Würstchen¶
Wuerstchen: An Efficient Architecture for Large-Scale Text-to-Image Diffusion Models is by Pablo Pernias, Dominic Rampas, Mats L. Richter and Christopher Pal and Marc Aubreville.
The abstract from the paper is:
We introduce Würstchen, a novel architecture for text-to-image synthesis that combines competitive performance with unprecedented cost-effectiveness for large-scale text-to-image diffusion models. A key contribution of our work is to develop a latent diffusion technique in which we learn a detailed but extremely compact semantic image representation used to guide the diffusion process. This highly compressed representation of an image provides much more detailed guidance compared to latent representations of language and this significantly reduces the computational requirements to achieve state-of-the-art results. Our approach also improves the quality of text-conditioned image generation based on our user preference study. The training requirements of our approach consists of 24,602 A100-GPU hours - compared to Stable Diffusion 2.1's 200,000 GPU hours. Our approach also requires less training data to achieve these results. Furthermore, our compact latent representations allows us to perform inference over twice as fast, slashing the usual costs and carbon footprint of a state-of-the-art (SOTA) diffusion model significantly, without compromising the end performance. In a broader comparison against SOTA models our approach is substantially more efficient and compares favorably in terms of image quality. We believe that this work motivates more emphasis on the prioritization of both performance and computational accessibility.
Würstchen Overview¶
Würstchen is a diffusion model, whose text-conditional model works in a highly compressed latent space of images. Why is this important? Compressing data can reduce computational costs for both training and inference by magnitudes. Training on 1024x1024 images is way more expensive than training on 32x32. Usually, other works make use of a relatively small compression, in the range of 4x - 8x spatial compression. Würstchen takes this to an extreme. Through its novel design, we achieve a 42x spatial compression. This was unseen before because common methods fail to faithfully reconstruct detailed images after 16x spatial compression. Würstchen employs a two-stage compression, what we call Stage A and Stage B. Stage A is a VQGAN, and Stage B is a Diffusion Autoencoder (more details can be found in the paper). A third model, Stage C, is learned in that highly compressed latent space. This training requires fractions of the compute used for current top-performing models, while also allowing cheaper and faster inference.
Würstchen v2 comes to Diffusers¶
After the initial paper release, we have improved numerous things in the architecture, training and sampling, making Würstchen competitive to current state-of-the-art models in many ways. We are excited to release this new version together with Diffusers. Here is a list of the improvements.
- Higher resolution (1024x1024 up to 2048x2048)
- Faster inference
- Multi Aspect Resolution Sampling
- Better quality
We are releasing 3 checkpoints for the text-conditional image generation model (Stage C). Those are:
- v2-base
- v2-aesthetic
- (default) v2-interpolated (50% interpolation between v2-base and v2-aesthetic)
We recommend using v2-interpolated, as it has a nice touch of both photorealism and aesthetics. Use v2-base for finetunings as it does not have a style bias and use v2-aesthetic for very artistic generations. A comparison can be seen here:
Text-to-Image Generation¶
For the sake of usability, Würstchen can be used with a single pipeline. This pipeline can be used as follows:
import mindspore as ms
from mindone.diffusers import WuerstchenCombinedPipeline
from mindone.diffusers.pipelines.wuerstchen import DEFAULT_STAGE_C_TIMESTEPS
pipe = WuerstchenCombinedPipeline.from_pretrained(
"warp-ai/wuerstchen",
mindspore_dtype=ms.float16
)
caption = "Anthropomorphic cat dressed as a fire fighter"
images = pipe(
caption,
width = 1024,
height = 1536,
prior_timesteps = DEFAULT_STAGE_C_TIMESTEPS,
prior_gudiance_scale = 4.0,
num_images_per_prompt = 2,
)[0]
For explanation purposes, we can also initialize the two main pipelines of Würstchen individually. Würstchen consists of 3 stages: Stage C, Stage B, Stage A. They all have different jobs and work only together. When generating text-conditional images, Stage C will first generate the latents in a very compressed latent space. This is what happens in the prior_pipeline
. Afterwards, the generated latents will be passed to Stage B, which decompresses the latents into a bigger latent space of a VQGAN. These latents can then be decoded by Stage A, which is a VQGAN, into the pixel-space. Stage B & Stage A are both encapsulated in the decoder_pipeline
. For more details, take a look at the paper.
