Skip to content

CMStochasticIterativeScheduler

Consistency Models by Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever introduced a multistep and onestep scheduler (Algorithm 1) that is capable of generating good samples in one or a small number of steps.

The abstract from the paper is:

Diffusion models have significantly advanced the fields of image, audio, and video generation, but they depend on an iterative sampling process that causes slow generation. To overcome this limitation, we propose consistency models, a new family of models that generate high quality samples by directly mapping noise to data. They support fast one-step generation by design, while still allowing multistep sampling to trade compute for sample quality. They also support zero-shot data editing, such as image inpainting, colorization, and super-resolution, without requiring explicit training on these tasks. Consistency models can be trained either by distilling pre-trained diffusion models, or as standalone generative models altogether. Through extensive experiments, we demonstrate that they outperform existing distillation techniques for diffusion models in one- and few-step sampling, achieving the new state-of-the-art FID of 3.55 on CIFAR-10 and 6.20 on ImageNet 64x64 for one-step generation. When trained in isolation, consistency models become a new family of generative models that can outperform existing one-step, non-adversarial generative models on standard benchmarks such as CIFAR-10, ImageNet 64x64 and LSUN 256x256.

The original codebase can be found at openai/consistency_models.

mindone.diffusers.CMStochasticIterativeScheduler

Bases: SchedulerMixin, ConfigMixin

Multistep and onestep sampling for consistency models.

This model inherits from [SchedulerMixin] and [ConfigMixin]. Check the superclass documentation for the generic methods the library implements for all schedulers such as loading and saving.

PARAMETER DESCRIPTION
num_train_timesteps

The number of diffusion steps to train the model.

TYPE: `int`, defaults to 40 DEFAULT: 40

sigma_min

Minimum noise magnitude in the sigma schedule. Defaults to 0.002 from the original implementation.

TYPE: `float`, defaults to 0.002 DEFAULT: 0.002

sigma_max

Maximum noise magnitude in the sigma schedule. Defaults to 80.0 from the original implementation.

TYPE: `float`, defaults to 80.0 DEFAULT: 80.0

sigma_data

The standard deviation of the data distribution from the EDM paper. Defaults to 0.5 from the original implementation.

TYPE: `float`, defaults to 0.5 DEFAULT: 0.5

s_noise

The amount of additional noise to counteract loss of detail during sampling. A reasonable range is [1.000, 1.011]. Defaults to 1.0 from the original implementation.

TYPE: `float`, defaults to 1.0 DEFAULT: 1.0

rho

The parameter for calculating the Karras sigma schedule from the EDM paper. Defaults to 7.0 from the original implementation.

TYPE: `float`, defaults to 7.0 DEFAULT: 7.0

clip_denoised

Whether to clip the denoised outputs to (-1, 1).

TYPE: `bool`, defaults to `True` DEFAULT: True

timesteps

An explicit timestep schedule that can be optionally specified. The timesteps are expected to be in increasing order.

TYPE: `List` or `np.ndarray` or `ms.Tensor`, *optional*

Source code in mindone/diffusers/schedulers/scheduling_consistency_models.py
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
class CMStochasticIterativeScheduler(SchedulerMixin, ConfigMixin):
    """
    Multistep and onestep sampling for consistency models.

    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.

    Args:
        num_train_timesteps (`int`, defaults to 40):
            The number of diffusion steps to train the model.
        sigma_min (`float`, defaults to 0.002):
            Minimum noise magnitude in the sigma schedule. Defaults to 0.002 from the original implementation.
        sigma_max (`float`, defaults to 80.0):
            Maximum noise magnitude in the sigma schedule. Defaults to 80.0 from the original implementation.
        sigma_data (`float`, defaults to 0.5):
            The standard deviation of the data distribution from the EDM
            [paper](https://huggingface.co/papers/2206.00364). Defaults to 0.5 from the original implementation.
        s_noise (`float`, defaults to 1.0):
            The amount of additional noise to counteract loss of detail during sampling. A reasonable range is [1.000,
            1.011]. Defaults to 1.0 from the original implementation.
        rho (`float`, defaults to 7.0):
            The parameter for calculating the Karras sigma schedule from the EDM
            [paper](https://huggingface.co/papers/2206.00364). Defaults to 7.0 from the original implementation.
        clip_denoised (`bool`, defaults to `True`):
            Whether to clip the denoised outputs to `(-1, 1)`.
        timesteps (`List` or `np.ndarray` or `ms.Tensor`, *optional*):
            An explicit timestep schedule that can be optionally specified. The timesteps are expected to be in
            increasing order.
    """

