Skip to content

DPMSolverMultistepInverse

DPMSolverMultistepInverse is the inverted scheduler from DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps and DPM-Solver++: Fast Solver for Guided Sampling of Diffusion Probabilistic Models by Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu.

The implementation is mostly based on the DDIM inversion definition of Null-text Inversion for Editing Real Images using Guided Diffusion Models and notebook implementation of the DiffEdit latent inversion from Xiang-cd/DiffEdit-stable-diffusion.

Tips

Dynamic thresholding from Imagen is supported, and for pixel-space diffusion models, you can set both algorithm_type="dpmsolver++" and thresholding=True to use the dynamic thresholding. This thresholding method is unsuitable for latent-space diffusion models such as Stable Diffusion.

mindone.diffusers.DPMSolverMultistepInverseScheduler

Bases: SchedulerMixin, ConfigMixin

DPMSolverMultistepInverseScheduler is the reverse scheduler of [DPMSolverMultistepScheduler].

This model inherits from [SchedulerMixin] and [ConfigMixin]. Check the superclass documentation for the generic methods the library implements for all schedulers such as loading and saving.

PARAMETER DESCRIPTION
num_train_timesteps

The number of diffusion steps to train the model.

TYPE: `int`, defaults to 1000 DEFAULT: 1000

beta_start

The starting beta value of inference.

TYPE: `float`, defaults to 0.0001 DEFAULT: 0.0001

beta_end

The final beta value.

TYPE: `float`, defaults to 0.02 DEFAULT: 0.02

beta_schedule

The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from linear, scaled_linear, or squaredcos_cap_v2.

TYPE: `str`, defaults to `"linear"` DEFAULT: 'linear'

trained_betas

Pass an array of betas directly to the constructor to bypass beta_start and beta_end.

TYPE: `np.ndarray`, *optional* DEFAULT: None

solver_order

The DPMSolver order which can be 1 or 2 or 3. It is recommended to use solver_order=2 for guided sampling, and solver_order=3 for unconditional sampling.

TYPE: `int`, defaults to 2 DEFAULT: 2

prediction_type

Prediction type of the scheduler function; can be epsilon (predicts the noise of the diffusion process), sample (directly predicts the noisy sample) orv_prediction` (see section 2.4 of Imagen Video paper).

TYPE: `str`, defaults to `epsilon`, *optional* DEFAULT: 'epsilon'

thresholding

Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such as Stable Diffusion.

TYPE: `bool`, defaults to `False` DEFAULT: False

dynamic_thresholding_ratio

The ratio for the dynamic thresholding method. Valid only when thresholding=True.

TYPE: `float`, defaults to 0.995 DEFAULT: 0.995

sample_max_value

The threshold value for dynamic thresholding. Valid only when thresholding=True and algorithm_type="dpmsolver++".

TYPE: `float`, defaults to 1.0 DEFAULT: 1.0

algorithm_type

Algorithm type for the solver; can be dpmsolver, dpmsolver++, sde-dpmsolver or sde-dpmsolver++. The dpmsolver type implements the algorithms in the DPMSolver paper, and the dpmsolver++ type implements the algorithms in the DPMSolver++ paper. It is recommended to use dpmsolver++ or sde-dpmsolver++ with solver_order=2 for guided sampling like in Stable Diffusion.

TYPE: `str`, defaults to `dpmsolver++` DEFAULT: 'dpmsolver++'

solver_type

Solver type for the second-order solver; can be midpoint or heun. The solver type slightly affects the sample quality, especially for a small number of steps. It is recommended to use midpoint solvers.

TYPE: `str`, defaults to `midpoint` DEFAULT: 'midpoint'

lower_order_final

Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.

TYPE: `bool`, defaults to `True` DEFAULT: True

euler_at_final

Whether to use Euler's method in the final step. It is a trade-off between numerical stability and detail richness. This can stabilize the sampling of the SDE variant of DPMSolver for small number of inference steps, but sometimes may result in blurring.

TYPE: `bool`, defaults to `False` DEFAULT: False

use_karras_sigmas

Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If True, the sigmas are determined according to a sequence of noise levels {σi}.

TYPE: `bool`, *optional*, defaults to `False` DEFAULT: False

lambda_min_clipped

Clipping threshold for the minimum value of lambda(t) for numerical stability. This is critical for the cosine (squaredcos_cap_v2) noise schedule.

TYPE: `float`, defaults to `-inf` DEFAULT: -float('inf')

variance_type

Set to "learned" or "learned_range" for diffusion models that predict variance. If set, the model's output contains the predicted Gaussian variance.

TYPE: `str`, *optional* DEFAULT: None

timestep_spacing

The way the timesteps should be scaled. Refer to Table 2 of the Common Diffusion Noise Schedules and Sample Steps are Flawed for more information.

TYPE: `str`, defaults to `"linspace"` DEFAULT: 'linspace'

steps_offset

An offset added to the inference steps, as required by some model families.

TYPE: `int`, defaults to 0 DEFAULT: 0

Source code in mindone/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
    """
    `DPMSolverMultistepInverseScheduler` is the reverse scheduler of [`DPMSolverMultistepScheduler`].

    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.

    Args:
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        solver_order (`int`, defaults to 2):
            The DPMSolver order which can be `1` or `2` or `3`. It is recommended to use `solver_order=2` for guided
            sampling, and `solver_order=3` for unconditional sampling.
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        thresholding (`bool`, defaults to `False`):
            Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
            as Stable Diffusion.
        dynamic_thresholding_ratio (`float`, defaults to 0.995):
            The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
        sample_max_value (`float`, defaults to 1.0):
            The threshold value for dynamic thresholding. Valid only when `thresholding=True` and
            `algorithm_type="dpmsolver++"`.
        algorithm_type (`str`, defaults to `dpmsolver++`):
            Algorithm type for the solver; can be `dpmsolver`, `dpmsolver++`, `sde-dpmsolver` or `sde-dpmsolver++`. The
            `dpmsolver` type implements the algorithms in the [DPMSolver](https://huggingface.co/papers/2206.00927)
            paper, and the `dpmsolver++` type implements the algorithms in the
            [DPMSolver++](https://huggingface.co/papers/2211.01095) paper. It is recommended to use `dpmsolver++` or
            `sde-dpmsolver++` with `solver_order=2` for guided sampling like in Stable Diffusion.
        solver_type (`str`, defaults to `midpoint`):
            Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the
            sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers.
        lower_order_final (`bool`, defaults to `True`):
            Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can
            stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.
        euler_at_final (`bool`, defaults to `False`):
            Whether to use Euler's method in the final step. It is a trade-off between numerical stability and detail
            richness. This can stabilize the sampling of the SDE variant of DPMSolver for small number of inference
            steps, but sometimes may result in blurring.
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
            the sigmas are determined according to a sequence of noise levels {σi}.
        lambda_min_clipped (`float`, defaults to `-inf`):
            Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the
            cosine (`squaredcos_cap_v2`) noise schedule.
        variance_type (`str`, *optional*):
            Set to "learned" or "learned_range" for diffusion models that predict variance. If set, the model's output
            contains the predicted Gaussian variance.
        timestep_spacing (`str`, defaults to `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
            An offset added to the inference steps, as required by some model families.
    """

