Skip to content

EDMDPMSolverMultistepScheduler

EDMDPMSolverMultistepScheduler is a Karras formulation of DPMSolverMultistepScheduler, a multistep scheduler from DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps and DPM-Solver++: Fast Solver for Guided Sampling of Diffusion Probabilistic Models by Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu.

DPMSolver (and the improved version DPMSolver++) is a fast dedicated high-order solver for diffusion ODEs with convergence order guarantee. Empirically, DPMSolver sampling with only 20 steps can generate high-quality samples, and it can generate quite good samples even in 10 steps.

mindone.diffusers.EDMDPMSolverMultistepScheduler

Bases: SchedulerMixin, ConfigMixin

Implements DPMSolverMultistepScheduler in EDM formulation as presented in Karras et al. 2022 [1]. EDMDPMSolverMultistepScheduler is a fast dedicated high-order solver for diffusion ODEs.

[1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models." https://arxiv.org/abs/2206.00364

This model inherits from [SchedulerMixin] and [ConfigMixin]. Check the superclass documentation for the generic methods the library implements for all schedulers such as loading and saving.

PARAMETER DESCRIPTION
sigma_min

Minimum noise magnitude in the sigma schedule. This was set to 0.002 in the EDM paper [1]; a reasonable range is [0, 10].

TYPE: `float`, *optional*, defaults to 0.002 DEFAULT: 0.002

sigma_max

Maximum noise magnitude in the sigma schedule. This was set to 80.0 in the EDM paper [1]; a reasonable range is [0.2, 80.0].

TYPE: `float`, *optional*, defaults to 80.0 DEFAULT: 80.0

sigma_data

The standard deviation of the data distribution. This is set to 0.5 in the EDM paper [1].

TYPE: `float`, *optional*, defaults to 0.5 DEFAULT: 0.5

sigma_schedule

Sigma schedule to compute the sigmas. By default, we the schedule introduced in the EDM paper (https://arxiv.org/abs/2206.00364). Other acceptable value is "exponential". The exponential schedule was incorporated in this model: https://huggingface.co/stabilityai/cosxl.

TYPE: `str`, *optional*, defaults to `karras` DEFAULT: 'karras'

num_train_timesteps

The number of diffusion steps to train the model.

TYPE: `int`, defaults to 1000 DEFAULT: 1000

solver_order

The DPMSolver order which can be 1 or 2 or 3. It is recommended to use solver_order=2 for guided sampling, and solver_order=3 for unconditional sampling.

TYPE: `int`, defaults to 2 DEFAULT: 2

prediction_type

Prediction type of the scheduler function; can be epsilon (predicts the noise of the diffusion process), sample (directly predicts the noisy sample) orv_prediction` (see section 2.4 of Imagen Video paper).

TYPE: `str`, defaults to `epsilon`, *optional* DEFAULT: 'epsilon'

thresholding

Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such as Stable Diffusion.

TYPE: `bool`, defaults to `False` DEFAULT: False

dynamic_thresholding_ratio

The ratio for the dynamic thresholding method. Valid only when thresholding=True.

TYPE: `float`, defaults to 0.995 DEFAULT: 0.995

sample_max_value

The threshold value for dynamic thresholding. Valid only when thresholding=True and algorithm_type="dpmsolver++".

TYPE: `float`, defaults to 1.0 DEFAULT: 1.0

algorithm_type

Algorithm type for the solver; can be dpmsolver++ or sde-dpmsolver++. The dpmsolver++ type implements the algorithms in the DPMSolver++ paper. It is recommended to use dpmsolver++ or sde-dpmsolver++ with solver_order=2 for guided sampling like in Stable Diffusion.

TYPE: `str`, defaults to `dpmsolver++` DEFAULT: 'dpmsolver++'

solver_type

Solver type for the second-order solver; can be midpoint or heun. The solver type slightly affects the sample quality, especially for a small number of steps. It is recommended to use midpoint solvers.

TYPE: `str`, defaults to `midpoint` DEFAULT: 'midpoint'

lower_order_final

Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.

TYPE: `bool`, defaults to `True` DEFAULT: True

euler_at_final

Whether to use Euler's method in the final step. It is a trade-off between numerical stability and detail richness. This can stabilize the sampling of the SDE variant of DPMSolver for small number of inference steps, but sometimes may result in blurring.

TYPE: `bool`, defaults to `False` DEFAULT: False

final_sigmas_type

The final sigma value for the noise schedule during the sampling process. If "sigma_min", the final sigma is the same as the last sigma in the training schedule. If zero, the final sigma is set to 0.

TYPE: `str`, defaults to `"zero"` DEFAULT: 'zero'

Source code in mindone/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
    """
    Implements DPMSolverMultistepScheduler in EDM formulation as presented in Karras et al. 2022 [1].
    `EDMDPMSolverMultistepScheduler` is a fast dedicated high-order solver for diffusion ODEs.

    [1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models."
    https://arxiv.org/abs/2206.00364

    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.