    order = 1

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 40,
        sigma_min: float = 0.002,
        sigma_max: float = 80.0,
        sigma_data: float = 0.5,
        s_noise: float = 1.0,
        rho: float = 7.0,
        clip_denoised: bool = True,
    ):
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = sigma_max

        ramp = np.linspace(0, 1, num_train_timesteps)
        sigmas = self._convert_to_karras(ramp)
        timesteps = self.sigma_to_t(sigmas)

        # setable values
        self.num_inference_steps = None
        self.sigmas = ms.Tensor(sigmas)
        self.timesteps = ms.Tensor(timesteps)
        self.custom_timesteps = False
        self.is_scale_input_called = False
        self._step_index = None
        self._begin_index = None

    @property
    def step_index(self):
        """
        The index counter for current timestep. It will increase 1 after each scheduler step.
        """
        return self._step_index

    @property
    def begin_index(self):
        """
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
        """
        return self._begin_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
    def set_begin_index(self, begin_index: int = 0):
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
            begin_index (`int`):
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

    def scale_model_input(self, sample: ms.Tensor, timestep: Union[float, ms.Tensor]) -> ms.Tensor:
        """
        Scales the consistency model input by `(sigma**2 + sigma_data**2) ** 0.5`.

        Args:
            sample (`ms.Tensor`):
                The input sample.
            timestep (`float` or `ms.Tensor`):
                The current timestep in the diffusion chain.

        Returns:
            `ms.Tensor`:
                A scaled input sample.
        """
        # Get sigma corresponding to timestep
        if self.step_index is None:
            self._init_step_index(timestep)

        sigma = self.sigmas[self.step_index]

        sample = (sample / ((sigma**2 + self.config.sigma_data**2) ** 0.5)).to(sample.dtype)

        self.is_scale_input_called = True
        return sample

    def sigma_to_t(self, sigmas: Union[float, np.ndarray]):
        """
        Gets scaled timesteps from the Karras sigmas for input to the consistency model.

        Args:
            sigmas (`float` or `np.ndarray`):
                A single Karras sigma or an array of Karras sigmas.

        Returns:
            `float` or `np.ndarray`:
                A scaled input timestep or scaled input timestep array.
        """
        if not isinstance(sigmas, np.ndarray):
            sigmas = np.array(sigmas, dtype=np.float64)

        timesteps = 1000 * 0.25 * np.log(sigmas + 1e-44)

        return timesteps

    def set_timesteps(
        self,
        num_inference_steps: Optional[int] = None,
        timesteps: Optional[List[int]] = None,
    ):
        """
        Sets the timesteps used for the diffusion chain (to be run before inference).

        Args:
            num_inference_steps (`int`):
                The number of diffusion steps used when generating samples with a pre-trained model.
            timesteps (`List[int]`, *optional*):
                Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
                timestep spacing strategy of equal spacing between timesteps is used. If `timesteps` is passed,
                `num_inference_steps` must be `None`.
        """
        if num_inference_steps is None and timesteps is None:
            raise ValueError("Exactly one of `num_inference_steps` or `timesteps` must be supplied.")

        if num_inference_steps is not None and timesteps is not None:
            raise ValueError("Can only pass one of `num_inference_steps` or `timesteps`.")