    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
    order = 1

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
        solver_order: int = 2,
        prediction_type: str = "epsilon",
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        sample_max_value: float = 1.0,
        algorithm_type: str = "dpmsolver++",
        solver_type: str = "midpoint",
        lower_order_final: bool = True,
        euler_at_final: bool = False,
        use_karras_sigmas: Optional[bool] = False,
        lambda_min_clipped: float = -float("inf"),
        variance_type: Optional[str] = None,
        timestep_spacing: str = "linspace",
        steps_offset: int = 0,
    ):
        if algorithm_type in ["dpmsolver", "sde-dpmsolver"]:
            deprecation_message = (
                f"algorithm_type {algorithm_type} is deprecated and will be removed in a future version. "
                "Choose from `dpmsolver++` or `sde-dpmsolver++` instead"
            )
            deprecate("algorithm_types dpmsolver and sde-dpmsolver", "1.0.0", deprecation_message)

        if trained_betas is not None:
            self.betas = ms.tensor(trained_betas, dtype=ms.float32)
        elif beta_schedule == "linear":
            self.betas = ms.tensor(np.linspace(beta_start, beta_end, num_train_timesteps), dtype=ms.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
            self.betas = (
                ms.tensor(np.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps), dtype=ms.float32) ** 2
            )
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
        else:
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = ops.cumprod(self.alphas, dim=0)
        # Currently we only support VP-type noise schedule
        self.alpha_t = ops.sqrt(self.alphas_cumprod)
        self.sigma_t = ops.sqrt(1 - self.alphas_cumprod)
        self.lambda_t = ops.log(self.alpha_t) - ops.log(self.sigma_t)
        self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5

        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

        # settings for DPM-Solver
        if algorithm_type not in ["dpmsolver", "dpmsolver++", "sde-dpmsolver", "sde-dpmsolver++"]:
            if algorithm_type == "deis":
                self.register_to_config(algorithm_type="dpmsolver++")
            else:
                raise NotImplementedError(f"{algorithm_type} is not implemented for {self.__class__}")

        if solver_type not in ["midpoint", "heun"]:
            if solver_type in ["logrho", "bh1", "bh2"]:
                self.register_to_config(solver_type="midpoint")
            else:
                raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}")

        # setable values
        self.num_inference_steps = None
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32).copy()
        self.timesteps = ms.tensor(timesteps)
        self.model_outputs = [None] * solver_order
        self.lower_order_nums = 0
        self._step_index = None
        self.use_karras_sigmas = use_karras_sigmas

    @property
    def step_index(self):
        """
        The index counter for current timestep. It will increase 1 after each scheduler step.
        """
        return self._step_index

    def set_timesteps(self, num_inference_steps: int = None):
        """
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).

        Args:
            num_inference_steps (`int`):
                The number of diffusion steps used when generating samples with a pre-trained model.
        """
        # Clipping the minimum of all lambda(t) for numerical stability.
        # This is critical for cosine (squaredcos_cap_v2) noise schedule.
        clipped_idx = ms.tensor(
            np.searchsorted(ops.flip(self.lambda_t, [0]).asnumpy(), self.config.lambda_min_clipped)
        ).item()
        self.noisiest_timestep = self.config.num_train_timesteps - 1 - clipped_idx

        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
        if self.config.timestep_spacing == "linspace":
            timesteps = (
                np.linspace(0, self.noisiest_timestep, num_inference_steps + 1).round()[:-1].copy().astype(np.int64)
            )
        elif self.config.timestep_spacing == "leading":
            step_ratio = (self.noisiest_timestep + 1) // (num_inference_steps + 1)
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (np.arange(0, num_inference_steps + 1) * step_ratio).round()[:-1].copy().astype(np.int64)
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = self.config.num_train_timesteps / num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = np.arange(self.noisiest_timestep + 1, 0, -step_ratio).round()[::-1].copy().astype(np.int64)
            timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', "
                "'leading' or 'trailing'."
            )

        sigmas = (((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5).asnumpy()
        log_sigmas = np.log(sigmas)

        if self.config.use_karras_sigmas:
            sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
            timesteps = timesteps.copy().astype(np.int64)
            sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
        else:
            sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
            sigma_max = (
                (1 - self.alphas_cumprod[self.noisiest_timestep]) / self.alphas_cumprod[self.noisiest_timestep]
            ) ** 0.5
            sigmas = np.concatenate([sigmas, [sigma_max]]).astype(np.float32)

        self.sigmas = ms.Tensor(sigmas)

        # when num_inference_steps == num_train_timesteps, we can end up with
        # duplicates in timesteps.
        _, unique_indices = np.unique(timesteps, return_index=True)
        timesteps = timesteps[np.sort(unique_indices)]

        self.timesteps = ms.tensor(timesteps, dtype=ms.int64)

        self.num_inference_steps = len(timesteps)

        self.model_outputs = [
            None,
        ] * self.config.solver_order
        self.lower_order_nums = 0

        # add an index counter for schedulers that allow duplicated timesteps
        self._step_index = None

    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
    def _threshold_sample(self, sample: ms.Tensor) -> ms.Tensor:
        """
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

        https://arxiv.org/abs/2205.11487
        """
        dtype = sample.dtype
        batch_size, channels, *remaining_dims = sample.shape

        if dtype not in (ms.float32, ms.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
        sample = sample.reshape(batch_size, channels * np.prod(remaining_dims).item())

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = ms.Tensor.from_numpy(np.quantile(abs_sample.asnumpy(), self.config.dynamic_thresholding_ratio, axis=1))
        s = ops.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]
        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = ops.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

        sample = sample.reshape(batch_size, channels, *remaining_dims)
        sample = sample.to(dtype)

        return sample

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
    def _sigma_to_t(self, sigma, log_sigmas):
        # get log sigma
        log_sigma = np.log(np.maximum(sigma, 1e-10))

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
    def _sigma_to_alpha_sigma_t(self, sigma):
        alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
        sigma_t = sigma * alpha_t

        return alpha_t, sigma_t

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
    def _convert_to_karras(self, in_sigmas: ms.Tensor, num_inference_steps) -> ms.Tensor:
        """Constructs the noise schedule of Karras et al. (2022)."""

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

        rho = 7.0  # 7.0 is the value used in the paper
        ramp = np.linspace(0, 1, num_inference_steps)
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.convert_model_output
    def convert_model_output(
        self,
        model_output: ms.Tensor,
        *args,
        sample: ms.Tensor = None,
        **kwargs,
    ) -> ms.Tensor:
        """
        Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is
        designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an
        integral of the data prediction model.