    Args:
        sigma_min (`float`, *optional*, defaults to 0.002):
            Minimum noise magnitude in the sigma schedule. This was set to 0.002 in the EDM paper [1]; a reasonable
            range is [0, 10].
        sigma_max (`float`, *optional*, defaults to 80.0):
            Maximum noise magnitude in the sigma schedule. This was set to 80.0 in the EDM paper [1]; a reasonable
            range is [0.2, 80.0].
        sigma_data (`float`, *optional*, defaults to 0.5):
            The standard deviation of the data distribution. This is set to 0.5 in the EDM paper [1].
        sigma_schedule (`str`, *optional*, defaults to `karras`):
            Sigma schedule to compute the `sigmas`. By default, we the schedule introduced in the EDM paper
            (https://arxiv.org/abs/2206.00364). Other acceptable value is "exponential". The exponential schedule was
            incorporated in this model: https://huggingface.co/stabilityai/cosxl.
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        solver_order (`int`, defaults to 2):
            The DPMSolver order which can be `1` or `2` or `3`. It is recommended to use `solver_order=2` for guided
            sampling, and `solver_order=3` for unconditional sampling.
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        thresholding (`bool`, defaults to `False`):
            Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
            as Stable Diffusion.
        dynamic_thresholding_ratio (`float`, defaults to 0.995):
            The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
        sample_max_value (`float`, defaults to 1.0):
            The threshold value for dynamic thresholding. Valid only when `thresholding=True` and
            `algorithm_type="dpmsolver++"`.
        algorithm_type (`str`, defaults to `dpmsolver++`):
            Algorithm type for the solver; can be `dpmsolver++` or `sde-dpmsolver++`. The `dpmsolver++` type implements
            the algorithms in the [DPMSolver++](https://huggingface.co/papers/2211.01095) paper. It is recommended to
            use `dpmsolver++` or `sde-dpmsolver++` with `solver_order=2` for guided sampling like in Stable Diffusion.
        solver_type (`str`, defaults to `midpoint`):
            Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the
            sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers.
        lower_order_final (`bool`, defaults to `True`):
            Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can
            stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.
        euler_at_final (`bool`, defaults to `False`):
            Whether to use Euler's method in the final step. It is a trade-off between numerical stability and detail
            richness. This can stabilize the sampling of the SDE variant of DPMSolver for small number of inference
            steps, but sometimes may result in blurring.
        final_sigmas_type (`str`, defaults to `"zero"`):
            The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
            sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
    """

    _compatibles = []
    order = 1

    @register_to_config
    def __init__(
        self,
        sigma_min: float = 0.002,
        sigma_max: float = 80.0,
        sigma_data: float = 0.5,
        sigma_schedule: str = "karras",
        num_train_timesteps: int = 1000,
        prediction_type: str = "epsilon",
        rho: float = 7.0,
        solver_order: int = 2,
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        sample_max_value: float = 1.0,
        algorithm_type: str = "dpmsolver++",
        solver_type: str = "midpoint",
        lower_order_final: bool = True,
        euler_at_final: bool = False,
        final_sigmas_type: Optional[str] = "zero",  # "zero", "sigma_min"
    ):
        # settings for DPM-Solver
        if algorithm_type not in ["dpmsolver++", "sde-dpmsolver++"]:
            if algorithm_type == "deis":
                self.register_to_config(algorithm_type="dpmsolver++")
            else:
                raise NotImplementedError(f"{algorithm_type} is not implemented for {self.__class__}")

        if solver_type not in ["midpoint", "heun"]:
            if solver_type in ["logrho", "bh1", "bh2"]:
                self.register_to_config(solver_type="midpoint")
            else:
                raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}")

        if algorithm_type not in ["dpmsolver++", "sde-dpmsolver++"] and final_sigmas_type == "zero":
            raise ValueError(
                f"`final_sigmas_type` {final_sigmas_type} is not supported for `algorithm_type` {algorithm_type}. Please choose `sigma_min` instead."
            )

        ramp = ms.tensor(np.linspace(0, 1, num_train_timesteps), dtype=ms.float32)
        if sigma_schedule == "karras":
            sigmas = self._compute_karras_sigmas(ramp)
        elif sigma_schedule == "exponential":
            sigmas = self._compute_exponential_sigmas(ramp)

        self.timesteps = self.precondition_noise(sigmas)

        self.sigmas = ops.cat([sigmas, ops.zeros(1, dtype=sigmas.dtype)])

        # setable values
        self.num_inference_steps = None
        self.model_outputs = [None] * solver_order
        self.lower_order_nums = 0
        self._step_index = None
        self._begin_index = None
        self.sigma_data = self.config.sigma_data

    @property
    def init_noise_sigma(self):
        # standard deviation of the initial noise distribution
        return (self.config.sigma_max**2 + 1) ** 0.5

    @property
    def step_index(self):
        """
        The index counter for current timestep. It will increase 1 after each scheduler step.
        """
        return self._step_index

    @property
    def begin_index(self):
        """
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
        """
        return self._begin_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
    def set_begin_index(self, begin_index: int = 0):
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
            begin_index (`int`):
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

    # Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.precondition_inputs
    def precondition_inputs(self, sample, sigma):
        c_in = 1 / ((sigma**2 + self.sigma_data**2) ** 0.5)
        scaled_sample = (sample * c_in).to(sample.dtype)
        return scaled_sample

    # Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.precondition_noise
    def precondition_noise(self, sigma):
        if not isinstance(sigma, ms.Tensor):
            sigma = ms.tensor(sigma)

        c_noise = 0.25 * ops.log(sigma)

        return c_noise

    # Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.precondition_outputs
    def precondition_outputs(self, sample, model_output, sigma):
        sigma_data = self.sigma_data
        c_skip = sigma_data**2 / (sigma**2 + sigma_data**2)

        if self.config.prediction_type == "epsilon":
            c_out = sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
        elif self.config.prediction_type == "v_prediction":
            c_out = -sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
        else:
            raise ValueError(f"Prediction type {self.config.prediction_type} is not supported.")

        denoised = c_skip.to(sample.dtype) * sample + c_out.to(sample.dtype) * model_output

        return denoised

    # Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.scale_model_input
    def scale_model_input(self, sample: ms.Tensor, timestep: Union[float, ms.Tensor]) -> ms.Tensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm.