        # Follow DDPMScheduler custom timesteps logic
        if timesteps is not None:
            for i in range(1, len(timesteps)):
                if timesteps[i] >= timesteps[i - 1]:
                    raise ValueError("`timesteps` must be in descending order.")

            if timesteps[0] >= self.config.num_train_timesteps:
                raise ValueError(
                    f"`timesteps` must start before `self.config.train_timesteps`:"
                    f" {self.config.num_train_timesteps}."
                )

            timesteps = np.array(timesteps, dtype=np.int64)
            self.custom_timesteps = True
        else:
            if num_inference_steps > self.config.num_train_timesteps:
                raise ValueError(
                    f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
                    f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
                    f" maximal {self.config.num_train_timesteps} timesteps."
                )

            self.num_inference_steps = num_inference_steps

            step_ratio = self.config.num_train_timesteps // self.num_inference_steps
            timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
            self.custom_timesteps = False

        # Map timesteps to Karras sigmas directly for multistep sampling
        # See https://github.com/openai/consistency_models/blob/main/cm/karras_diffusion.py#L675
        num_train_timesteps = self.config.num_train_timesteps
        ramp = timesteps[::-1].copy()
        ramp = ramp / (num_train_timesteps - 1)
        sigmas = self._convert_to_karras(ramp)
        timesteps = self.sigma_to_t(sigmas)

        sigmas = np.concatenate([sigmas, [self.config.sigma_min]]).astype(np.float32)
        self.sigmas = ms.Tensor(sigmas)

        self.timesteps = ms.Tensor(timesteps)

        self._step_index = None
        self._begin_index = None

    # Modified _convert_to_karras implementation that takes in ramp as argument
    def _convert_to_karras(self, ramp):
        """Constructs the noise schedule of Karras et al. (2022)."""

        sigma_min: float = self.config.sigma_min
        sigma_max: float = self.config.sigma_max

        rho = self.config.rho
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

    def get_scalings(self, sigma):
        sigma_data = self.config.sigma_data

        c_skip = sigma_data**2 / (sigma**2 + sigma_data**2)
        c_out = sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
        return c_skip, c_out

    def get_scalings_for_boundary_condition(self, sigma):
        """
        Gets the scalings used in the consistency model parameterization (from Appendix C of the
        [paper](https://huggingface.co/papers/2303.01469)) to enforce boundary condition.

        <Tip>

        `epsilon` in the equations for `c_skip` and `c_out` is set to `sigma_min`.

        </Tip>

        Args:
            sigma (`ms.Tensor`):
                The current sigma in the Karras sigma schedule.

        Returns:
            `tuple`:
                A two-element tuple where `c_skip` (which weights the current sample) is the first element and `c_out`
                (which weights the consistency model output) is the second element.
        """
        sigma_min = self.config.sigma_min
        sigma_data = self.config.sigma_data

        c_skip = sigma_data**2 / ((sigma - sigma_min) ** 2 + sigma_data**2)
        c_out = (sigma - sigma_min) * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
        return c_skip, c_out

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep
    def index_for_timestep(self, timestep, schedule_timesteps=None):
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps

        if (schedule_timesteps == timestep).sum() > 1:
            pos = 1
        else:
            pos = 0

        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
        indices = (schedule_timesteps == timestep).nonzero()

        return int(indices[pos])

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
    def _init_step_index(self, timestep):
        if self.begin_index is None:
            self._step_index = self.index_for_timestep(timestep)
        else:
            self._step_index = self._begin_index

    def step(
        self,
        model_output: ms.Tensor,
        timestep: Union[float, ms.Tensor],
        sample: ms.Tensor,
        generator: Optional[np.random.Generator] = None,
        return_dict: bool = False,
    ) -> Union[CMStochasticIterativeSchedulerOutput, Tuple]:
        """
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
            model_output (`ms.Tensor`):
                The direct output from the learned diffusion model.
            timestep (`float`):
                The current timestep in the diffusion chain.
            sample (`ms.Tensor`):
                A current instance of a sample created by the diffusion process.
            generator (`np.random.Generator`, *optional*):
                A random number generator.
            return_dict (`bool`, *optional*, defaults to `False`):
                Whether or not to return a
                [`~schedulers.scheduling_consistency_models.CMStochasticIterativeSchedulerOutput`] or `tuple`.

