Skip to content

FlowMatchEulerDiscreteScheduler

FlowMatchEulerDiscreteScheduler is based on the flow-matching sampling introduced in Stable Diffusion 3.

mindone.diffusers.FlowMatchEulerDiscreteScheduler

Bases: SchedulerMixin, ConfigMixin

Euler scheduler.

This model inherits from [SchedulerMixin] and [ConfigMixin]. Check the superclass documentation for the generic methods the library implements for all schedulers such as loading and saving.

PARAMETER DESCRIPTION
num_train_timesteps

The number of diffusion steps to train the model.

TYPE: `int`, defaults to 1000 DEFAULT: 1000

timestep_spacing

The way the timesteps should be scaled. Refer to Table 2 of the Common Diffusion Noise Schedules and Sample Steps are Flawed for more information.

TYPE: `str`, defaults to `"linspace"`

shift

The shift value for the timestep schedule.

TYPE: `float`, defaults to 1.0 DEFAULT: 1.0

Source code in mindone/diffusers/schedulers/scheduling_flow_match_euler_discrete.py
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
class FlowMatchEulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
    """
    Euler scheduler.

    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.

    Args:
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        timestep_spacing (`str`, defaults to `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        shift (`float`, defaults to 1.0):
            The shift value for the timestep schedule.
    """

    _compatibles = []
    order = 1

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        shift: float = 1.0,
        use_dynamic_shifting=False,
        base_shift: Optional[float] = 0.5,
        max_shift: Optional[float] = 1.15,
        base_image_seq_len: Optional[int] = 256,
        max_image_seq_len: Optional[int] = 4096,
    ):
        timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32)[::-1].copy()
        timesteps = ms.Tensor.from_numpy(timesteps).to(dtype=ms.float32)

        sigmas = timesteps / num_train_timesteps
        if not use_dynamic_shifting:
            # when use_dynamic_shifting is True, we apply the timestep shifting on the fly based on the image resolution
            sigmas = shift * sigmas / (1 + (shift - 1) * sigmas)

        self.timesteps = sigmas * num_train_timesteps

        self._step_index = None
        self._begin_index = None

        self.sigmas = sigmas
        self.sigma_min = self.sigmas[-1].item()
        self.sigma_max = self.sigmas[0].item()

    @property
    def step_index(self):
        """
        The index counter for current timestep. It will increase 1 after each scheduler step.
        """
        return self._step_index

    @property
    def begin_index(self):
        """
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
        """
        return self._begin_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
    def set_begin_index(self, begin_index: int = 0):
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
            begin_index (`int`):
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

    def scale_noise(
        self,
        sample: ms.Tensor,
        timestep: Union[float, ms.Tensor],
        noise: Optional[ms.Tensor] = None,
    ) -> ms.Tensor:
        """
        Forward process in flow-matching

        Args:
            sample (`ms.Tensor`):
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.

        Returns:
            `ms.Tensor`:
                A scaled input sample.
        """
        broadcast_shape = sample.shape
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        sigmas = self.sigmas.to(dtype=sample.dtype)

        schedule_timesteps = self.timesteps

        # self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
        if self.begin_index is None:
            step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timestep]
        elif self.step_index is not None:
            # add_noise is called after first denoising step (for inpainting)
            step_indices = [self.step_index] * timestep.shape[0]
        else:
            # add noise is called before first denoising step to create initial latent(img2img)
            step_indices = [self.begin_index] * timestep.shape[0]

        sigma = sigmas[step_indices].flatten()
        # while len(sigma.shape) < len(sample.shape):
        #     sigma = sigma.unsqueeze(-1)
        sigma = ops.reshape(sigma, (timestep.shape[0],) + (1,) * (len(broadcast_shape) - 1))

        sample = sigma * noise + (1.0 - sigma) * sample

        return sample

    def _sigma_to_t(self, sigma):
        return sigma * self.config.num_train_timesteps

    def time_shift(self, mu: float, sigma: float, t: ms.Tensor):
        return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)

    def set_timesteps(
        self,
        num_inference_steps: int = None,
        sigmas: Optional[List[float]] = None,
        mu: Optional[float] = None,
    ):
        """
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).

