EDMEulerScheduler¶
The Karras formulation of the Euler scheduler (Algorithm 2) from the Elucidating the Design Space of Diffusion-Based Generative Models paper by Karras et al. This is a fast scheduler which can often generate good outputs in 20-30 steps. The scheduler is based on the original k-diffusion implementation by Katherine Crowson.
mindone.diffusers.EDMEulerScheduler
¶
Bases: SchedulerMixin
, ConfigMixin
Implements the Euler scheduler in EDM formulation as presented in Karras et al. 2022 [1].
[1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models." https://arxiv.org/abs/2206.00364
This model inherits from [SchedulerMixin
] and [ConfigMixin
]. Check the superclass documentation for the generic
methods the library implements for all schedulers such as loading and saving.
PARAMETER | DESCRIPTION |
---|---|
sigma_min |
Minimum noise magnitude in the sigma schedule. This was set to 0.002 in the EDM paper [1]; a reasonable range is [0, 10].
TYPE:
|
sigma_max |
Maximum noise magnitude in the sigma schedule. This was set to 80.0 in the EDM paper [1]; a reasonable range is [0.2, 80.0].
TYPE:
|
sigma_data |
The standard deviation of the data distribution. This is set to 0.5 in the EDM paper [1].
TYPE:
|
sigma_schedule |
Sigma schedule to compute the
TYPE:
|
num_train_timesteps |
The number of diffusion steps to train the model.
TYPE:
|
prediction_type |
Prediction type of the scheduler function; can be
TYPE:
|
rho |
The rho parameter used for calculating the Karras sigma schedule, which is set to 7.0 in the EDM paper [1].
TYPE:
|
Source code in mindone/diffusers/schedulers/scheduling_edm_euler.py
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
|
mindone.diffusers.EDMEulerScheduler.begin_index
property
¶
The index for the first timestep. It should be set from pipeline with set_begin_index
method.
mindone.diffusers.EDMEulerScheduler.step_index
property
¶
The index counter for current timestep. It will increase 1 after each scheduler step.
mindone.diffusers.EDMEulerScheduler.scale_model_input(sample, timestep)
¶
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep. Scales the denoising model input by (sigma**2 + 1) ** 0.5
to match the Euler algorithm.
PARAMETER | DESCRIPTION |
---|---|
sample |
The input sample.
TYPE:
|
timestep |
The current timestep in the diffusion chain.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
|
Source code in mindone/diffusers/schedulers/scheduling_edm_euler.py
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
|
mindone.diffusers.EDMEulerScheduler.set_begin_index(begin_index=0)
¶
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
PARAMETER | DESCRIPTION |
---|---|
begin_index |
The begin index for the scheduler.
TYPE:
|
Source code in mindone/diffusers/schedulers/scheduling_edm_euler.py
140 141 142 143 144 145 146 147 148 |
|
mindone.diffusers.EDMEulerScheduler.set_timesteps(num_inference_steps)
¶
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
PARAMETER | DESCRIPTION |
---|---|
num_inference_steps |
The number of diffusion steps used when generating samples with a pre-trained model.
TYPE:
|
Source code in mindone/diffusers/schedulers/scheduling_edm_euler.py
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
|
mindone.diffusers.EDMEulerScheduler.step(model_output, timestep, sample, s_churn=0.0, s_tmin=0.0, s_tmax=float('inf'), s_noise=1.0, generator=None, return_dict=False)
¶
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion process from the learned model outputs (most often the predicted noise).
PARAMETER | DESCRIPTION |
---|---|
model_output |
The direct output from learned diffusion model.
TYPE:
|
timestep |
The current discrete timestep in the diffusion chain.
TYPE:
|
sample |
A current instance of a sample created by the diffusion process.
TYPE:
|
s_churn |
TYPE:
|
s_tmin |
TYPE:
|
s_tmax |
TYPE:
|
s_noise |
Scaling factor for noise added to the sample.
TYPE:
|
generator |
A random number generator.
TYPE:
|
return_dict |
Whether or not to return a [
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[EDMEulerSchedulerOutput, Tuple]
|
[ |
Source code in mindone/diffusers/schedulers/scheduling_edm_euler.py
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
|
mindone.diffusers.schedulers.scheduling_edm_euler.EDMEulerSchedulerOutput
dataclass
¶
Bases: BaseOutput
Output class for the scheduler's step
function output.
PARAMETER | DESCRIPTION |
---|---|
prev_sample |
Computed sample
TYPE:
|
pred_original_sample |
The predicted denoised sample
TYPE:
|
Source code in mindone/diffusers/schedulers/scheduling_edm_euler.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
|