        Returns:
            [`~schedulers.scheduling_consistency_models.CMStochasticIterativeSchedulerOutput`] or `tuple`:
                If return_dict is `True`,
                [`~schedulers.scheduling_consistency_models.CMStochasticIterativeSchedulerOutput`] is returned,
                otherwise a tuple is returned where the first element is the sample tensor.
        """

        if isinstance(timestep, int) or (isinstance(timestep, ms.Tensor) and timestep.dtype in [ms.int32, ms.int64]):
            raise ValueError(
                (
                    "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
                    f" `{self.__class__}.step()` is not supported. Make sure to pass"
                    " one of the `scheduler.timesteps` as a timestep."
                ),
            )

        if not self.is_scale_input_called:
            logger.warning(
                "The `scale_model_input` function should be called before `step` to ensure correct denoising. "
                "See `StableDiffusionPipeline` for a usage example."
            )

        sigma_min = ms.tensor(self.config.sigma_min)
        sigma_max = ms.tensor(self.config.sigma_max)

        if self.step_index is None:
            self._init_step_index(timestep)

        # sigma_next corresponds to next_t in original implementation
        sigma = self.sigmas[self.step_index]
        if self.step_index + 1 < self.config.num_train_timesteps:
            sigma_next = self.sigmas[self.step_index + 1]
        else:
            # Set sigma_next to sigma_min
            sigma_next = self.sigmas[-1]

        # Get scalings for boundary conditions
        c_skip, c_out = self.get_scalings_for_boundary_condition(sigma)

        # 1. Denoise model output using boundary conditions
        denoised = c_out.to(model_output.dtype) * model_output + c_skip.to(sample.dtype) * sample
        if self.config.clip_denoised:
            denoised = denoised.clamp(-1, 1)

        # 2. Sample z ~ N(0, s_noise^2 * I)
        # Noise is not used for onestep sampling.
        if len(self.timesteps) > 1:
            noise = randn_tensor(model_output.shape, dtype=model_output.dtype, generator=generator)
        else:
            noise = ops.zeros_like(model_output)
        z = noise * self.config.s_noise

        sigma_hat = sigma_next.clamp(min=sigma_min, max=sigma_max)

        # 3. Return noisy sample
        # tau = sigma_hat, eps = sigma_min
        prev_sample = denoised + (z * (sigma_hat**2 - sigma_min**2) ** 0.5).to(denoised.dtype)

        # upon completion increase step index by one
        self._step_index += 1

        if not return_dict:
            return (prev_sample,)

        return CMStochasticIterativeSchedulerOutput(prev_sample=prev_sample)

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
    def add_noise(
        self,
        original_samples: ms.Tensor,
        noise: ms.Tensor,
        timesteps: ms.Tensor,
    ) -> ms.Tensor:
        broadcast_shape = original_samples.shape
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        sigmas = self.sigmas.to(dtype=original_samples.dtype)
        schedule_timesteps = self.timesteps

        # self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
        if self.begin_index is None:
            step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
        elif self.step_index is not None:
            # add_noise is called after first denoising step (for inpainting)
            step_indices = [self.step_index] * timesteps.shape[0]
        else:
            # add noise is called before first denoising step to create initial latent(img2img)
            step_indices = [self.begin_index] * timesteps.shape[0]

        sigma = sigmas[step_indices].flatten()
        # while len(sigma.shape) < len(original_samples.shape):
        #     sigma = sigma.unsqueeze(-1)
        sigma = ops.reshape(sigma, (timesteps.shape[0],) + (1,) * (len(broadcast_shape) - 1))

        noisy_samples = original_samples + noise * sigma
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps

mindone.diffusers.CMStochasticIterativeScheduler.begin_index property

The index for the first timestep. It should be set from pipeline with set_begin_index method.

mindone.diffusers.CMStochasticIterativeScheduler.step_index property

The index counter for current timestep. It will increase 1 after each scheduler step.

mindone.diffusers.CMStochasticIterativeScheduler.get_scalings_for_boundary_condition(sigma)

Gets the scalings used in the consistency model parameterization (from Appendix C of the paper) to enforce boundary condition.

epsilon in the equations for c_skip and c_out is set to sigma_min.

PARAMETER DESCRIPTION
sigma

The current sigma in the Karras sigma schedule.

TYPE: `ms.Tensor`

RETURNS DESCRIPTION

tuple: A two-element tuple where c_skip (which weights the current sample) is the first element and c_out (which weights the consistency model output) is the second element.