        Args:
            sample (`ms.Tensor`):
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.

        Returns:
            `ms.Tensor`:
                A scaled input sample.
        """
        if self.step_index is None:
            self._init_step_index(timestep)

        sigma = self.sigmas[self.step_index]
        sample = self.precondition_inputs(sample, sigma)

        self.is_scale_input_called = True
        return sample

    def set_timesteps(self, num_inference_steps: int = None):
        """
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).

        Args:
            num_inference_steps (`int`):
                The number of diffusion steps used when generating samples with a pre-trained model.
        """

        self.num_inference_steps = num_inference_steps

        ramp = ms.tensor(np.linspace(0, 1, self.num_inference_steps))
        if self.config.sigma_schedule == "karras":
            sigmas = self._compute_karras_sigmas(ramp)
        elif self.config.sigma_schedule == "exponential":
            sigmas = self._compute_exponential_sigmas(ramp)

        sigmas = sigmas.to(ms.float32)
        self.timesteps = self.precondition_noise(sigmas)

        if self.config.final_sigmas_type == "sigma_min":
            sigma_last = self.config.sigma_min
        elif self.config.final_sigmas_type == "zero":
            sigma_last = 0
        else:
            raise ValueError(
                f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
            )

        self.sigmas = ops.cat([sigmas, ms.tensor([sigma_last], dtype=ms.float32)])

        self.model_outputs = [
            None,
        ] * self.config.solver_order
        self.lower_order_nums = 0

        # add an index counter for schedulers that allow duplicated timesteps
        self._step_index = None
        self._begin_index = None

    # Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler._compute_karras_sigmas
    def _compute_karras_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> ms.Tensor:
        """Constructs the noise schedule of Karras et al. (2022)."""

        sigma_min = sigma_min or self.config.sigma_min
        sigma_max = sigma_max or self.config.sigma_max

        rho = self.config.rho
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

    # Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler._compute_exponential_sigmas
    def _compute_exponential_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> ms.Tensor:
        """Implementation closely follows k-diffusion.

        https://github.com/crowsonkb/k-diffusion/blob/6ab5146d4a5ef63901326489f31f1d8e7dd36b48/k_diffusion/sampling.py#L26
        """
        sigma_min = sigma_min or self.config.sigma_min
        sigma_max = sigma_max or self.config.sigma_max
        sigmas = ms.tensor(np.linspace(math.log(sigma_min), math.log(sigma_max), len(ramp))).exp().flip((0,))
        return sigmas

    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
    def _threshold_sample(self, sample: ms.Tensor) -> ms.Tensor:
        """
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

        https://arxiv.org/abs/2205.11487
        """
        dtype = sample.dtype
        batch_size, channels, *remaining_dims = sample.shape

        if dtype not in (ms.float32, ms.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
        sample = sample.reshape(batch_size, channels * np.prod(remaining_dims).item())

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = ms.Tensor.from_numpy(np.quantile(abs_sample.asnumpy(), self.config.dynamic_thresholding_ratio, axis=1))
        s = ops.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]
        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = ops.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

        sample = sample.reshape(batch_size, channels, *remaining_dims)
        sample = sample.to(dtype)

        return sample

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
    def _sigma_to_t(self, sigma, log_sigmas):
        # get log sigma
        log_sigma = np.log(np.maximum(sigma, 1e-10))

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

    def _sigma_to_alpha_sigma_t(self, sigma):
        alpha_t = ms.tensor(1, dtype=ms.float32)  # Inputs are pre-scaled before going into unet, so alpha_t = 1
        sigma_t = sigma

        return alpha_t, sigma_t

    def convert_model_output(
        self,
        model_output: ms.Tensor,
        sample: ms.Tensor = None,
    ) -> ms.Tensor:
        """
        Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is
        designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an
        integral of the data prediction model.

        <Tip>

        The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise
        prediction and data prediction models.

        </Tip>

        Args:
            model_output (`ms.Tensor`):
                The direct output from the learned diffusion model.
            sample (`ms.Tensor`):
                A current instance of a sample created by the diffusion process.

        Returns:
            `ms.Tensor`:
                The converted model output.
        """
        sigma = self.sigmas[self.step_index]
        x0_pred = self.precondition_outputs(sample, model_output, sigma)

        if self.config.thresholding:
            x0_pred = self._threshold_sample(x0_pred)

        return x0_pred

    def dpm_solver_first_order_update(
        self,
        model_output: ms.Tensor,
        sample: ms.Tensor = None,
        noise: Optional[ms.Tensor] = None,
    ) -> ms.Tensor:
        """
        One step for the first-order DPMSolver (equivalent to DDIM).

        Args:
            model_output (`ms.Tensor`):
                The direct output from the learned diffusion model.
            sample (`ms.Tensor`):
                A current instance of a sample created by the diffusion process.