        Args:
            num_inference_steps (`int`):
                The number of diffusion steps used when generating samples with a pre-trained model.
        """

        if self.config.use_dynamic_shifting and mu is None:
            raise ValueError(" you have a pass a value for `mu` when `use_dynamic_shifting` is set to be `True`")

        if sigmas is None:
            self.num_inference_steps = num_inference_steps
            timesteps = np.linspace(
                self._sigma_to_t(self.sigma_max), self._sigma_to_t(self.sigma_min), num_inference_steps
            )

            sigmas = timesteps / self.config.num_train_timesteps

        if self.config.use_dynamic_shifting:
            sigmas = self.time_shift(mu, 1.0, sigmas)
        else:
            sigmas = self.config.shift * sigmas / (1 + (self.config.shift - 1) * sigmas)

        sigmas = ms.Tensor.from_numpy(sigmas).to(dtype=ms.float32)
        timesteps = sigmas * self.config.num_train_timesteps

        self.timesteps = timesteps
        self.sigmas = ops.cat([sigmas, ops.zeros((1,))])

        self._step_index = None
        self._begin_index = None

    def index_for_timestep(self, timestep, schedule_timesteps=None):
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps

        indices = (schedule_timesteps == timestep).nonzero()

        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
        pos = 1 if len(indices) > 1 else 0

        return indices[pos].item()

    def _init_step_index(self, timestep):
        if self.begin_index is None:
            self._step_index = self.index_for_timestep(timestep)
        else:
            self._step_index = self._begin_index

    def step(
        self,
        model_output: ms.Tensor,
        timestep: Union[float, ms.Tensor],
        sample: ms.Tensor,
        s_churn: float = 0.0,
        s_tmin: float = 0.0,
        s_tmax: float = float("inf"),
        s_noise: float = 1.0,
        generator: Optional[np.random.Generator] = None,
        return_dict: bool = False,
    ) -> Union[FlowMatchEulerDiscreteSchedulerOutput, Tuple]:
        """
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
            model_output (`ms.Tensor`):
                The direct output from learned diffusion model.
            timestep (`float`):
                The current discrete timestep in the diffusion chain.
            sample (`ms.Tensor`):
                A current instance of a sample created by the diffusion process.
            s_churn (`float`):
            s_tmin  (`float`):
            s_tmax  (`float`):
            s_noise (`float`, defaults to 1.0):
                Scaling factor for noise added to the sample.
            generator (`np.random.Generator`, *optional*):
                A random number generator.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or
                tuple.

        Returns:
            [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is
                returned, otherwise a tuple is returned where the first element is the sample tensor.
        """

        if isinstance(timestep, int) or (
            isinstance(timestep, ms.Tensor) and timestep.dtype in (ms.int16, ms.int32, ms.int64)
        ):
            raise ValueError(
                (
                    "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
                    " `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
                    " one of the `scheduler.timesteps` as a timestep."
                ),
            )

        if self.step_index is None:
            self._init_step_index(timestep)

        # Upcast to avoid precision issues when computing prev_sample
        sample = sample.to(ms.float32)

        sigma = self.sigmas[self.step_index]
        sigma_next = self.sigmas[self.step_index + 1]

        prev_sample = sample + (sigma_next - sigma) * model_output

        # Cast sample back to model compatible dtype
        prev_sample = prev_sample.to(model_output.dtype)

        # upon completion increase step index by one
        self._step_index += 1

        if not return_dict:
            return (prev_sample,)

        return FlowMatchEulerDiscreteSchedulerOutput(prev_sample=prev_sample)

    def __len__(self):
        return self.config.num_train_timesteps

mindone.diffusers.FlowMatchEulerDiscreteScheduler.begin_index property

The index for the first timestep. It should be set from pipeline with set_begin_index method.

mindone.diffusers.FlowMatchEulerDiscreteScheduler.step_index property

The index counter for current timestep. It will increase 1 after each scheduler step.

mindone.diffusers.FlowMatchEulerDiscreteScheduler.scale_noise(sample, timestep, noise=None)

Forward process in flow-matching

PARAMETER DESCRIPTION
sample

The input sample.