        <Tip>

        The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise
        prediction and data prediction models.

        </Tip>

        Args:
            model_output (`ms.Tensor`):
                The direct output from the learned diffusion model.
            sample (`ms.Tensor`):
                A current instance of a sample created by the diffusion process.

        Returns:
            `ms.Tensor`:
                The converted model output.
        """
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
        if sample is None:
            if len(args) > 1:
                sample = args[1]
            else:
                raise ValueError("missing `sample` as a required keyward argument")
        if timestep is not None:
            deprecate(
                "timesteps",
                "1.0.0",
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        # DPM-Solver++ needs to solve an integral of the data prediction model.
        if self.config.algorithm_type in ["dpmsolver++", "sde-dpmsolver++"]:
            if self.config.prediction_type == "epsilon":
                # DPM-Solver and DPM-Solver++ only need the "mean" output.
                if self.config.variance_type in ["learned", "learned_range"]:
                    model_output = model_output[:, :3]
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
                x0_pred = ((sample - sigma_t.to(model_output.dtype) * model_output) / alpha_t).to(sample.dtype)
            elif self.config.prediction_type == "sample":
                x0_pred = model_output
            elif self.config.prediction_type == "v_prediction":
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
                x0_pred = alpha_t.to(sample.dtype) * sample - sigma_t.to(model_output.dtype) * model_output
            else:
                raise ValueError(
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
                    " `v_prediction` for the DPMSolverMultistepScheduler."
                )

            if self.config.thresholding:
                x0_pred = self._threshold_sample(x0_pred)

            return x0_pred

        # DPM-Solver needs to solve an integral of the noise prediction model.
        elif self.config.algorithm_type in ["dpmsolver", "sde-dpmsolver"]:
            if self.config.prediction_type == "epsilon":
                # DPM-Solver and DPM-Solver++ only need the "mean" output.
                if self.config.variance_type in ["learned", "learned_range"]:
                    epsilon = model_output[:, :3]
                else:
                    epsilon = model_output
            elif self.config.prediction_type == "sample":
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
                epsilon = (sample - alpha_t * model_output) / sigma_t
            elif self.config.prediction_type == "v_prediction":
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
                epsilon = alpha_t * model_output + sigma_t * sample
            else:
                raise ValueError(
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
                    " `v_prediction` for the DPMSolverMultistepScheduler."
                )

            if self.config.thresholding:
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
                x0_pred = (sample - sigma_t * epsilon) / alpha_t
                x0_pred = self._threshold_sample(x0_pred)
                epsilon = (sample - alpha_t * x0_pred) / sigma_t

            return epsilon

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.dpm_solver_first_order_update
    def dpm_solver_first_order_update(
        self,
        model_output: ms.Tensor,
        *args,
        sample: ms.Tensor = None,
        noise: Optional[ms.Tensor] = None,
        **kwargs,
    ) -> ms.Tensor:
        """
        One step for the first-order DPMSolver (equivalent to DDIM).

        Args:
            model_output (`ms.Tensor`):
                The direct output from the learned diffusion model.
            sample (`ms.Tensor`):
                A current instance of a sample created by the diffusion process.

        Returns:
            `ms.Tensor`:
                The sample tensor at the previous timestep.
        """
        dtype = sample.dtype
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
                raise ValueError(" missing `sample` as a required keyward argument")
        if timestep is not None:
            deprecate(
                "timesteps",
                "1.0.0",
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
        lambda_t = ops.log(alpha_t) - ops.log(sigma_t)
        lambda_s = ops.log(alpha_s) - ops.log(sigma_s)

        h = lambda_t - lambda_s
        if self.config.algorithm_type == "dpmsolver++":
            x_t = (sigma_t / sigma_s).to(dtype) * sample - ((alpha_t * (ops.exp(-h) - 1.0))).to(dtype) * model_output
        elif self.config.algorithm_type == "dpmsolver":
            x_t = (alpha_t / alpha_s).to(dtype) * sample - (sigma_t * (ops.exp(h) - 1.0)).to(dtype) * model_output
        elif self.config.algorithm_type == "sde-dpmsolver++":
            assert noise is not None
            x_t = (
                ((sigma_t / sigma_s * ops.exp(-h))).to(dtype) * sample
                + (alpha_t * (1 - ops.exp(-2.0 * h))).to(dtype) * model_output
                + sigma_t * ops.sqrt(1.0 - ops.exp(-2 * h)).to(dtype) * noise
            )
        elif self.config.algorithm_type == "sde-dpmsolver":
            assert noise is not None
            x_t = (
                ((alpha_t / alpha_s)).to(dtype) * sample
                - (2.0 * (sigma_t * (ops.exp(h) - 1.0))).to(dtype) * model_output
                + (sigma_t * ops.sqrt(ops.exp(2 * h) - 1.0)).to(dtype) * noise
            )

        return x_t

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.multistep_dpm_solver_second_order_update
    def multistep_dpm_solver_second_order_update(
        self,
        model_output_list: List[ms.Tensor],
        *args,
        sample: ms.Tensor = None,
        noise: Optional[ms.Tensor] = None,
        **kwargs,
    ) -> ms.Tensor:
        """
        One step for the second-order multistep DPMSolver.

        Args:
            model_output_list (`List[ms.Tensor]`):
                The direct outputs from learned diffusion model at current and latter timesteps.
            sample (`ms.Tensor`):
                A current instance of a sample created by the diffusion process.

        Returns:
            `ms.Tensor`:
                The sample tensor at the previous timestep.
        """
        dtype = sample.dtype
        timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
                raise ValueError(" missing `sample` as a required keyward argument")
        if timestep_list is not None:
            deprecate(
                "timestep_list",
                "1.0.0",
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma_t, sigma_s0, sigma_s1 = (
            self.sigmas[self.step_index + 1],
            self.sigmas[self.step_index],
            self.sigmas[self.step_index - 1],
        )

