VQDiffusionScheduler¶
VQDiffusionScheduler
converts the transformer model's output into a sample for the unnoised image at the previous diffusion timestep. It was introduced in Vector Quantized Diffusion Model for Text-to-Image Synthesis by Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, Baining Guo.
The abstract from the paper is:
We present the vector quantized diffusion (VQ-Diffusion) model for text-to-image generation. This method is based on a vector quantized variational autoencoder (VQ-VAE) whose latent space is modeled by a conditional variant of the recently developed Denoising Diffusion Probabilistic Model (DDPM). We find that this latent-space method is well-suited for text-to-image generation tasks because it not only eliminates the unidirectional bias with existing methods but also allows us to incorporate a mask-and-replace diffusion strategy to avoid the accumulation of errors, which is a serious problem with existing methods. Our experiments show that the VQ-Diffusion produces significantly better text-to-image generation results when compared with conventional autoregressive (AR) models with similar numbers of parameters. Compared with previous GAN-based text-to-image methods, our VQ-Diffusion can handle more complex scenes and improve the synthesized image quality by a large margin. Finally, we show that the image generation computation in our method can be made highly efficient by reparameterization. With traditional AR methods, the text-to-image generation time increases linearly with the output image resolution and hence is quite time consuming even for normal size images. The VQ-Diffusion allows us to achieve a better trade-off between quality and speed. Our experiments indicate that the VQ-Diffusion model with the reparameterization is fifteen times faster than traditional AR methods while achieving a better image quality.
mindone.diffusers.VQDiffusionScheduler
¶
Bases: SchedulerMixin
, ConfigMixin
A scheduler for vector quantized diffusion.
This model inherits from [SchedulerMixin
] and [ConfigMixin
]. Check the superclass documentation for the generic
methods the library implements for all schedulers such as loading and saving.
PARAMETER | DESCRIPTION |
---|---|
num_vec_classes |
The number of classes of the vector embeddings of the latent pixels. Includes the class for the masked latent pixel.
TYPE:
|
num_train_timesteps |
The number of diffusion steps to train the model.
TYPE:
|
alpha_cum_start |
The starting cumulative alpha value.
TYPE:
|
alpha_cum_end |
The ending cumulative alpha value.
TYPE:
|
gamma_cum_start |
The starting cumulative gamma value.
TYPE:
|
gamma_cum_end |
The ending cumulative gamma value.
TYPE:
|
Source code in mindone/diffusers/schedulers/scheduling_vq_diffusion.py
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
|
mindone.diffusers.VQDiffusionScheduler.log_Q_t_transitioning_to_known_class(*, t, x_t, log_onehot_x_t, cumulative)
¶
Calculates the log probabilities of the rows from the (cumulative or non-cumulative) transition matrix for each
latent pixel in x_t
.
PARAMETER | DESCRIPTION |
---|---|
t |
The timestep that determines which transition matrix is used.
TYPE:
|
x_t |
The classes of each latent pixel at time
TYPE:
|
log_onehot_x_t |
The log one-hot vectors of
TYPE:
|
cumulative |
If cumulative is
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
When non cumulative, returns Where:
- non-cumulative result (omitting logarithms):
cumulative result (omitting logarithms):
|
Source code in mindone/diffusers/schedulers/scheduling_vq_diffusion.py
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 |
|
mindone.diffusers.VQDiffusionScheduler.q_posterior(log_p_x_0, x_t, t)
¶
Calculates the log probabilities for the predicted classes of the image at timestep t-1
:
p(x_{t-1} | x_t) = sum( q(x_t | x_{t-1}) * q(x_{t-1} | x_0) * p(x_0) / q(x_t | x_0) )
PARAMETER | DESCRIPTION |
---|---|
log_p_x_0 |
The log probabilities for the predicted classes of the initial latent pixels. Does not include a prediction for the masked class as the initial unnoised image cannot be masked.
TYPE:
|
x_t |
The classes of each latent pixel at time
TYPE:
|
t |
The timestep that determines which transition matrix is used.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
|
Source code in mindone/diffusers/schedulers/scheduling_vq_diffusion.py
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
|
mindone.diffusers.VQDiffusionScheduler.set_timesteps(num_inference_steps)
¶
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
PARAMETER | DESCRIPTION |
---|---|
num_inference_steps |
The number of diffusion steps used when generating samples with a pre-trained model.
TYPE:
|
Source code in mindone/diffusers/schedulers/scheduling_vq_diffusion.py
179 180 181 182 183 184 185 186 187 188 189 |
|
mindone.diffusers.VQDiffusionScheduler.step(model_output, timestep, sample, generator=None, return_dict=False)
¶
Predict the sample from the previous timestep by the reverse transition distribution. See
[~VQDiffusionScheduler.q_posterior
] for more details about how the distribution is computer.
PARAMETER | DESCRIPTION |
---|---|
log_p_x_0 |
(
|
t |
The timestep that determines which transition matrices are used.
TYPE:
|
x_t |
The classes of each latent pixel at time
TYPE:
|
generator |
A random number generator for the noise applied to
TYPE:
|
return_dict |
Whether or not to return a [
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[VQDiffusionSchedulerOutput, Tuple]
|
[ |
Source code in mindone/diffusers/schedulers/scheduling_vq_diffusion.py
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
|
mindone.diffusers.schedulers.scheduling_vq_diffusion.VQDiffusionSchedulerOutput
dataclass
¶
Bases: BaseOutput
Output class for the scheduler's step function output.
PARAMETER | DESCRIPTION |
---|---|
prev_sample |
Computed sample x_{t-1} of previous timestep.
TYPE:
|
Source code in mindone/diffusers/schedulers/scheduling_vq_diffusion.py
28 29 30 31 32 33 34 35 36 37 38 39 |
|