TYPE: `ms.Tensor`

timestep

The current timestep in the diffusion chain.

TYPE: `int`, *optional*

RETURNS DESCRIPTION
Tensor

ms.Tensor: A scaled input sample.

Source code in mindone/diffusers/schedulers/scheduling_flow_match_euler_discrete.py
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
def scale_noise(
    self,
    sample: ms.Tensor,
    timestep: Union[float, ms.Tensor],
    noise: Optional[ms.Tensor] = None,
) -> ms.Tensor:
    """
    Forward process in flow-matching

    Args:
        sample (`ms.Tensor`):
            The input sample.
        timestep (`int`, *optional*):
            The current timestep in the diffusion chain.

    Returns:
        `ms.Tensor`:
            A scaled input sample.
    """
    broadcast_shape = sample.shape
    # Make sure sigmas and timesteps have the same device and dtype as original_samples
    sigmas = self.sigmas.to(dtype=sample.dtype)

    schedule_timesteps = self.timesteps

    # self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
    if self.begin_index is None:
        step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timestep]
    elif self.step_index is not None:
        # add_noise is called after first denoising step (for inpainting)
        step_indices = [self.step_index] * timestep.shape[0]
    else:
        # add noise is called before first denoising step to create initial latent(img2img)
        step_indices = [self.begin_index] * timestep.shape[0]

    sigma = sigmas[step_indices].flatten()
    # while len(sigma.shape) < len(sample.shape):
    #     sigma = sigma.unsqueeze(-1)
    sigma = ops.reshape(sigma, (timestep.shape[0],) + (1,) * (len(broadcast_shape) - 1))

    sample = sigma * noise + (1.0 - sigma) * sample

    return sample

mindone.diffusers.FlowMatchEulerDiscreteScheduler.set_begin_index(begin_index=0)

Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

PARAMETER DESCRIPTION
begin_index

The begin index for the scheduler.

TYPE: `int` DEFAULT: 0

Source code in mindone/diffusers/schedulers/scheduling_flow_match_euler_discrete.py
108
109
110
111
112
113
114
115
116
def set_begin_index(self, begin_index: int = 0):
    """
    Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

    Args:
        begin_index (`int`):
            The begin index for the scheduler.
    """
    self._begin_index = begin_index

mindone.diffusers.FlowMatchEulerDiscreteScheduler.set_timesteps(num_inference_steps=None, sigmas=None, mu=None)

Sets the discrete timesteps used for the diffusion chain (to be run before inference).

PARAMETER DESCRIPTION
num_inference_steps

The number of diffusion steps used when generating samples with a pre-trained model.

TYPE: `int` DEFAULT: None

Source code in mindone/diffusers/schedulers/scheduling_flow_match_euler_discrete.py
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
def set_timesteps(
    self,
    num_inference_steps: int = None,
    sigmas: Optional[List[float]] = None,
    mu: Optional[float] = None,
):
    """
    Sets the discrete timesteps used for the diffusion chain (to be run before inference).

    Args:
        num_inference_steps (`int`):
            The number of diffusion steps used when generating samples with a pre-trained model.
    """

    if self.config.use_dynamic_shifting and mu is None:
        raise ValueError(" you have a pass a value for `mu` when `use_dynamic_shifting` is set to be `True`")

    if sigmas is None:
        self.num_inference_steps = num_inference_steps
        timesteps = np.linspace(
            self._sigma_to_t(self.sigma_max), self._sigma_to_t(self.sigma_min), num_inference_steps
        )

        sigmas = timesteps / self.config.num_train_timesteps

    if self.config.use_dynamic_shifting:
        sigmas = self.time_shift(mu, 1.0, sigmas)
    else:
        sigmas = self.config.shift * sigmas / (1 + (self.config.shift - 1) * sigmas)

