Pipeline callbacks¶
The denoising loop of a pipeline can be modified with custom defined functions using the callback_on_step_end
parameter. The callback function is executed at the end of each step, and modifies the pipeline attributes and variables for the next step. This is really useful for dynamically adjusting certain pipeline attributes or modifying tensor variables. This versatility allows for interesting use cases such as changing the prompt embeddings at each timestep, assigning different weights to the prompt embeddings, and editing the guidance scale. With callbacks, you can implement new features without modifying the underlying code!
This guide will demonstrate how callbacks work by a few features you can implement with them.
Dynamic classifier-free guidance¶
Dynamic classifier-free guidance (CFG) is a feature that allows you to disable CFG after a certain number of inference steps which can help you save compute with minimal cost to performance. The callback function for this should have the following arguments:
pipeline
(or the pipeline instance) provides access to important properties such asnum_timesteps
andguidance_scale
. You can modify these properties by updating the underlying attributes. For this example, you'll disable CFG by settingpipeline._guidance_scale=0.0
.step_index
andtimestep
tell you where you are in the denoising loop. Usestep_index
to turn off CFG after reaching 40% ofnum_timesteps
.callback_kwargs
is a dict that contains tensor variables you can modify during the denoising loop. It only includes variables specified in thecallback_on_step_end_tensor_inputs
argument, which is passed to the pipeline's__call__
method. Different pipelines may use different sets of variables, so please check a pipeline's_callback_tensor_inputs
attribute for the list of variables you can modify. Some common variables includelatents
andprompt_embeds
. For this function, change the batch size ofprompt_embeds
after settingguidance_scale=0.0
in order for it to work properly.
Your callback function should look something like this:
def callback_dynamic_cfg(pipeline, step_index, timestep, callback_kwargs):
# adjust the batch_size of prompt_embeds according to guidance_scale
if step_index == int(pipeline.num_timesteps * 0.4):
prompt_embeds = callback_kwargs["prompt_embeds"]
prompt_embeds = prompt_embeds.chunk(2)[-1]
# update guidance_scale and prompt_embeds
pipeline._guidance_scale = 0.0
callback_kwargs["prompt_embeds"] = prompt_embeds
return callback_kwargs
Now, you can pass the callback function to the callback_on_step_end
parameter and the prompt_embeds
to callback_on_step_end_tensor_inputs
.
import mindspore as ms
from mindone.diffusers import StableDiffusionPipeline
import numpy as np
pipeline = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", mindspore_dtype=ms.float16)
prompt = "a photo of an astronaut riding a horse on mars"
generator = np.random.Generator(np.random.PCG64(1))
out = pipeline(
prompt,
generator=generator,
callback_on_step_end=callback_dynamic_cfg,
callback_on_step_end_tensor_inputs=['prompt_embeds']
)
out[0][0].save("out_custom_cfg.png")
Interrupt the diffusion process¶
Tip
The interruption callback is supported for text-to-image, image-to-image, and inpainting for the StableDiffusionPipeline and StableDiffusionXLPipeline.
Stopping the diffusion process early is useful when building UIs that work with Diffusers because it allows users to stop the generation process if they're unhappy with the intermediate results. You can incorporate this into your pipeline with a callback.
This callback function should take the following arguments: pipeline
, i
, t
, and callback_kwargs
(this must be returned). Set the pipeline's _interrupt
attribute to True
to stop the diffusion process after a certain number of steps. You are also free to implement your own custom stopping logic inside the callback.
In this example, the diffusion process is stopped after 10 steps even though num_inference_steps
is set to 50.
from mindone.diffusers import StableDiffusionPipeline
pipeline = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
num_inference_steps = 50
def interrupt_callback(pipeline, i, t, callback_kwargs):
stop_idx = 10
if i == stop_idx:
pipeline._interrupt = True
return callback_kwargs
pipeline(
"A photo of a cat",
num_inference_steps=num_inference_steps,
callback_on_step_end=interrupt_callback,
)
Display image after each generation step¶
Tip
This tip was contributed by asomoza.
Display an image after each generation step by accessing and converting the latents after each step into an image. The latent space is compressed to 128x128, so the images are also 128x128 which is useful for a quick preview.
- Use the function below to convert the SDXL latents (4 channels) to RGB tensors (3 channels) as explained in the Explaining the SDXL latent space blog post.
def latents_to_rgb(latents):
weights = (
(60, -60, 25, -70),
(60, -5, 15, -50),
(60, 10, -5, -35)
)
def einsum(tensor1, tensor2):
l, x, y = tensor1.shape[-3:]
l, r = tensor2.shape
res = ops.matmul(tensor2.transpose(1, 0), tensor1.view(*tensor1.shape[: -2], -1)).view(-1, r, x, y)
return res
weights_tensor = ops.t(ms.Tensor(weights, dtype=latents.dtype))
biases_tensor = ms.Tensor((150, 140, 130), dtype=latents.dtype)
rgb_tensor = einsum(latents, weights_tensor) + biases_tensor.unsqueeze(-1).unsqueeze(-1)
image_array = rgb_tensor.clamp(0, 255)[0].to(ms.uint8).asnumpy()
image_array = image_array.transpose(1, 2, 0)
return Image.fromarray(image_array)
- Create a function to decode and save the latents into an image.
def decode_tensors(pipe, step, timestep, callback_kwargs):
latents = callback_kwargs["latents"]
image = latents_to_rgb(latents)
image.save(f"{step}.png")
return callback_kwargs
- Pass the
decode_tensors
function to thecallback_on_step_end
parameter to decode the tensors after each step. You also need to specify what you want to modify in thecallback_on_step_end_tensor_inputs
parameter, which in this case are the latents.
from mindone.diffusers import DiffusionPipeline
import mindspore as ms
from PIL import Image
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
mindspore_dtype=ms.float16,
use_safetensors=True
)
image = pipeline(
prompt="A croissant shaped like a cute bear.",
negative_prompt="Deformed, ugly, bad anatomy",
callback_on_step_end=decode_tensors,
callback_on_step_end_tensor_inputs=["latents"],
)[0][0]