Source code in mindone/diffusers/schedulers/scheduling_consistency_models.py
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
def get_scalings_for_boundary_condition(self, sigma):
    """
    Gets the scalings used in the consistency model parameterization (from Appendix C of the
    [paper](https://huggingface.co/papers/2303.01469)) to enforce boundary condition.

    <Tip>

    `epsilon` in the equations for `c_skip` and `c_out` is set to `sigma_min`.

    </Tip>

    Args:
        sigma (`ms.Tensor`):
            The current sigma in the Karras sigma schedule.

    Returns:
        `tuple`:
            A two-element tuple where `c_skip` (which weights the current sample) is the first element and `c_out`
            (which weights the consistency model output) is the second element.
    """
    sigma_min = self.config.sigma_min
    sigma_data = self.config.sigma_data

    c_skip = sigma_data**2 / ((sigma - sigma_min) ** 2 + sigma_data**2)
    c_out = (sigma - sigma_min) * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
    return c_skip, c_out

mindone.diffusers.CMStochasticIterativeScheduler.scale_model_input(sample, timestep)

Scales the consistency model input by (sigma**2 + sigma_data**2) ** 0.5.

PARAMETER DESCRIPTION
sample

The input sample.

TYPE: `ms.Tensor`

timestep

The current timestep in the diffusion chain.

TYPE: `float` or `ms.Tensor`

RETURNS DESCRIPTION
Tensor

ms.Tensor: A scaled input sample.

Source code in mindone/diffusers/schedulers/scheduling_consistency_models.py
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
def scale_model_input(self, sample: ms.Tensor, timestep: Union[float, ms.Tensor]) -> ms.Tensor:
    """
    Scales the consistency model input by `(sigma**2 + sigma_data**2) ** 0.5`.

    Args:
        sample (`ms.Tensor`):
            The input sample.
        timestep (`float` or `ms.Tensor`):
            The current timestep in the diffusion chain.

    Returns:
        `ms.Tensor`:
            A scaled input sample.
    """
    # Get sigma corresponding to timestep
    if self.step_index is None:
        self._init_step_index(timestep)

    sigma = self.sigmas[self.step_index]

    sample = (sample / ((sigma**2 + self.config.sigma_data**2) ** 0.5)).to(sample.dtype)

    self.is_scale_input_called = True
    return sample

mindone.diffusers.CMStochasticIterativeScheduler.set_begin_index(begin_index=0)

Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

PARAMETER DESCRIPTION
begin_index

The begin index for the scheduler.

TYPE: `int` DEFAULT: 0

Source code in mindone/diffusers/schedulers/scheduling_consistency_models.py
119
120
121
122
123
124
125
126
127
def set_begin_index(self, begin_index: int = 0):
    """
    Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

    Args:
        begin_index (`int`):
            The begin index for the scheduler.
    """
    self._begin_index = begin_index

mindone.diffusers.CMStochasticIterativeScheduler.set_timesteps(num_inference_steps=None, timesteps=None)

Sets the timesteps used for the diffusion chain (to be run before inference).

PARAMETER DESCRIPTION
num_inference_steps

The number of diffusion steps used when generating samples with a pre-trained model.

TYPE: `int` DEFAULT: None

timesteps

Custom timesteps used to support arbitrary spacing between timesteps. If None, then the default timestep spacing strategy of equal spacing between timesteps is used. If timesteps is passed, num_inference_steps must be None.

TYPE: `List[int]`, *optional* DEFAULT: None

Source code in mindone/diffusers/schedulers/scheduling_consistency_models.py
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
def set_timesteps(
    self,
    num_inference_steps: Optional[int] = None,
    timesteps: Optional[List[int]] = None,
):
    """
    Sets the timesteps used for the diffusion chain (to be run before inference).

    Args:
        num_inference_steps (`int`):
            The number of diffusion steps used when generating samples with a pre-trained model.
        timesteps (`List[int]`, *optional*):
            Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
            timestep spacing strategy of equal spacing between timesteps is used. If `timesteps` is passed,
            `num_inference_steps` must be `None`.
    """
    if num_inference_steps is None and timesteps is None:
        raise ValueError("Exactly one of `num_inference_steps` or `timesteps` must be supplied.")

    if num_inference_steps is not None and timesteps is not None:
        raise ValueError("Can only pass one of `num_inference_steps` or `timesteps`.")