    sigmas = ms.Tensor.from_numpy(sigmas).to(dtype=ms.float32)
    timesteps = sigmas * self.config.num_train_timesteps

    self.timesteps = timesteps
    self.sigmas = ops.cat([sigmas, ops.zeros((1,))])

    self._step_index = None
    self._begin_index = None

mindone.diffusers.FlowMatchEulerDiscreteScheduler.step(model_output, timestep, sample, s_churn=0.0, s_tmin=0.0, s_tmax=float('inf'), s_noise=1.0, generator=None, return_dict=False)

Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion process from the learned model outputs (most often the predicted noise).

PARAMETER DESCRIPTION
model_output

The direct output from learned diffusion model.

TYPE: `ms.Tensor`

timestep

The current discrete timestep in the diffusion chain.

TYPE: `float`

sample

A current instance of a sample created by the diffusion process.

TYPE: `ms.Tensor`

s_churn

TYPE: `float` DEFAULT: 0.0

s_tmin

TYPE: (`float` DEFAULT: 0.0

s_tmax

TYPE: (`float` DEFAULT: float('inf')

s_noise

Scaling factor for noise added to the sample.

TYPE: `float`, defaults to 1.0 DEFAULT: 1.0

generator

A random number generator.

TYPE: `np.random.Generator`, *optional* DEFAULT: None

return_dict

Whether or not to return a [~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput] or tuple.

TYPE: `bool` DEFAULT: False

RETURNS DESCRIPTION
Union[FlowMatchEulerDiscreteSchedulerOutput, Tuple]

[~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput] or tuple: If return_dict is True, [~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput] is returned, otherwise a tuple is returned where the first element is the sample tensor.

Source code in mindone/diffusers/schedulers/scheduling_flow_match_euler_discrete.py
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
def step(
    self,
    model_output: ms.Tensor,
    timestep: Union[float, ms.Tensor],
    sample: ms.Tensor,
    s_churn: float = 0.0,
    s_tmin: float = 0.0,
    s_tmax: float = float("inf"),
    s_noise: float = 1.0,
    generator: Optional[np.random.Generator] = None,
    return_dict: bool = False,
) -> Union[FlowMatchEulerDiscreteSchedulerOutput, Tuple]:
    """
    Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
    process from the learned model outputs (most often the predicted noise).

    Args:
        model_output (`ms.Tensor`):
            The direct output from learned diffusion model.
        timestep (`float`):
            The current discrete timestep in the diffusion chain.
        sample (`ms.Tensor`):
            A current instance of a sample created by the diffusion process.
        s_churn (`float`):
        s_tmin  (`float`):
        s_tmax  (`float`):
        s_noise (`float`, defaults to 1.0):
            Scaling factor for noise added to the sample.
        generator (`np.random.Generator`, *optional*):
            A random number generator.
        return_dict (`bool`):
            Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or
            tuple.

    Returns:
        [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`:
            If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is
            returned, otherwise a tuple is returned where the first element is the sample tensor.
    """

    if isinstance(timestep, int) or (
        isinstance(timestep, ms.Tensor) and timestep.dtype in (ms.int16, ms.int32, ms.int64)
    ):
        raise ValueError(
            (
                "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
                " `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
                " one of the `scheduler.timesteps` as a timestep."
            ),
        )

    if self.step_index is None:
        self._init_step_index(timestep)

    # Upcast to avoid precision issues when computing prev_sample
    sample = sample.to(ms.float32)

    sigma = self.sigmas[self.step_index]
    sigma_next = self.sigmas[self.step_index + 1]

    prev_sample = sample + (sigma_next - sigma) * model_output

    # Cast sample back to model compatible dtype
    prev_sample = prev_sample.to(model_output.dtype)

    # upon completion increase step index by one
    self._step_index += 1

    if not return_dict:
        return (prev_sample,)

    return FlowMatchEulerDiscreteSchedulerOutput(prev_sample=prev_sample)