        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
        alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)

        lambda_t = ops.log(alpha_t) - ops.log(sigma_t)
        lambda_s0 = ops.log(alpha_s0) - ops.log(sigma_s0)
        lambda_s1 = ops.log(alpha_s1) - ops.log(sigma_s1)

        m0, m1 = model_output_list[-1], model_output_list[-2]

        h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1
        r0 = h_0 / h
        D0, D1 = m0, ((1.0 / r0)).to(m0.dtype) * (m0 - m1)
        if self.config.algorithm_type == "dpmsolver++":
            # See https://arxiv.org/abs/2211.01095 for detailed derivations
            if self.config.solver_type == "midpoint":
                x_t = (
                    (sigma_t / sigma_s0).to(dtype) * sample
                    - (alpha_t * (ops.exp(-h) - 1.0)).to(dtype) * D0
                    - 0.5 * (alpha_t * (ops.exp(-h) - 1.0)).to(dtype) * D1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (sigma_t / sigma_s0).to(dtype) * sample
                    - (alpha_t * (ops.exp(-h) - 1.0)).to(dtype) * D0
                    + (alpha_t * ((ops.exp(-h) - 1.0) / h + 1.0)).to(dtype) * D1
                )
        elif self.config.algorithm_type == "dpmsolver":
            # See https://arxiv.org/abs/2206.00927 for detailed derivations
            if self.config.solver_type == "midpoint":
                x_t = (
                    (alpha_t / alpha_s0).to(dtype) * sample
                    - (sigma_t * (ops.exp(h) - 1.0)).to(dtype) * D0
                    - 0.5 * (sigma_t * (ops.exp(h) - 1.0)).to(dtype) * D1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (alpha_t / alpha_s0).to(dtype) * sample
                    - (sigma_t * (ops.exp(h) - 1.0)).to(dtype) * D0
                    - (sigma_t * ((ops.exp(h) - 1.0) / h - 1.0)).to(dtype) * D1
                )
        elif self.config.algorithm_type == "sde-dpmsolver++":
            assert noise is not None
            if self.config.solver_type == "midpoint":
                x_t = (
                    (sigma_t / sigma_s0 * ops.exp(-h)).to(dtype) * sample
                    + (alpha_t * (1 - ops.exp(-2.0 * h))).to(dtype) * D0
                    + 0.5 * (alpha_t * (1 - ops.exp(-2.0 * h))).to(dtype) * D1
                    + sigma_t * ops.sqrt(1.0 - ops.exp(-2 * h)).to(dtype) * noise
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (sigma_t / sigma_s0 * ops.exp(-h)).to(dtype) * sample
                    + (alpha_t * (1 - ops.exp(-2.0 * h))).to(dtype) * D0
                    + (alpha_t * ((1.0 - ops.exp(-2.0 * h)) / (-2.0 * h) + 1.0)).to(dtype) * D1
                    + sigma_t * ops.sqrt(1.0 - ops.exp(-2 * h)).to(dtype) * noise
                )
        elif self.config.algorithm_type == "sde-dpmsolver":
            assert noise is not None
            if self.config.solver_type == "midpoint":
                x_t = (
                    (alpha_t / alpha_s0).to(dtype) * sample
                    - (2.0 * (sigma_t * (ops.exp(h) - 1.0))).to(dtype) * D0
                    - (sigma_t * (ops.exp(h) - 1.0)).to(dtype) * D1
                    + (sigma_t * ops.sqrt(ops.exp(2 * h) - 1.0)).to(dtype) * noise
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (alpha_t / alpha_s0).to(dtype) * sample
                    - (2.0 * (sigma_t * (ops.exp(h) - 1.0))).to(dtype) * D0
                    - (2.0 * (sigma_t * ((ops.exp(h) - 1.0) / h - 1.0))).to(dtype) * D1
                    + (sigma_t * ops.sqrt(ops.exp(2 * h) - 1.0)).to(dtype) * noise
                )
        return x_t

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.multistep_dpm_solver_third_order_update
    def multistep_dpm_solver_third_order_update(
        self,
        model_output_list: List[ms.Tensor],
        *args,
        sample: ms.Tensor = None,
        **kwargs,
    ) -> ms.Tensor:
        """
        One step for the third-order multistep DPMSolver.

        Args:
            model_output_list (`List[ms.Tensor]`):
                The direct outputs from learned diffusion model at current and latter timesteps.
            sample (`ms.Tensor`):
                A current instance of a sample created by diffusion process.

        Returns:
            `ms.Tensor`:
                The sample tensor at the previous timestep.
        """

        dtype = sample.dtype
        timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
                raise ValueError(" missing`sample` as a required keyward argument")
        if timestep_list is not None:
            deprecate(
                "timestep_list",
                "1.0.0",
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma_t, sigma_s0, sigma_s1, sigma_s2 = (
            self.sigmas[self.step_index + 1],
            self.sigmas[self.step_index],
            self.sigmas[self.step_index - 1],
            self.sigmas[self.step_index - 2],
        )

        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
        alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
        alpha_s2, sigma_s2 = self._sigma_to_alpha_sigma_t(sigma_s2)

        lambda_t = ops.log(alpha_t) - ops.log(sigma_t)
        lambda_s0 = ops.log(alpha_s0) - ops.log(sigma_s0)
        lambda_s1 = ops.log(alpha_s1) - ops.log(sigma_s1)
        lambda_s2 = ops.log(alpha_s2) - ops.log(sigma_s2)

        m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3]

        h, h_0, h_1 = lambda_t - lambda_s0, lambda_s0 - lambda_s1, lambda_s1 - lambda_s2
        r0, r1 = h_0 / h, h_1 / h
        D0 = m0
        D1_0, D1_1 = (1.0 / r0).to(dtype) * (m0 - m1), (1.0 / r1).to(dtype) * (m1 - m2)
        D1 = D1_0 + (r0 / (r0 + r1)).to(dtype) * (D1_0 - D1_1)
        D2 = (1.0 / (r0 + r1)).to(dtype) * (D1_0 - D1_1)
        if self.config.algorithm_type == "dpmsolver++":
            # See https://arxiv.org/abs/2206.00927 for detailed derivations
            x_t = (
                (sigma_t / sigma_s0).to(dtype) * sample
                - (alpha_t * (ops.exp(-h) - 1.0)).to(dtype) * D0
                + (alpha_t * ((ops.exp(-h) - 1.0) / h + 1.0)).to(dtype) * D1
                - (alpha_t * ((ops.exp(-h) - 1.0 + h) / h**2 - 0.5)).to(dtype) * D2
            )
        elif self.config.algorithm_type == "dpmsolver":
            # See https://arxiv.org/abs/2206.00927 for detailed derivations
            x_t = (
                (alpha_t / alpha_s0).to(dtype) * sample
                - (sigma_t * (ops.exp(h) - 1.0)).to(dtype) * D0
                - (sigma_t * ((ops.exp(h) - 1.0) / h - 1.0)).to(dtype) * D1
                - (sigma_t * ((ops.exp(h) - 1.0 - h) / h**2 - 0.5)).to(dtype) * D2
            )
        return x_t

    def _init_step_index(self, timestep):
        index_candidates_num = (self.timesteps == timestep).sum()

        if index_candidates_num == 0:
            step_index = len(self.timesteps) - 1
        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
        else:
            if index_candidates_num > 1:
                pos = 1
            else:
                pos = 0
            step_index = int((self.timesteps == timestep).nonzero()[pos])

        self._step_index = step_index

    def step(
        self,
        model_output: ms.Tensor,
        timestep: Union[int, ms.Tensor],
        sample: ms.Tensor,
        generator=None,
        variance_noise: Optional[ms.Tensor] = None,
        return_dict: bool = False,
    ) -> Union[SchedulerOutput, Tuple]:
        """
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
        the multistep DPMSolver.