        Returns:
            `ms.Tensor`:
                The sample tensor at the previous timestep.
        """
        dtype = sample.dtype
        sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
        lambda_t = ops.log(alpha_t) - ops.log(sigma_t)
        lambda_s = ops.log(alpha_s) - ops.log(sigma_s)

        h = lambda_t - lambda_s
        if self.config.algorithm_type == "dpmsolver++":
            x_t = (sigma_t / sigma_s).to(dtype) * sample - (alpha_t * (ops.exp(-h) - 1.0)).to(dtype) * model_output
        elif self.config.algorithm_type == "sde-dpmsolver++":
            assert noise is not None
            x_t = (
                (sigma_t / sigma_s * ops.exp(-h)).to(dtype) * sample
                + (alpha_t * (1 - ops.exp(-2.0 * h))).to(dtype) * model_output
                + (sigma_t * ops.sqrt(1.0 - ops.exp(-2 * h))).to(dtype) * noise
            )

        return x_t

    def multistep_dpm_solver_second_order_update(
        self,
        model_output_list: List[ms.Tensor],
        sample: ms.Tensor = None,
        noise: Optional[ms.Tensor] = None,
    ) -> ms.Tensor:
        """
        One step for the second-order multistep DPMSolver.

        Args:
            model_output_list (`List[ms.Tensor]`):
                The direct outputs from learned diffusion model at current and latter timesteps.
            sample (`ms.Tensor`):
                A current instance of a sample created by the diffusion process.

        Returns:
            `ms.Tensor`:
                The sample tensor at the previous timestep.
        """
        dtype = sample.dtype
        sigma_t, sigma_s0, sigma_s1 = (
            self.sigmas[self.step_index + 1],
            self.sigmas[self.step_index],
            self.sigmas[self.step_index - 1],
        )

        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
        alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)

        lambda_t = ops.log(alpha_t) - ops.log(sigma_t)
        lambda_s0 = ops.log(alpha_s0) - ops.log(sigma_s0)
        lambda_s1 = ops.log(alpha_s1) - ops.log(sigma_s1)

        m0, m1 = model_output_list[-1], model_output_list[-2]

        h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1
        r0 = h_0 / h
        D0, D1 = m0, (1.0 / r0).to(dtype) * (m0 - m1)
        if self.config.algorithm_type == "dpmsolver++":
            # See https://arxiv.org/abs/2211.01095 for detailed derivations
            if self.config.solver_type == "midpoint":
                x_t = (
                    (sigma_t / sigma_s0).to(dtype) * sample
                    - (alpha_t * (ops.exp(-h) - 1.0)).to(dtype) * D0
                    - (0.5 * (alpha_t * (ops.exp(-h) - 1.0))).to(dtype) * D1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (sigma_t / sigma_s0).to(dtype) * sample
                    - (alpha_t * (ops.exp(-h) - 1.0)).to(dtype) * D0
                    + (alpha_t * ((ops.exp(-h) - 1.0) / h + 1.0)).to(dtype) * D1
                )
        elif self.config.algorithm_type == "sde-dpmsolver++":
            assert noise is not None
            if self.config.solver_type == "midpoint":
                x_t = (
                    (sigma_t / sigma_s0 * ops.exp(-h)).to(dtype) * sample
                    + (alpha_t * (1 - ops.exp(-2.0 * h))).to(dtype) * D0
                    + (0.5 * (alpha_t * (1 - ops.exp(-2.0 * h)))).to(dtype) * D1
                    + (sigma_t * ops.sqrt(1.0 - ops.exp(-2 * h))).to(dtype) * noise
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (sigma_t / sigma_s0 * ops.exp(-h)).to(dtype) * sample
                    + (alpha_t * (1 - ops.exp(-2.0 * h))).to(dtype) * D0
                    + (alpha_t * ((1.0 - ops.exp(-2.0 * h)) / (-2.0 * h) + 1.0)).to(dtype) * D1
                    + (sigma_t * ops.sqrt(1.0 - ops.exp(-2 * h))).to(dtype) * noise
                )

        return x_t

    def multistep_dpm_solver_third_order_update(
        self,
        model_output_list: List[ms.Tensor],
        sample: ms.Tensor = None,
    ) -> ms.Tensor:
        """
        One step for the third-order multistep DPMSolver.

        Args:
            model_output_list (`List[ms.Tensor]`):
                The direct outputs from learned diffusion model at current and latter timesteps.
            sample (`ms.Tensor`):
                A current instance of a sample created by diffusion process.

        Returns:
            `ms.Tensor`:
                The sample tensor at the previous timestep.
        """
        dtype = sample.dtype
        sigma_t, sigma_s0, sigma_s1, sigma_s2 = (
            self.sigmas[self.step_index + 1],
            self.sigmas[self.step_index],
            self.sigmas[self.step_index - 1],
            self.sigmas[self.step_index - 2],
        )