    # Follow DDPMScheduler custom timesteps logic
    if timesteps is not None:
        for i in range(1, len(timesteps)):
            if timesteps[i] >= timesteps[i - 1]:
                raise ValueError("`timesteps` must be in descending order.")

        if timesteps[0] >= self.config.num_train_timesteps:
            raise ValueError(
                f"`timesteps` must start before `self.config.train_timesteps`:"
                f" {self.config.num_train_timesteps}."
            )

        timesteps = np.array(timesteps, dtype=np.int64)
        self.custom_timesteps = True
    else:
        if num_inference_steps > self.config.num_train_timesteps:
            raise ValueError(
                f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
                f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
                f" maximal {self.config.num_train_timesteps} timesteps."
            )

        self.num_inference_steps = num_inference_steps

        step_ratio = self.config.num_train_timesteps // self.num_inference_steps
        timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
        self.custom_timesteps = False

    # Map timesteps to Karras sigmas directly for multistep sampling
    # See https://github.com/openai/consistency_models/blob/main/cm/karras_diffusion.py#L675
    num_train_timesteps = self.config.num_train_timesteps
    ramp = timesteps[::-1].copy()
    ramp = ramp / (num_train_timesteps - 1)
    sigmas = self._convert_to_karras(ramp)
    timesteps = self.sigma_to_t(sigmas)

    sigmas = np.concatenate([sigmas, [self.config.sigma_min]]).astype(np.float32)
    self.sigmas = ms.Tensor(sigmas)

    self.timesteps = ms.Tensor(timesteps)

    self._step_index = None
    self._begin_index = None

mindone.diffusers.CMStochasticIterativeScheduler.sigma_to_t(sigmas)

Gets scaled timesteps from the Karras sigmas for input to the consistency model.

PARAMETER DESCRIPTION
sigmas

A single Karras sigma or an array of Karras sigmas.

TYPE: `float` or `np.ndarray`

RETURNS DESCRIPTION

float or np.ndarray: A scaled input timestep or scaled input timestep array.

Source code in mindone/diffusers/schedulers/scheduling_consistency_models.py
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
def sigma_to_t(self, sigmas: Union[float, np.ndarray]):
    """
    Gets scaled timesteps from the Karras sigmas for input to the consistency model.

    Args:
        sigmas (`float` or `np.ndarray`):
            A single Karras sigma or an array of Karras sigmas.

    Returns:
        `float` or `np.ndarray`:
            A scaled input timestep or scaled input timestep array.
    """
    if not isinstance(sigmas, np.ndarray):
        sigmas = np.array(sigmas, dtype=np.float64)

    timesteps = 1000 * 0.25 * np.log(sigmas + 1e-44)

    return timesteps

mindone.diffusers.CMStochasticIterativeScheduler.step(model_output, timestep, sample, generator=None, return_dict=False)

Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion process from the learned model outputs (most often the predicted noise).

PARAMETER DESCRIPTION
model_output

The direct output from the learned diffusion model.

TYPE: `ms.Tensor`

timestep

The current timestep in the diffusion chain.

TYPE: `float`

sample

A current instance of a sample created by the diffusion process.

TYPE: `ms.Tensor`

generator

A random number generator.

TYPE: `np.random.Generator`, *optional* DEFAULT: None

return_dict

Whether or not to return a [~schedulers.scheduling_consistency_models.CMStochasticIterativeSchedulerOutput] or tuple.

TYPE: `bool`, *optional*, defaults to `False` DEFAULT: False

RETURNS DESCRIPTION
Union[CMStochasticIterativeSchedulerOutput, Tuple]

[~schedulers.scheduling_consistency_models.CMStochasticIterativeSchedulerOutput] or tuple: If return_dict is True, [~schedulers.scheduling_consistency_models.CMStochasticIterativeSchedulerOutput] is returned, otherwise a tuple is returned where the first element is the sample tensor.

