class SD3Transformer2DLoadersMixin:
"""Load IP-Adapters and LoRA layers into a `[SD3Transformer2DModel]`."""
def _convert_ip_adapter_attn_to_diffusers(
self,
state_dict: Dict,
) -> Dict:
# IP-Adapter cross attention parameters
hidden_size = self.config.attention_head_dim * self.config.num_attention_heads
ip_hidden_states_dim = self.config.attention_head_dim * self.config.num_attention_heads
timesteps_emb_dim = state_dict["0.norm_ip.linear.weight"].shape[1]
# Dict where key is transformer layer index, value is attention processor's state dict
# ip_adapter state dict keys example: "0.norm_ip.linear.weight"
layer_state_dict = {idx: {} for idx in range(len(self.attn_processors))}
for key, weights in state_dict.items():
idx, name = key.split(".", maxsplit=1)
layer_state_dict[int(idx)][name] = weights
# Create IP-Adapter attention processor & load state_dict
attn_procs = {}
for idx, name in enumerate(self.attn_processors.keys()):
attn_procs[name] = SD3IPAdapterJointAttnProcessor2_0(
hidden_size=hidden_size,
ip_hidden_states_dim=ip_hidden_states_dim,
head_dim=self.config.attention_head_dim,
timesteps_emb_dim=timesteps_emb_dim,
)
return attn_procs
def _convert_ip_adapter_image_proj_to_diffusers(
self,
state_dict: Dict,
) -> IPAdapterTimeImageProjection:
# Convert to diffusers
updated_state_dict = {}
for key, value in state_dict.items():
# InstantX/SD3.5-Large-IP-Adapter
if key.startswith("layers."):
idx = key.split(".")[1]
key = key.replace(f"layers.{idx}.0.norm1", f"layers.{idx}.ln0")
key = key.replace(f"layers.{idx}.0.norm2", f"layers.{idx}.ln1")
key = key.replace(f"layers.{idx}.0.to_q", f"layers.{idx}.attn.to_q")
key = key.replace(f"layers.{idx}.0.to_kv", f"layers.{idx}.attn.to_kv")
key = key.replace(f"layers.{idx}.0.to_out", f"layers.{idx}.attn.to_out.0")
key = key.replace(f"layers.{idx}.1.0", f"layers.{idx}.adaln_norm")
key = key.replace(f"layers.{idx}.1.1", f"layers.{idx}.ff.net.0.proj")
key = key.replace(f"layers.{idx}.1.3", f"layers.{idx}.ff.net.2")
key = key.replace(f"layers.{idx}.2.1", f"layers.{idx}.adaln_proj")
updated_state_dict[key] = value
# Image projection parameters
embed_dim = updated_state_dict["proj_in.weight"].shape[1]
output_dim = updated_state_dict["proj_out.weight"].shape[0]
hidden_dim = updated_state_dict["proj_in.weight"].shape[0]
heads = updated_state_dict["layers.0.attn.to_q.weight"].shape[0] // 64
num_queries = updated_state_dict["latents"].shape[1]
timestep_in_dim = updated_state_dict["time_embedding.linear_1.weight"].shape[1]
# Image projection
image_proj = IPAdapterTimeImageProjection(
embed_dim=embed_dim,
output_dim=output_dim,
hidden_dim=hidden_dim,
heads=heads,
num_queries=num_queries,
timestep_in_dim=timestep_in_dim,
)
_load_state_dict_into_model(image_proj, updated_state_dict)
# Do dtype convertion here at the level of `self(ModelMixins)`, as subcell has no method `to(dtype)`
self.to(dtype=self.dtype)
return image_proj
def _load_ip_adapter_weights(self, state_dict: Dict) -> None:
"""Sets IP-Adapter attention processors, image projection, and loads state_dict.
Args:
state_dict (`Dict`):
State dict with keys "ip_adapter", which contains parameters for attention processors, and
"image_proj", which contains parameters for image projection net.
"""
attn_procs = self._convert_ip_adapter_attn_to_diffusers(state_dict["ip_adapter"])
self.set_attn_processor(attn_procs)
self.image_proj = self._convert_ip_adapter_image_proj_to_diffusers(state_dict["image_proj"])