        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
        alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
        alpha_s2, sigma_s2 = self._sigma_to_alpha_sigma_t(sigma_s2)

        lambda_t = ops.log(alpha_t) - ops.log(sigma_t)
        lambda_s0 = ops.log(alpha_s0) - ops.log(sigma_s0)
        lambda_s1 = ops.log(alpha_s1) - ops.log(sigma_s1)
        lambda_s2 = ops.log(alpha_s2) - ops.log(sigma_s2)

        m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3]

        h, h_0, h_1 = lambda_t - lambda_s0, lambda_s0 - lambda_s1, lambda_s1 - lambda_s2
        r0, r1 = h_0 / h, h_1 / h
        D0 = m0
        D1_0, D1_1 = (1.0 / r0).to(dtype) * (m0 - m1), (1.0 / r1).to(dtype) * (m1 - m2)
        D1 = D1_0 + (r0 / (r0 + r1)).to(dtype) * (D1_0 - D1_1)
        D2 = (1.0 / (r0 + r1)).to(dtype) * (D1_0 - D1_1)
        if self.config.algorithm_type == "dpmsolver++":
            # See https://arxiv.org/abs/2206.00927 for detailed derivations
            x_t = (
                (sigma_t / sigma_s0).to(dtype) * sample
                - (alpha_t * (ops.exp(-h) - 1.0)).to(dtype) * D0
                + (alpha_t * ((ops.exp(-h) - 1.0) / h + 1.0)).to(dtype) * D1
                - (alpha_t * ((ops.exp(-h) - 1.0 + h) / h**2 - 0.5)).to(dtype) * D2
            )

        return x_t

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
    def index_for_timestep(self, timestep, schedule_timesteps=None):
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps

        index_candidates_num = (schedule_timesteps == timestep).sum()

        if index_candidates_num == 0:
            step_index = len(self.timesteps) - 1
        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
        else:
            if index_candidates_num > 1:
                pos = 1
            else:
                pos = 0
            step_index = int((schedule_timesteps == timestep).nonzero()[pos])

        return step_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index
    def _init_step_index(self, timestep):
        """
        Initialize the step_index counter for the scheduler.
        """

        if self.begin_index is None:
            self._step_index = self.index_for_timestep(timestep)
        else:
            self._step_index = self._begin_index

    def step(
        self,
        model_output: ms.Tensor,
        timestep: int,
        sample: ms.Tensor,
        generator=None,
        return_dict: bool = False,
    ) -> Union[SchedulerOutput, Tuple]:
        """
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
        the multistep DPMSolver.

        Args:
            model_output (`ms.Tensor`):
                The direct output from learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
            sample (`ms.Tensor`):
                A current instance of a sample created by the diffusion process.
            generator (`np.random.Generator`, *optional*):
                A random number generator.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.

        Returns:
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.

        """
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

        if self.step_index is None:
            self._init_step_index(timestep)

        # Improve numerical stability for small number of steps
        lower_order_final = (self.step_index == len(self.timesteps) - 1) and (
            self.config.euler_at_final
            or (self.config.lower_order_final and len(self.timesteps) < 15)
            or self.config.final_sigmas_type == "zero"
        )
        lower_order_second = (
            (self.step_index == len(self.timesteps) - 2) and self.config.lower_order_final and len(self.timesteps) < 15
        )

        model_output = self.convert_model_output(model_output, sample=sample)
        for i in range(self.config.solver_order - 1):
            self.model_outputs[i] = self.model_outputs[i + 1]
        self.model_outputs[-1] = model_output

        if self.config.algorithm_type == "sde-dpmsolver++":
            noise = randn_tensor(model_output.shape, generator=generator, dtype=model_output.dtype)
        else:
            noise = None

        if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final:
            prev_sample = self.dpm_solver_first_order_update(model_output, sample=sample, noise=noise)
        elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second:
            prev_sample = self.multistep_dpm_solver_second_order_update(self.model_outputs, sample=sample, noise=noise)
        else:
            prev_sample = self.multistep_dpm_solver_third_order_update(self.model_outputs, sample=sample)

        if self.lower_order_nums < self.config.solver_order:
            self.lower_order_nums += 1

        # upon completion increase step index by one
        self._step_index += 1

        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
    def add_noise(
        self,
        original_samples: ms.Tensor,
        noise: ms.Tensor,
        timesteps: ms.Tensor,
    ) -> ms.Tensor:
        broadcast_shape = original_samples.shape
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        sigmas = self.sigmas.to(dtype=original_samples.dtype)
        schedule_timesteps = self.timesteps

        # self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
        if self.begin_index is None:
            step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
        elif self.step_index is not None:
            # add_noise is called after first denoising step (for inpainting)
            step_indices = [self.step_index] * timesteps.shape[0]
        else:
            # add noise is called bevore first denoising step to create inital latent(img2img)
            step_indices = [self.begin_index] * timesteps.shape[0]

        sigma = sigmas[step_indices].flatten()
        # while len(sigma.shape) < len(original_samples.shape):
        #     sigma = sigma.unsqueeze(-1)
        sigma = ops.reshape(sigma, (timesteps.shape[0],) + (1,) * (len(broadcast_shape) - 1))

        noisy_samples = original_samples + noise * sigma
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps

mindone.diffusers.EDMDPMSolverMultistepScheduler.begin_index property

The index for the first timestep. It should be set from pipeline with set_begin_index method.

mindone.diffusers.EDMDPMSolverMultistepScheduler.step_index property

The index counter for current timestep. It will increase 1 after each scheduler step.

mindone.diffusers.EDMDPMSolverMultistepScheduler.convert_model_output(model_output, sample=None)

Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an integral of the data prediction model.

The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise prediction and data prediction models.

PARAMETER DESCRIPTION
model_output

The direct output from the learned diffusion model.

TYPE: `ms.Tensor`

sample

A current instance of a sample created by the diffusion process.

TYPE: `ms.Tensor` DEFAULT: None

RETURNS DESCRIPTION
Tensor

ms.Tensor: The converted model output.