        Args:
            model_output (`ms.Tensor`):
                The direct output from learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
            sample (`ms.Tensor`):
                A current instance of a sample created by the diffusion process.
            generator (`np.random.Generator`, *optional*):
                A random number generator.
            variance_noise (`ms.Tensor`):
                Alternative to generating noise with `generator` by directly providing the noise for the variance
                itself. Useful for methods such as [`CycleDiffusion`].
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.

        Returns:
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.

        """
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

        if self.step_index is None:
            self._init_step_index(timestep)

        # Improve numerical stability for small number of steps
        lower_order_final = (self.step_index == len(self.timesteps) - 1) and (
            self.config.euler_at_final or (self.config.lower_order_final and len(self.timesteps) < 15)
        )
        lower_order_second = (
            (self.step_index == len(self.timesteps) - 2) and self.config.lower_order_final and len(self.timesteps) < 15
        )

        model_output = self.convert_model_output(model_output, sample=sample)
        for i in range(self.config.solver_order - 1):
            self.model_outputs[i] = self.model_outputs[i + 1]
        self.model_outputs[-1] = model_output

        if self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"] and variance_noise is None:
            noise = randn_tensor(model_output.shape, generator=generator, dtype=model_output.dtype)
        elif self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"]:
            noise = variance_noise
        else:
            noise = None

        if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final:
            prev_sample = self.dpm_solver_first_order_update(model_output, sample=sample, noise=noise)
        elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second:
            prev_sample = self.multistep_dpm_solver_second_order_update(self.model_outputs, sample=sample, noise=noise)
        else:
            prev_sample = self.multistep_dpm_solver_third_order_update(self.model_outputs, sample=sample)

        if self.lower_order_nums < self.config.solver_order:
            self.lower_order_nums += 1

        # upon completion increase step index by one
        self._step_index += 1

        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.scale_model_input
    def scale_model_input(self, sample: ms.Tensor, *args, **kwargs) -> ms.Tensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
            sample (`ms.Tensor`):
                The input sample.

        Returns:
            `ms.Tensor`:
                A scaled input sample.
        """
        return sample

    def add_noise(
        self,
        original_samples: ms.Tensor,
        noise: ms.Tensor,
        timesteps: ms.Tensor,
    ) -> ms.Tensor:
        broadcast_shape = original_samples.shape
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        sigmas = self.sigmas.to(dtype=original_samples.dtype)
        schedule_timesteps = self.timesteps

        step_indices = []
        for timestep in timesteps:
            index_candidates_num = (schedule_timesteps == timestep).sum()
            if index_candidates_num == 0:
                step_index = len(schedule_timesteps) - 1
            else:
                if index_candidates_num > 1:
                    pos = 1
                else:
                    pos = 0
                step_index = int((schedule_timesteps == timestep).nonzero()[pos])
            step_indices.append(step_index)

        sigma = sigmas[step_indices].flatten()
        # while len(sigma.shape) < len(original_samples.shape):
        #     sigma = sigma.unsqueeze(-1)
        sigma = ops.reshape(sigma, (timesteps.shape[0],) + (1,) * (len(broadcast_shape) - 1))

        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
        noisy_samples = alpha_t * original_samples + sigma_t * noise
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps

mindone.diffusers.DPMSolverMultistepInverseScheduler.step_index property

The index counter for current timestep. It will increase 1 after each scheduler step.

mindone.diffusers.DPMSolverMultistepInverseScheduler.convert_model_output(model_output, *args, sample=None, **kwargs)

Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an integral of the data prediction model.

The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise prediction and data prediction models.

PARAMETER DESCRIPTION
model_output

The direct output from the learned diffusion model.

TYPE: `ms.Tensor`

sample

A current instance of a sample created by the diffusion process.

TYPE: `ms.Tensor` DEFAULT: None

RETURNS DESCRIPTION
Tensor

ms.Tensor: The converted model output.

Source code in mindone/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
def convert_model_output(
    self,
    model_output: ms.Tensor,
    *args,
    sample: ms.Tensor = None,
    **kwargs,
) -> ms.Tensor:
    """
    Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is
    designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an
    integral of the data prediction model.

    <Tip>

    The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise
    prediction and data prediction models.

    </Tip>

    Args:
        model_output (`ms.Tensor`):
            The direct output from the learned diffusion model.
        sample (`ms.Tensor`):
            A current instance of a sample created by the diffusion process.

    Returns:
        `ms.Tensor`:
            The converted model output.
    """
    timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
    if sample is None:
        if len(args) > 1:
            sample = args[1]
        else:
            raise ValueError("missing `sample` as a required keyward argument")
    if timestep is not None:
        deprecate(
            "timesteps",
            "1.0.0",
            "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
        )

    # DPM-Solver++ needs to solve an integral of the data prediction model.
    if self.config.algorithm_type in ["dpmsolver++", "sde-dpmsolver++"]:
        if self.config.prediction_type == "epsilon":
            # DPM-Solver and DPM-Solver++ only need the "mean" output.
            if self.config.variance_type in ["learned", "learned_range"]:
                model_output = model_output[:, :3]
            sigma = self.sigmas[self.step_index]
            alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
            x0_pred = ((sample - sigma_t.to(model_output.dtype) * model_output) / alpha_t).to(sample.dtype)
        elif self.config.prediction_type == "sample":
            x0_pred = model_output
        elif self.config.prediction_type == "v_prediction":
            sigma = self.sigmas[self.step_index]
            alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
            x0_pred = alpha_t.to(sample.dtype) * sample - sigma_t.to(model_output.dtype) * model_output
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
                " `v_prediction` for the DPMSolverMultistepScheduler."
            )

        if self.config.thresholding:
            x0_pred = self._threshold_sample(x0_pred)

        return x0_pred

    # DPM-Solver needs to solve an integral of the noise prediction model.
    elif self.config.algorithm_type in ["dpmsolver", "sde-dpmsolver"]:
        if self.config.prediction_type == "epsilon":
            # DPM-Solver and DPM-Solver++ only need the "mean" output.
            if self.config.variance_type in ["learned", "learned_range"]:
                epsilon = model_output[:, :3]
            else:
                epsilon = model_output
        elif self.config.prediction_type == "sample":
            sigma = self.sigmas[self.step_index]
            alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
            epsilon = (sample - alpha_t * model_output) / sigma_t
        elif self.config.prediction_type == "v_prediction":
            sigma = self.sigmas[self.step_index]
            alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
            epsilon = alpha_t * model_output + sigma_t * sample
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
                " `v_prediction` for the DPMSolverMultistepScheduler."
            )

        if self.config.thresholding:
            sigma = self.sigmas[self.step_index]
            alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
            x0_pred = (sample - sigma_t * epsilon) / alpha_t
            x0_pred = self._threshold_sample(x0_pred)
            epsilon = (sample - alpha_t * x0_pred) / sigma_t

        return epsilon

mindone.diffusers.DPMSolverMultistepInverseScheduler.dpm_solver_first_order_update(model_output, *args, sample=None, noise=None, **kwargs)

One step for the first-order DPMSolver (equivalent to DDIM).