Source code in mindone/diffusers/schedulers/scheduling_consistency_models.py
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
def step(
    self,
    model_output: ms.Tensor,
    timestep: Union[float, ms.Tensor],
    sample: ms.Tensor,
    generator: Optional[np.random.Generator] = None,
    return_dict: bool = False,
) -> Union[CMStochasticIterativeSchedulerOutput, Tuple]:
    """
    Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
    process from the learned model outputs (most often the predicted noise).

    Args:
        model_output (`ms.Tensor`):
            The direct output from the learned diffusion model.
        timestep (`float`):
            The current timestep in the diffusion chain.
        sample (`ms.Tensor`):
            A current instance of a sample created by the diffusion process.
        generator (`np.random.Generator`, *optional*):
            A random number generator.
        return_dict (`bool`, *optional*, defaults to `False`):
            Whether or not to return a
            [`~schedulers.scheduling_consistency_models.CMStochasticIterativeSchedulerOutput`] or `tuple`.

    Returns:
        [`~schedulers.scheduling_consistency_models.CMStochasticIterativeSchedulerOutput`] or `tuple`:
            If return_dict is `True`,
            [`~schedulers.scheduling_consistency_models.CMStochasticIterativeSchedulerOutput`] is returned,
            otherwise a tuple is returned where the first element is the sample tensor.
    """

    if isinstance(timestep, int) or (isinstance(timestep, ms.Tensor) and timestep.dtype in [ms.int32, ms.int64]):
        raise ValueError(
            (
                "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
                f" `{self.__class__}.step()` is not supported. Make sure to pass"
                " one of the `scheduler.timesteps` as a timestep."
            ),
        )

    if not self.is_scale_input_called:
        logger.warning(
            "The `scale_model_input` function should be called before `step` to ensure correct denoising. "
            "See `StableDiffusionPipeline` for a usage example."
        )

    sigma_min = ms.tensor(self.config.sigma_min)
    sigma_max = ms.tensor(self.config.sigma_max)

    if self.step_index is None:
        self._init_step_index(timestep)

    # sigma_next corresponds to next_t in original implementation
    sigma = self.sigmas[self.step_index]
    if self.step_index + 1 < self.config.num_train_timesteps:
        sigma_next = self.sigmas[self.step_index + 1]
    else:
        # Set sigma_next to sigma_min
        sigma_next = self.sigmas[-1]

    # Get scalings for boundary conditions
    c_skip, c_out = self.get_scalings_for_boundary_condition(sigma)

    # 1. Denoise model output using boundary conditions
    denoised = c_out.to(model_output.dtype) * model_output + c_skip.to(sample.dtype) * sample
    if self.config.clip_denoised:
        denoised = denoised.clamp(-1, 1)

    # 2. Sample z ~ N(0, s_noise^2 * I)
    # Noise is not used for onestep sampling.
    if len(self.timesteps) > 1:
        noise = randn_tensor(model_output.shape, dtype=model_output.dtype, generator=generator)
    else:
        noise = ops.zeros_like(model_output)
    z = noise * self.config.s_noise

    sigma_hat = sigma_next.clamp(min=sigma_min, max=sigma_max)

    # 3. Return noisy sample
    # tau = sigma_hat, eps = sigma_min
    prev_sample = denoised + (z * (sigma_hat**2 - sigma_min**2) ** 0.5).to(denoised.dtype)

    # upon completion increase step index by one
    self._step_index += 1

    if not return_dict:
        return (prev_sample,)

    return CMStochasticIterativeSchedulerOutput(prev_sample=prev_sample)

mindone.diffusers.schedulers.scheduling_consistency_models.CMStochasticIterativeSchedulerOutput dataclass

Bases: BaseOutput

Output class for the scheduler's step function.

PARAMETER DESCRIPTION
prev_sample

Computed sample (x_{t-1}) of previous timestep. prev_sample should be used as next model input in the denoising loop.

TYPE: `ms.Tensor` of shape `(batch_size, num_channels, height, width)` for images

Source code in mindone/diffusers/schedulers/scheduling_consistency_models.py
31
32
33
34
35
36
37
38
39
40
41
42
@dataclass
class CMStochasticIterativeSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's `step` function.

    Args:
        prev_sample (`ms.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
    """

    prev_sample: ms.Tensor