Source code in mindone/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
def convert_model_output(
    self,
    model_output: ms.Tensor,
    sample: ms.Tensor = None,
) -> ms.Tensor:
    """
    Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is
    designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an
    integral of the data prediction model.

    <Tip>

    The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise
    prediction and data prediction models.

    </Tip>

    Args:
        model_output (`ms.Tensor`):
            The direct output from the learned diffusion model.
        sample (`ms.Tensor`):
            A current instance of a sample created by the diffusion process.

    Returns:
        `ms.Tensor`:
            The converted model output.
    """
    sigma = self.sigmas[self.step_index]
    x0_pred = self.precondition_outputs(sample, model_output, sigma)

    if self.config.thresholding:
        x0_pred = self._threshold_sample(x0_pred)

    return x0_pred

mindone.diffusers.EDMDPMSolverMultistepScheduler.dpm_solver_first_order_update(model_output, sample=None, noise=None)

One step for the first-order DPMSolver (equivalent to DDIM).

PARAMETER DESCRIPTION
model_output

The direct output from the learned diffusion model.

TYPE: `ms.Tensor`

sample

A current instance of a sample created by the diffusion process.

TYPE: `ms.Tensor` DEFAULT: None

RETURNS DESCRIPTION
Tensor

ms.Tensor: The sample tensor at the previous timestep.

Source code in mindone/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
def dpm_solver_first_order_update(
    self,
    model_output: ms.Tensor,
    sample: ms.Tensor = None,
    noise: Optional[ms.Tensor] = None,
) -> ms.Tensor:
    """
    One step for the first-order DPMSolver (equivalent to DDIM).

    Args:
        model_output (`ms.Tensor`):
            The direct output from the learned diffusion model.
        sample (`ms.Tensor`):
            A current instance of a sample created by the diffusion process.

    Returns:
        `ms.Tensor`:
            The sample tensor at the previous timestep.
    """
    dtype = sample.dtype
    sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
    alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
    alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
    lambda_t = ops.log(alpha_t) - ops.log(sigma_t)
    lambda_s = ops.log(alpha_s) - ops.log(sigma_s)

    h = lambda_t - lambda_s
    if self.config.algorithm_type == "dpmsolver++":
        x_t = (sigma_t / sigma_s).to(dtype) * sample - (alpha_t * (ops.exp(-h) - 1.0)).to(dtype) * model_output
    elif self.config.algorithm_type == "sde-dpmsolver++":
        assert noise is not None
        x_t = (
            (sigma_t / sigma_s * ops.exp(-h)).to(dtype) * sample
            + (alpha_t * (1 - ops.exp(-2.0 * h))).to(dtype) * model_output
            + (sigma_t * ops.sqrt(1.0 - ops.exp(-2 * h))).to(dtype) * noise
        )

    return x_t

mindone.diffusers.EDMDPMSolverMultistepScheduler.multistep_dpm_solver_second_order_update(model_output_list, sample=None, noise=None)

One step for the second-order multistep DPMSolver.

PARAMETER DESCRIPTION
model_output_list

The direct outputs from learned diffusion model at current and latter timesteps.

TYPE: `List[ms.Tensor]`

sample

A current instance of a sample created by the diffusion process.

TYPE: `ms.Tensor` DEFAULT: None

RETURNS DESCRIPTION
Tensor

ms.Tensor: The sample tensor at the previous timestep.

Source code in mindone/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
def multistep_dpm_solver_second_order_update(
    self,
    model_output_list: List[ms.Tensor],
    sample: ms.Tensor = None,
    noise: Optional[ms.Tensor] = None,
) -> ms.Tensor:
    """
    One step for the second-order multistep DPMSolver.

    Args:
        model_output_list (`List[ms.Tensor]`):
            The direct outputs from learned diffusion model at current and latter timesteps.
        sample (`ms.Tensor`):
            A current instance of a sample created by the diffusion process.

    Returns:
        `ms.Tensor`:
            The sample tensor at the previous timestep.
    """
    dtype = sample.dtype
    sigma_t, sigma_s0, sigma_s1 = (
        self.sigmas[self.step_index + 1],
        self.sigmas[self.step_index],
        self.sigmas[self.step_index - 1],
    )

    alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
    alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
    alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)

    lambda_t = ops.log(alpha_t) - ops.log(sigma_t)
    lambda_s0 = ops.log(alpha_s0) - ops.log(sigma_s0)
    lambda_s1 = ops.log(alpha_s1) - ops.log(sigma_s1)

    m0, m1 = model_output_list[-1], model_output_list[-2]