PARAMETER DESCRIPTION
model_output

The direct output from the learned diffusion model.

TYPE: `ms.Tensor`

sample

A current instance of a sample created by the diffusion process.

TYPE: `ms.Tensor` DEFAULT: None

RETURNS DESCRIPTION
Tensor

ms.Tensor: The sample tensor at the previous timestep.

Source code in mindone/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
def dpm_solver_first_order_update(
    self,
    model_output: ms.Tensor,
    *args,
    sample: ms.Tensor = None,
    noise: Optional[ms.Tensor] = None,
    **kwargs,
) -> ms.Tensor:
    """
    One step for the first-order DPMSolver (equivalent to DDIM).

    Args:
        model_output (`ms.Tensor`):
            The direct output from the learned diffusion model.
        sample (`ms.Tensor`):
            A current instance of a sample created by the diffusion process.

    Returns:
        `ms.Tensor`:
            The sample tensor at the previous timestep.
    """
    dtype = sample.dtype
    timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
    prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
    if sample is None:
        if len(args) > 2:
            sample = args[2]
        else:
            raise ValueError(" missing `sample` as a required keyward argument")
    if timestep is not None:
        deprecate(
            "timesteps",
            "1.0.0",
            "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
        )

    if prev_timestep is not None:
        deprecate(
            "prev_timestep",
            "1.0.0",
            "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
        )

    sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
    alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
    alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
    lambda_t = ops.log(alpha_t) - ops.log(sigma_t)
    lambda_s = ops.log(alpha_s) - ops.log(sigma_s)

    h = lambda_t - lambda_s
    if self.config.algorithm_type == "dpmsolver++":
        x_t = (sigma_t / sigma_s).to(dtype) * sample - ((alpha_t * (ops.exp(-h) - 1.0))).to(dtype) * model_output
    elif self.config.algorithm_type == "dpmsolver":
        x_t = (alpha_t / alpha_s).to(dtype) * sample - (sigma_t * (ops.exp(h) - 1.0)).to(dtype) * model_output
    elif self.config.algorithm_type == "sde-dpmsolver++":
        assert noise is not None
        x_t = (
            ((sigma_t / sigma_s * ops.exp(-h))).to(dtype) * sample
            + (alpha_t * (1 - ops.exp(-2.0 * h))).to(dtype) * model_output
            + sigma_t * ops.sqrt(1.0 - ops.exp(-2 * h)).to(dtype) * noise
        )
    elif self.config.algorithm_type == "sde-dpmsolver":
        assert noise is not None
        x_t = (
            ((alpha_t / alpha_s)).to(dtype) * sample
            - (2.0 * (sigma_t * (ops.exp(h) - 1.0))).to(dtype) * model_output
            + (sigma_t * ops.sqrt(ops.exp(2 * h) - 1.0)).to(dtype) * noise
        )

    return x_t

mindone.diffusers.DPMSolverMultistepInverseScheduler.multistep_dpm_solver_second_order_update(model_output_list, *args, sample=None, noise=None, **kwargs)

One step for the second-order multistep DPMSolver.

PARAMETER DESCRIPTION
model_output_list

The direct outputs from learned diffusion model at current and latter timesteps.

TYPE: `List[ms.Tensor]`

sample

A current instance of a sample created by the diffusion process.

TYPE: `ms.Tensor` DEFAULT: None

RETURNS DESCRIPTION
Tensor

ms.Tensor: The sample tensor at the previous timestep.

Source code in mindone/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
def multistep_dpm_solver_second_order_update(
    self,
    model_output_list: List[ms.Tensor],
    *args,
    sample: ms.Tensor = None,
    noise: Optional[ms.Tensor] = None,
    **kwargs,
) -> ms.Tensor:
    """
    One step for the second-order multistep DPMSolver.

    Args:
        model_output_list (`List[ms.Tensor]`):
            The direct outputs from learned diffusion model at current and latter timesteps.
        sample (`ms.Tensor`):
            A current instance of a sample created by the diffusion process.

    Returns:
        `ms.Tensor`:
            The sample tensor at the previous timestep.
    """
    dtype = sample.dtype
    timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
    prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
    if sample is None:
        if len(args) > 2:
            sample = args[2]
        else:
            raise ValueError(" missing `sample` as a required keyward argument")
    if timestep_list is not None:
        deprecate(
            "timestep_list",
            "1.0.0",
            "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
        )

    if prev_timestep is not None:
        deprecate(
            "prev_timestep",
            "1.0.0",
            "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
        )

    sigma_t, sigma_s0, sigma_s1 = (
        self.sigmas[self.step_index + 1],
        self.sigmas[self.step_index],
        self.sigmas[self.step_index - 1],
    )

    alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
    alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
    alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)

    lambda_t = ops.log(alpha_t) - ops.log(sigma_t)
    lambda_s0 = ops.log(alpha_s0) - ops.log(sigma_s0)
    lambda_s1 = ops.log(alpha_s1) - ops.log(sigma_s1)

    m0, m1 = model_output_list[-1], model_output_list[-2]

