FlowMatchEulerDiscreteScheduler¶
FlowMatchEulerDiscreteScheduler
is based on the flow-matching sampling introduced in Stable Diffusion 3.
mindone.diffusers.FlowMatchEulerDiscreteScheduler
¶
Bases: SchedulerMixin
, ConfigMixin
Euler scheduler.
This model inherits from [SchedulerMixin
] and [ConfigMixin
]. Check the superclass documentation for the generic
methods the library implements for all schedulers such as loading and saving.
PARAMETER | DESCRIPTION |
---|---|
num_train_timesteps |
The number of diffusion steps to train the model.
TYPE:
|
timestep_spacing |
The way the timesteps should be scaled. Refer to Table 2 of the Common Diffusion Noise Schedules and Sample Steps are Flawed for more information.
TYPE:
|
shift |
The shift value for the timestep schedule.
TYPE:
|
Source code in mindone/diffusers/schedulers/scheduling_flow_match_euler_discrete.py
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
|
mindone.diffusers.FlowMatchEulerDiscreteScheduler.begin_index
property
¶
The index for the first timestep. It should be set from pipeline with set_begin_index
method.
mindone.diffusers.FlowMatchEulerDiscreteScheduler.step_index
property
¶
The index counter for current timestep. It will increase 1 after each scheduler step.
mindone.diffusers.FlowMatchEulerDiscreteScheduler.scale_noise(sample, timestep, noise=None)
¶
Forward process in flow-matching
PARAMETER | DESCRIPTION |
---|---|
sample |
The input sample.
TYPE:
|
timestep |
The current timestep in the diffusion chain.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
|
Source code in mindone/diffusers/schedulers/scheduling_flow_match_euler_discrete.py
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
|
mindone.diffusers.FlowMatchEulerDiscreteScheduler.set_begin_index(begin_index=0)
¶
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
PARAMETER | DESCRIPTION |
---|---|
begin_index |
The begin index for the scheduler.
TYPE:
|
Source code in mindone/diffusers/schedulers/scheduling_flow_match_euler_discrete.py
108 109 110 111 112 113 114 115 116 |
|
mindone.diffusers.FlowMatchEulerDiscreteScheduler.set_timesteps(num_inference_steps=None, sigmas=None, mu=None)
¶
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
PARAMETER | DESCRIPTION |
---|---|
num_inference_steps |
The number of diffusion steps used when generating samples with a pre-trained model.
TYPE:
|
Source code in mindone/diffusers/schedulers/scheduling_flow_match_euler_discrete.py
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
|
mindone.diffusers.FlowMatchEulerDiscreteScheduler.step(model_output, timestep, sample, s_churn=0.0, s_tmin=0.0, s_tmax=float('inf'), s_noise=1.0, generator=None, return_dict=False)
¶
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion process from the learned model outputs (most often the predicted noise).
PARAMETER | DESCRIPTION |
---|---|
model_output |
The direct output from learned diffusion model.
TYPE:
|
timestep |
The current discrete timestep in the diffusion chain.
TYPE:
|
sample |
A current instance of a sample created by the diffusion process.
TYPE:
|
s_churn |
TYPE:
|
s_tmin |
TYPE:
|
s_tmax |
TYPE:
|
s_noise |
Scaling factor for noise added to the sample.
TYPE:
|
generator |
A random number generator.
TYPE:
|
return_dict |
Whether or not to return a [
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[FlowMatchEulerDiscreteSchedulerOutput, Tuple]
|
[ |
Source code in mindone/diffusers/schedulers/scheduling_flow_match_euler_discrete.py
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
|