    h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1
    r0 = h_0 / h
    D0, D1 = m0, (1.0 / r0).to(dtype) * (m0 - m1)
    if self.config.algorithm_type == "dpmsolver++":
        # See https://arxiv.org/abs/2211.01095 for detailed derivations
        if self.config.solver_type == "midpoint":
            x_t = (
                (sigma_t / sigma_s0).to(dtype) * sample
                - (alpha_t * (ops.exp(-h) - 1.0)).to(dtype) * D0
                - (0.5 * (alpha_t * (ops.exp(-h) - 1.0))).to(dtype) * D1
            )
        elif self.config.solver_type == "heun":
            x_t = (
                (sigma_t / sigma_s0).to(dtype) * sample
                - (alpha_t * (ops.exp(-h) - 1.0)).to(dtype) * D0
                + (alpha_t * ((ops.exp(-h) - 1.0) / h + 1.0)).to(dtype) * D1
            )
    elif self.config.algorithm_type == "sde-dpmsolver++":
        assert noise is not None
        if self.config.solver_type == "midpoint":
            x_t = (
                (sigma_t / sigma_s0 * ops.exp(-h)).to(dtype) * sample
                + (alpha_t * (1 - ops.exp(-2.0 * h))).to(dtype) * D0
                + (0.5 * (alpha_t * (1 - ops.exp(-2.0 * h)))).to(dtype) * D1
                + (sigma_t * ops.sqrt(1.0 - ops.exp(-2 * h))).to(dtype) * noise
            )
        elif self.config.solver_type == "heun":
            x_t = (
                (sigma_t / sigma_s0 * ops.exp(-h)).to(dtype) * sample
                + (alpha_t * (1 - ops.exp(-2.0 * h))).to(dtype) * D0
                + (alpha_t * ((1.0 - ops.exp(-2.0 * h)) / (-2.0 * h) + 1.0)).to(dtype) * D1
                + (sigma_t * ops.sqrt(1.0 - ops.exp(-2 * h))).to(dtype) * noise
            )

    return x_t

mindone.diffusers.EDMDPMSolverMultistepScheduler.multistep_dpm_solver_third_order_update(model_output_list, sample=None)

One step for the third-order multistep DPMSolver.

PARAMETER DESCRIPTION
model_output_list

The direct outputs from learned diffusion model at current and latter timesteps.

TYPE: `List[ms.Tensor]`

sample

A current instance of a sample created by diffusion process.

TYPE: `ms.Tensor` DEFAULT: None

RETURNS DESCRIPTION
Tensor

ms.Tensor: The sample tensor at the previous timestep.

Source code in mindone/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
def multistep_dpm_solver_third_order_update(
    self,
    model_output_list: List[ms.Tensor],
    sample: ms.Tensor = None,
) -> ms.Tensor:
    """
    One step for the third-order multistep DPMSolver.

    Args:
        model_output_list (`List[ms.Tensor]`):
            The direct outputs from learned diffusion model at current and latter timesteps.
        sample (`ms.Tensor`):
            A current instance of a sample created by diffusion process.

    Returns:
        `ms.Tensor`:
            The sample tensor at the previous timestep.
    """
    dtype = sample.dtype
    sigma_t, sigma_s0, sigma_s1, sigma_s2 = (
        self.sigmas[self.step_index + 1],
        self.sigmas[self.step_index],
        self.sigmas[self.step_index - 1],
        self.sigmas[self.step_index - 2],
    )

    alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
    alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
    alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
    alpha_s2, sigma_s2 = self._sigma_to_alpha_sigma_t(sigma_s2)

    lambda_t = ops.log(alpha_t) - ops.log(sigma_t)
    lambda_s0 = ops.log(alpha_s0) - ops.log(sigma_s0)
    lambda_s1 = ops.log(alpha_s1) - ops.log(sigma_s1)
    lambda_s2 = ops.log(alpha_s2) - ops.log(sigma_s2)

    m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3]

    h, h_0, h_1 = lambda_t - lambda_s0, lambda_s0 - lambda_s1, lambda_s1 - lambda_s2
    r0, r1 = h_0 / h, h_1 / h
    D0 = m0
    D1_0, D1_1 = (1.0 / r0).to(dtype) * (m0 - m1), (1.0 / r1).to(dtype) * (m1 - m2)
    D1 = D1_0 + (r0 / (r0 + r1)).to(dtype) * (D1_0 - D1_1)
    D2 = (1.0 / (r0 + r1)).to(dtype) * (D1_0 - D1_1)
    if self.config.algorithm_type == "dpmsolver++":
        # See https://arxiv.org/abs/2206.00927 for detailed derivations
        x_t = (
            (sigma_t / sigma_s0).to(dtype) * sample
            - (alpha_t * (ops.exp(-h) - 1.0)).to(dtype) * D0
            + (alpha_t * ((ops.exp(-h) - 1.0) / h + 1.0)).to(dtype) * D1
            - (alpha_t * ((ops.exp(-h) - 1.0 + h) / h**2 - 0.5)).to(dtype) * D2
        )

    return x_t

mindone.diffusers.EDMDPMSolverMultistepScheduler.scale_model_input(sample, timestep)

Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep. Scales the denoising model input by (sigma**2 + 1) ** 0.5 to match the Euler algorithm.

PARAMETER DESCRIPTION
sample

The input sample.

TYPE: `ms.Tensor`

timestep

The current timestep in the diffusion chain.

TYPE: `int`, *optional*

RETURNS DESCRIPTION
Tensor

ms.Tensor: A scaled input sample.

Source code in mindone/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
def scale_model_input(self, sample: ms.Tensor, timestep: Union[float, ms.Tensor]) -> ms.Tensor:
    """
    Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
    current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm.

    Args:
        sample (`ms.Tensor`):
            The input sample.
        timestep (`int`, *optional*):
            The current timestep in the diffusion chain.

    Returns:
        `ms.Tensor`:
            A scaled input sample.
    """
    if self.step_index is None:
        self._init_step_index(timestep)

    sigma = self.sigmas[self.step_index]
    sample = self.precondition_inputs(sample, sigma)

    self.is_scale_input_called = True
    return sample

mindone.diffusers.EDMDPMSolverMultistepScheduler.set_begin_index(begin_index=0)

Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

PARAMETER DESCRIPTION
begin_index

The begin index for the scheduler.