    h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1
    r0 = h_0 / h
    D0, D1 = m0, ((1.0 / r0)).to(m0.dtype) * (m0 - m1)
    if self.config.algorithm_type == "dpmsolver++":
        # See https://arxiv.org/abs/2211.01095 for detailed derivations
        if self.config.solver_type == "midpoint":
            x_t = (
                (sigma_t / sigma_s0).to(dtype) * sample
                - (alpha_t * (ops.exp(-h) - 1.0)).to(dtype) * D0
                - 0.5 * (alpha_t * (ops.exp(-h) - 1.0)).to(dtype) * D1
            )
        elif self.config.solver_type == "heun":
            x_t = (
                (sigma_t / sigma_s0).to(dtype) * sample
                - (alpha_t * (ops.exp(-h) - 1.0)).to(dtype) * D0
                + (alpha_t * ((ops.exp(-h) - 1.0) / h + 1.0)).to(dtype) * D1
            )
    elif self.config.algorithm_type == "dpmsolver":
        # See https://arxiv.org/abs/2206.00927 for detailed derivations
        if self.config.solver_type == "midpoint":
            x_t = (
                (alpha_t / alpha_s0).to(dtype) * sample
                - (sigma_t * (ops.exp(h) - 1.0)).to(dtype) * D0
                - 0.5 * (sigma_t * (ops.exp(h) - 1.0)).to(dtype) * D1
            )
        elif self.config.solver_type == "heun":
            x_t = (
                (alpha_t / alpha_s0).to(dtype) * sample
                - (sigma_t * (ops.exp(h) - 1.0)).to(dtype) * D0
                - (sigma_t * ((ops.exp(h) - 1.0) / h - 1.0)).to(dtype) * D1
            )
    elif self.config.algorithm_type == "sde-dpmsolver++":
        assert noise is not None
        if self.config.solver_type == "midpoint":
            x_t = (
                (sigma_t / sigma_s0 * ops.exp(-h)).to(dtype) * sample
                + (alpha_t * (1 - ops.exp(-2.0 * h))).to(dtype) * D0
                + 0.5 * (alpha_t * (1 - ops.exp(-2.0 * h))).to(dtype) * D1
                + sigma_t * ops.sqrt(1.0 - ops.exp(-2 * h)).to(dtype) * noise
            )
        elif self.config.solver_type == "heun":
            x_t = (
                (sigma_t / sigma_s0 * ops.exp(-h)).to(dtype) * sample
                + (alpha_t * (1 - ops.exp(-2.0 * h))).to(dtype) * D0
                + (alpha_t * ((1.0 - ops.exp(-2.0 * h)) / (-2.0 * h) + 1.0)).to(dtype) * D1
                + sigma_t * ops.sqrt(1.0 - ops.exp(-2 * h)).to(dtype) * noise
            )
    elif self.config.algorithm_type == "sde-dpmsolver":
        assert noise is not None
        if self.config.solver_type == "midpoint":
            x_t = (
                (alpha_t / alpha_s0).to(dtype) * sample
                - (2.0 * (sigma_t * (ops.exp(h) - 1.0))).to(dtype) * D0
                - (sigma_t * (ops.exp(h) - 1.0)).to(dtype) * D1
                + (sigma_t * ops.sqrt(ops.exp(2 * h) - 1.0)).to(dtype) * noise
            )
        elif self.config.solver_type == "heun":
            x_t = (
                (alpha_t / alpha_s0).to(dtype) * sample
                - (2.0 * (sigma_t * (ops.exp(h) - 1.0))).to(dtype) * D0
                - (2.0 * (sigma_t * ((ops.exp(h) - 1.0) / h - 1.0))).to(dtype) * D1
                + (sigma_t * ops.sqrt(ops.exp(2 * h) - 1.0)).to(dtype) * noise
            )
    return x_t

mindone.diffusers.DPMSolverMultistepInverseScheduler.multistep_dpm_solver_third_order_update(model_output_list, *args, sample=None, **kwargs)

One step for the third-order multistep DPMSolver.

PARAMETER DESCRIPTION
model_output_list

The direct outputs from learned diffusion model at current and latter timesteps.

TYPE: `List[ms.Tensor]`

sample

A current instance of a sample created by diffusion process.

TYPE: `ms.Tensor` DEFAULT: None

RETURNS DESCRIPTION
Tensor

ms.Tensor: The sample tensor at the previous timestep.

Source code in mindone/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
def multistep_dpm_solver_third_order_update(
    self,
    model_output_list: List[ms.Tensor],
    *args,
    sample: ms.Tensor = None,
    **kwargs,
) -> ms.Tensor:
    """
    One step for the third-order multistep DPMSolver.

    Args:
        model_output_list (`List[ms.Tensor]`):
            The direct outputs from learned diffusion model at current and latter timesteps.
        sample (`ms.Tensor`):
            A current instance of a sample created by diffusion process.

    Returns:
        `ms.Tensor`:
            The sample tensor at the previous timestep.
    """

    dtype = sample.dtype
    timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
    prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
    if sample is None:
        if len(args) > 2:
            sample = args[2]
        else:
            raise ValueError(" missing`sample` as a required keyward argument")
    if timestep_list is not None:
        deprecate(
            "timestep_list",
            "1.0.0",
            "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
        )

    if prev_timestep is not None:
        deprecate(
            "prev_timestep",
            "1.0.0",
            "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
        )

    sigma_t, sigma_s0, sigma_s1, sigma_s2 = (
        self.sigmas[self.step_index + 1],
        self.sigmas[self.step_index],
        self.sigmas[self.step_index - 1],
        self.sigmas[self.step_index - 2],
    )

    alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
    alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
    alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
    alpha_s2, sigma_s2 = self._sigma_to_alpha_sigma_t(sigma_s2)

    lambda_t = ops.log(alpha_t) - ops.log(sigma_t)
    lambda_s0 = ops.log(alpha_s0) - ops.log(sigma_s0)
    lambda_s1 = ops.log(alpha_s1) - ops.log(sigma_s1)
    lambda_s2 = ops.log(alpha_s2) - ops.log(sigma_s2)

    m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3]

    h, h_0, h_1 = lambda_t - lambda_s0, lambda_s0 - lambda_s1, lambda_s1 - lambda_s2
    r0, r1 = h_0 / h, h_1 / h
    D0 = m0
    D1_0, D1_1 = (1.0 / r0).to(dtype) * (m0 - m1), (1.0 / r1).to(dtype) * (m1 - m2)
    D1 = D1_0 + (r0 / (r0 + r1)).to(dtype) * (D1_0 - D1_1)
    D2 = (1.0 / (r0 + r1)).to(dtype) * (D1_0 - D1_1)
    if self.config.algorithm_type == "dpmsolver++":
        # See https://arxiv.org/abs/2206.00927 for detailed derivations
        x_t = (
            (sigma_t / sigma_s0).to(dtype) * sample
            - (alpha_t * (ops.exp(-h) - 1.0)).to(dtype) * D0
            + (alpha_t * ((ops.exp(-h) - 1.0) / h + 1.0)).to(dtype) * D1
            - (alpha_t * ((ops.exp(-h) - 1.0 + h) / h**2 - 0.5)).to(dtype) * D2
        )
    elif self.config.algorithm_type == "dpmsolver":
        # See https://arxiv.org/abs/2206.00927 for detailed derivations
        x_t = (
            (alpha_t / alpha_s0).to(dtype) * sample
            - (sigma_t * (ops.exp(h) - 1.0)).to(dtype) * D0
            - (sigma_t * ((ops.exp(h) - 1.0) / h - 1.0)).to(dtype) * D1
            - (sigma_t * ((ops.exp(h) - 1.0 - h) / h**2 - 0.5)).to(dtype) * D2
        )
    return x_t

mindone.diffusers.DPMSolverMultistepInverseScheduler.scale_model_input(sample, *args, **kwargs)

Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep.

PARAMETER DESCRIPTION
sample

The input sample.

TYPE: `ms.Tensor`

RETURNS DESCRIPTION
Tensor

ms.Tensor: A scaled input sample.

Source code in mindone/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py
876
877
878
879
880
881
882
883
884
885
886
887
888
889
def scale_model_input(self, sample: ms.Tensor, *args, **kwargs) -> ms.Tensor:
    """
    Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
    current timestep.

    Args:
        sample (`ms.Tensor`):
            The input sample.

    Returns:
        `ms.Tensor`:
            A scaled input sample.
    """
    return sample

mindone.diffusers.DPMSolverMultistepInverseScheduler.set_timesteps(num_inference_steps=None)

Sets the discrete timesteps used for the diffusion chain (to be run before inference).

