)]
        h = ops.cat(encoded_slices)
    else:
        h = self._encode(x)

    # we cannot use class in graph mode, even for jit_class or subclass of Tensor. :-(
    # posterior = DiagonalGaussianDistribution(h)

    if not return_dict:
        return (h,)
    return AutoencoderKLOutput(latent_dist=h)

mindone.diffusers.AutoencoderKLLTXVideo.tiled_decode(z, temb, return_dict=False)

Decode a batch of images using a tiled decoder.

PARAMETER DESCRIPTION
z

Input batch of latent vectors.

TYPE: `torch.Tensor`

return_dict

Whether or not to return a [~models.vae.DecoderOutput] instead of a plain tuple.

TYPE: `bool`, *optional*, defaults to `False` DEFAULT: False

RETURNS DESCRIPTION
Union[DecoderOutput, Tensor]

[~models.vae.DecoderOutput] or tuple: If return_dict is True, a [~models.vae.DecoderOutput] is returned, otherwise a plain tuple is returned.

Source code in mindone/diffusers/models/autoencoders/autoencoder_kl_ltx.py
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
def tiled_decode(
    self, z: ms.Tensor, temb: Optional[ms.Tensor], return_dict: bool = False
) -> Union[DecoderOutput, ms.Tensor]:
    r"""
    Decode a batch of images using a tiled decoder.

    Args:
        z (`torch.Tensor`): Input batch of latent vectors.
        return_dict (`bool`, *optional*, defaults to `False`):
            Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.

    Returns:
        [`~models.vae.DecoderOutput`] or `tuple`:
            If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
            returned.
    """

    batch_size, num_channels, num_frames, height, width = z.shape
    sample_height = height * self.spatial_compression_ratio
    sample_width = width * self.spatial_compression_ratio

    tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
    tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
    tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
    tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio

    blend_height = self.tile_sample_min_height - self.tile_sample_stride_height
    blend_width = self.tile_sample_min_width - self.tile_sample_stride_width

    # Split z into overlapping tiles and decode them separately.
    # The tiles have an overlap to avoid seams between tiles.
    rows = []
    for i in range(0, height, tile_latent_stride_height):
        row = []
        for j in range(0, width, tile_latent_stride_width):
            if self.use_framewise_decoding:
                # TODO(aryan): requires investigation
                raise NotImplementedError(
                    "Frame-wise decoding has not been implemented for AutoencoderKLLTXVideo, at the moment, due to "
                    "quality issues caused by splitting inference across frame dimension. If you believe this "
                    "should be possible, please submit a PR to https://github.com/huggingface/diffusers/pulls."
                )
            else:
                time = self.decoder(z[:, :, :, i : i + tile_latent_min_height, j : j + tile_latent_min_width], temb)

            row.append(time)
        rows.append(row)

    result_rows = []
    for i, row in enumerate(rows):
        result_row = []
        for j, tile in enumerate(row):
            # blend the above tile and the left tile
            # to the current tile and add the current tile to the result row
            if i > 0:
                tile = self.blend_v(rows[i - 1][j], tile, blend_height)
            if j > 0:
                tile = self.blend_h(row[j - 1], tile, blend_width)
            result_row.append(tile[:, :, :, : self.tile_sample_stride_height, : self.tile_sample_stride_width])
        result_rows.append(ops.cat(result_row, axis=4))

    dec = ops.cat(result_rows, axis=3)[:, :, :, :sample_height, :sample_width]

    if not return_dict:
        return (dec,)

    return DecoderOutput(sample=dec)

mindone.diffusers.AutoencoderKLLTXVideo.tiled_encode(x)

Encode a batch of images using a tiled encoder.

PARAMETER DESCRIPTION
x

Input batch of videos.

TYPE: `torch.Tensor`

RETURNS DESCRIPTION
Tensor

torch.Tensor: The latent representation of the encoded videos.