TYPE: `int` DEFAULT: 0

Source code in mindone/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py
169
170
171
172
173
174
175
176
177
def set_begin_index(self, begin_index: int = 0):
    """
    Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

    Args:
        begin_index (`int`):
            The begin index for the scheduler.
    """
    self._begin_index = begin_index

mindone.diffusers.EDMDPMSolverMultistepScheduler.set_timesteps(num_inference_steps=None)

Sets the discrete timesteps used for the diffusion chain (to be run before inference).

PARAMETER DESCRIPTION
num_inference_steps

The number of diffusion steps used when generating samples with a pre-trained model.

TYPE: `int` DEFAULT: None

Source code in mindone/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
def set_timesteps(self, num_inference_steps: int = None):
    """
    Sets the discrete timesteps used for the diffusion chain (to be run before inference).

    Args:
        num_inference_steps (`int`):
            The number of diffusion steps used when generating samples with a pre-trained model.
    """

    self.num_inference_steps = num_inference_steps

    ramp = ms.tensor(np.linspace(0, 1, self.num_inference_steps))
    if self.config.sigma_schedule == "karras":
        sigmas = self._compute_karras_sigmas(ramp)
    elif self.config.sigma_schedule == "exponential":
        sigmas = self._compute_exponential_sigmas(ramp)

    sigmas = sigmas.to(ms.float32)
    self.timesteps = self.precondition_noise(sigmas)

    if self.config.final_sigmas_type == "sigma_min":
        sigma_last = self.config.sigma_min
    elif self.config.final_sigmas_type == "zero":
        sigma_last = 0
    else:
        raise ValueError(
            f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
        )

    self.sigmas = ops.cat([sigmas, ms.tensor([sigma_last], dtype=ms.float32)])

    self.model_outputs = [
        None,
    ] * self.config.solver_order
    self.lower_order_nums = 0

    # add an index counter for schedulers that allow duplicated timesteps
    self._step_index = None
    self._begin_index = None

mindone.diffusers.EDMDPMSolverMultistepScheduler.step(model_output, timestep, sample, generator=None, return_dict=False)

Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with the multistep DPMSolver.

PARAMETER DESCRIPTION
model_output

The direct output from learned diffusion model.

TYPE: `ms.Tensor`

timestep

The current discrete timestep in the diffusion chain.

TYPE: `int`

sample

A current instance of a sample created by the diffusion process.

TYPE: `ms.Tensor`

generator

A random number generator.

TYPE: `np.random.Generator`, *optional* DEFAULT: None

return_dict

Whether or not to return a [~schedulers.scheduling_utils.SchedulerOutput] or tuple.

TYPE: `bool` DEFAULT: False

RETURNS DESCRIPTION
Union[SchedulerOutput, Tuple]

[~schedulers.scheduling_utils.SchedulerOutput] or tuple: If return_dict is True, [~schedulers.scheduling_utils.SchedulerOutput] is returned, otherwise a tuple is returned where the first element is the sample tensor.

Source code in mindone/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
def step(
    self,
    model_output: ms.Tensor,
    timestep: int,
    sample: ms.Tensor,
    generator=None,
    return_dict: bool = False,
) -> Union[SchedulerOutput, Tuple]:
    """
    Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
    the multistep DPMSolver.

    Args:
        model_output (`ms.Tensor`):
            The direct output from learned diffusion model.
        timestep (`int`):
            The current discrete timestep in the diffusion chain.
        sample (`ms.Tensor`):
            A current instance of a sample created by the diffusion process.
        generator (`np.random.Generator`, *optional*):
            A random number generator.
        return_dict (`bool`):
            Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.

    Returns:
        [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
            If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
            tuple is returned where the first element is the sample tensor.

    """
    if self.num_inference_steps is None:
        raise ValueError(
            "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
        )

    if self.step_index is None:
        self._init_step_index(timestep)

    # Improve numerical stability for small number of steps
    lower_order_final = (self.step_index == len(self.timesteps) - 1) and (
        self.config.euler_at_final
        or (self.config.lower_order_final and len(self.timesteps) < 15)
        or self.config.final_sigmas_type == "zero"
    )
    lower_order_second = (
        (self.step_index == len(self.timesteps) - 2) and self.config.lower_order_final and len(self.timesteps) < 15
    )

    model_output = self.convert_model_output(model_output, sample=sample)
    for i in range(self.config.solver_order - 1):
        self.model_outputs[i] = self.model_outputs[i + 1]
    self.model_outputs[-1] = model_output

    if self.config.algorithm_type == "sde-dpmsolver++":
        noise = randn_tensor(model_output.shape, generator=generator, dtype=model_output.dtype)
    else:
        noise = None

    if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final:
        prev_sample = self.dpm_solver_first_order_update(model_output, sample=sample, noise=noise)
    elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second:
        prev_sample = self.multistep_dpm_solver_second_order_update(self.model_outputs, sample=sample, noise=noise)
    else:
        prev_sample = self.multistep_dpm_solver_third_order_update(self.model_outputs, sample=sample)

    if self.lower_order_nums < self.config.solver_order:
        self.lower_order_nums += 1

    # upon completion increase step index by one
    self._step_index += 1

    if not return_dict:
        return (prev_sample,)

    return SchedulerOutput(prev_sample=prev_sample)