PARAMETER DESCRIPTION
num_inference_steps

The number of diffusion steps used when generating samples with a pre-trained model.

TYPE: `int` DEFAULT: None

Source code in mindone/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
def set_timesteps(self, num_inference_steps: int = None):
    """
    Sets the discrete timesteps used for the diffusion chain (to be run before inference).

    Args:
        num_inference_steps (`int`):
            The number of diffusion steps used when generating samples with a pre-trained model.
    """
    # Clipping the minimum of all lambda(t) for numerical stability.
    # This is critical for cosine (squaredcos_cap_v2) noise schedule.
    clipped_idx = ms.tensor(
        np.searchsorted(ops.flip(self.lambda_t, [0]).asnumpy(), self.config.lambda_min_clipped)
    ).item()
    self.noisiest_timestep = self.config.num_train_timesteps - 1 - clipped_idx

    # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
    if self.config.timestep_spacing == "linspace":
        timesteps = (
            np.linspace(0, self.noisiest_timestep, num_inference_steps + 1).round()[:-1].copy().astype(np.int64)
        )
    elif self.config.timestep_spacing == "leading":
        step_ratio = (self.noisiest_timestep + 1) // (num_inference_steps + 1)
        # creates integer timesteps by multiplying by ratio
        # casting to int to avoid issues when num_inference_step is power of 3
        timesteps = (np.arange(0, num_inference_steps + 1) * step_ratio).round()[:-1].copy().astype(np.int64)
        timesteps += self.config.steps_offset
    elif self.config.timestep_spacing == "trailing":
        step_ratio = self.config.num_train_timesteps / num_inference_steps
        # creates integer timesteps by multiplying by ratio
        # casting to int to avoid issues when num_inference_step is power of 3
        timesteps = np.arange(self.noisiest_timestep + 1, 0, -step_ratio).round()[::-1].copy().astype(np.int64)
        timesteps -= 1
    else:
        raise ValueError(
            f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', "
            "'leading' or 'trailing'."
        )

    sigmas = (((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5).asnumpy()
    log_sigmas = np.log(sigmas)

    if self.config.use_karras_sigmas:
        sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
        timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
        timesteps = timesteps.copy().astype(np.int64)
        sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
    else:
        sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
        sigma_max = (
            (1 - self.alphas_cumprod[self.noisiest_timestep]) / self.alphas_cumprod[self.noisiest_timestep]
        ) ** 0.5
        sigmas = np.concatenate([sigmas, [sigma_max]]).astype(np.float32)

    self.sigmas = ms.Tensor(sigmas)

    # when num_inference_steps == num_train_timesteps, we can end up with
    # duplicates in timesteps.
    _, unique_indices = np.unique(timesteps, return_index=True)
    timesteps = timesteps[np.sort(unique_indices)]

    self.timesteps = ms.tensor(timesteps, dtype=ms.int64)

    self.num_inference_steps = len(timesteps)

    self.model_outputs = [
        None,
    ] * self.config.solver_order
    self.lower_order_nums = 0

    # add an index counter for schedulers that allow duplicated timesteps
    self._step_index = None

mindone.diffusers.DPMSolverMultistepInverseScheduler.step(model_output, timestep, sample, generator=None, variance_noise=None, return_dict=False)

Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with the multistep DPMSolver.

PARAMETER DESCRIPTION
model_output

The direct output from learned diffusion model.

TYPE: `ms.Tensor`

timestep

The current discrete timestep in the diffusion chain.

TYPE: `int`

sample

A current instance of a sample created by the diffusion process.

TYPE: `ms.Tensor`

generator

A random number generator.

TYPE: `np.random.Generator`, *optional* DEFAULT: None

variance_noise

Alternative to generating noise with generator by directly providing the noise for the variance itself. Useful for methods such as [CycleDiffusion].

TYPE: `ms.Tensor` DEFAULT: None

return_dict

Whether or not to return a [~schedulers.scheduling_utils.SchedulerOutput] or tuple.

TYPE: `bool` DEFAULT: False

RETURNS DESCRIPTION
Union[SchedulerOutput, Tuple]

[~schedulers.scheduling_utils.SchedulerOutput] or tuple: If return_dict is True, [~schedulers.scheduling_utils.SchedulerOutput] is returned, otherwise a tuple is returned where the first element is the sample tensor.

Source code in mindone/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
def step(
    self,
    model_output: ms.Tensor,
    timestep: Union[int, ms.Tensor],
    sample: ms.Tensor,
    generator=None,
    variance_noise: Optional[ms.Tensor] = None,
    return_dict: bool = False,
) -> Union[SchedulerOutput, Tuple]:
    """
    Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
    the multistep DPMSolver.

    Args:
        model_output (`ms.Tensor`):
            The direct output from learned diffusion model.
        timestep (`int`):
            The current discrete timestep in the diffusion chain.
        sample (`ms.Tensor`):
            A current instance of a sample created by the diffusion process.
        generator (`np.random.Generator`, *optional*):
            A random number generator.
        variance_noise (`ms.Tensor`):
            Alternative to generating noise with `generator` by directly providing the noise for the variance
            itself. Useful for methods such as [`CycleDiffusion`].
        return_dict (`bool`):
            Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.

    Returns:
        [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
            If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
            tuple is returned where the first element is the sample tensor.

    """
    if self.num_inference_steps is None:
        raise ValueError(
            "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
        )

    if self.step_index is None:
        self._init_step_index(timestep)

    # Improve numerical stability for small number of steps
    lower_order_final = (self.step_index == len(self.timesteps) - 1) and (
        self.config.euler_at_final or (self.config.lower_order_final and len(self.timesteps) < 15)
    )
    lower_order_second = (
        (self.step_index == len(self.timesteps) - 2) and self.config.lower_order_final and len(self.timesteps) < 15
    )

    model_output = self.convert_model_output(model_output, sample=sample)
    for i in range(self.config.solver_order - 1):
        self.model_outputs[i] = self.model_outputs[i + 1]
    self.model_outputs[-1] = model_output

    if self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"] and variance_noise is None:
        noise = randn_tensor(model_output.shape, generator=generator, dtype=model_output.dtype)
    elif self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"]:
        noise = variance_noise
    else:
        noise = None

    if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final:
        prev_sample = self.dpm_solver_first_order_update(model_output, sample=sample, noise=noise)
    elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second:
        prev_sample = self.multistep_dpm_solver_second_order_update(self.model_outputs, sample=sample, noise=noise)
    else:
        prev_sample = self.multistep_dpm_solver_third_order_update(self.model_outputs, sample=sample)

    if self.lower_order_nums < self.config.solver_order:
        self.lower_order_nums += 1

    # upon completion increase step index by one
    self._step_index += 1

    if not return_dict:
        return (prev_sample,)

    return SchedulerOutput(prev_sample=prev_sample)