Source code in mindone/diffusers/models/autoencoders/autoencoder_kl_ltx.py
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
def tiled_encode(self, x: ops.Tensor) -> ops.Tensor:
    r"""Encode a batch of images using a tiled encoder.

    Args:
        x (`torch.Tensor`): Input batch of videos.

    Returns:
        `torch.Tensor`:
            The latent representation of the encoded videos.
    """
    batch_size, num_channels, num_frames, height, width = x.shape
    latent_height = height // self.spatial_compression_ratio
    latent_width = width // self.spatial_compression_ratio

    tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
    tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
    tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
    tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio

    blend_height = tile_latent_min_height - tile_latent_stride_height
    blend_width = tile_latent_min_width - tile_latent_stride_width

    # Split x into overlapping tiles and encode them separately.
    # The tiles have an overlap to avoid seams between tiles.
    rows = []
    for i in range(0, height, self.tile_sample_stride_height):
        row = []
        for j in range(0, width, self.tile_sample_stride_width):
            if self.use_framewise_encoding:
                # TODO(aryan): requires investigation
                raise NotImplementedError(
                    "Frame-wise encoding has not been implemented for AutoencoderKLLTXVideo, at the moment, due to "
                    "quality issues caused by splitting inference across frame dimension. If you believe this "
                    "should be possible, please submit a PR to https://github.com/huggingface/diffusers/pulls."
                )
            else:
                time = self.encoder(
                    x[:, :, :, i : i + self.tile_sample_min_height, j : j + self.tile_sample_min_width]
                )

            row.append(time)
        rows.append(row)

    result_rows = []
    for i, row in enumerate(rows):
        result_row = []
        for j, tile in enumerate(row):
            # blend the above tile and the left tile
            # to the current tile and add the current tile to the result row
            if i > 0:
                tile = self.blend_v(rows[i - 1][j], tile, blend_height)
            if j > 0:
                tile = self.blend_h(row[j - 1], tile, blend_width)
            result_row.append(tile[:, :, :, :tile_latent_stride_height, :tile_latent_stride_width])
        result_rows.append(ops.cat(result_row, axis=4))

    enc = ops.cat(result_rows, axis=3)[:, :, :, :latent_height, :latent_width]
    return enc

mindone.diffusers.models.autoencoders.autoencoder_kl.AutoencoderKLOutput dataclass

Bases: BaseOutput

Output of AutoencoderKL encoding method.

PARAMETER DESCRIPTION
latent

Encoded outputs of Encoder represented as the mean and logvar of DiagonalGaussianDistribution. DiagonalGaussianDistribution allows for sampling latents from the distribution.

TYPE: `ms.Tensor`

Source code in mindone/diffusers/models/modeling_outputs.py
 8
 9
10
11
12
13
14
15
16
17
18
19
@dataclass
class AutoencoderKLOutput(BaseOutput):
    """
    Output of AutoencoderKL encoding method.

    Args:
        latent (`ms.Tensor`):
            Encoded outputs of `Encoder` represented as the mean and logvar of `DiagonalGaussianDistribution`.
            `DiagonalGaussianDistribution` allows for sampling latents from the distribution.
    """

    latent: ms.Tensor

mindone.diffusers.models.autoencoders.vae.DecoderOutput dataclass

Bases: BaseOutput

Output of decoding method.

PARAMETER DESCRIPTION
sample

The decoded output sample from the last layer of the model.

TYPE: `ms.Tensor` of shape `(batch_size, num_channels, height, width)`

Source code in mindone/diffusers/models/autoencoders/vae.py
43
44
45
46
47
48
49
50
51
52
53
54
@dataclass
class DecoderOutput(BaseOutput):
    r"""
    Output of decoding method.

    Args:
        sample (`ms.Tensor` of shape `(batch_size, num_channels, height, width)`):
            The decoded output sample from the last layer of the model.
    """

    sample: ms.Tensor
    commit_loss: Optional[ms.Tensor] = None