import mindspore as ms
from mindone.diffusers import WuerstchenDecoderPipeline, WuerstchenPriorPipeline
from mindone.diffusers.pipelines.wuerstchen import DEFAULT_STAGE_C_TIMESTEPS
dtype = ms.float16
num_images_per_prompt = 2
prior_pipeline = WuerstchenPriorPipeline.from_pretrained(
"warp-ai/wuerstchen-prior",
mindspore_dtype=ms.float16
)
decoder_pipeline = WuerstchenDecoderPipeline.from_pretrained(
"warp-ai/wuerstchen",
mindspore_dtype=ms.float16
)
caption = "Anthropomorphic cat dressed as a fire fighter"
negative_prompt = ""
prior_output = prior_pipeline(
prompt = caption,
height = 1024,
width = 1536,
timesteps = DEFAULT_STAGE_C_TIMESTEPS,
negative_prompt = negative_prompt,
gudiance_scale = 4.0,
num_images_per_prompt = num_images_per_prompt
)
decoder_output = decoder_pipeline(
image_embeddings = prior_output[0],
prompt = caption,
negative_prompt = negative_prompt,
guidance_scale = 0.0,
output_type = "pil",
)[0]
decoder_output
Limitations¶
- Due to the high compression employed by Würstchen, generations can lack a good amount of detail. To our human eye, this is especially noticeable in faces, hands etc.
- Images can only be generated in 128-pixel steps, e.g. the next higher resolution after 1024x1024 is 1152x1152
- The model lacks the ability to render correct text in images
- The model often does not achieve photorealism
- Difficult compositional prompts are hard for the model
The original codebase, as well as experimental ideas, can be found at dome272/Wuerstchen.
mindone.diffusers.WuerstchenCombinedPipeline
¶
Bases: DiffusionPipeline
Combined Pipeline for text-to-image generation using Wuerstchen
This model inherits from [DiffusionPipeline
]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
PARAMETER | DESCRIPTION |
---|---|
tokenizer |
The decoder tokenizer to be used for text inputs.
TYPE:
|
text_encoder |
The decoder text encoder to be used for text inputs.
TYPE:
|
decoder |
The decoder model to be used for decoder image generation pipeline.
TYPE:
|
scheduler |
The scheduler to be used for decoder image generation pipeline.
TYPE:
|
vqgan |
The VQGAN model to be used for decoder image generation pipeline.
TYPE:
|
prior_tokenizer |
The prior tokenizer to be used for text inputs.
TYPE:
|
prior_text_encoder |
The prior text encoder to be used for text inputs.
TYPE:
|
prior_prior |
The prior model to be used for prior pipeline.
TYPE:
|
prior_scheduler |
The scheduler to be used for prior pipeline.
TYPE:
|
Source code in mindone/diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
|
mindone.diffusers.WuerstchenCombinedPipeline.__call__(prompt=None, height=512, width=512, prior_num_inference_steps=60, prior_timesteps=None, prior_guidance_scale=4.0, num_inference_steps=12, decoder_timesteps=None, decoder_guidance_scale=0.0, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, num_images_per_prompt=1, generator=None, latents=None, output_type='pil', return_dict=False, prior_callback_on_step_end=None, prior_callback_on_step_end_tensor_inputs=['latents'], callback_on_step_end=None, callback_on_step_end_tensor_inputs=['latents'], **kwargs)
¶
Function invoked when calling the pipeline for generation.
PARAMETER | DESCRIPTION |
---|---|
prompt |
The prompt or prompts to guide the image generation for the prior and decoder.
TYPE:
|
negative_prompt |
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if
TYPE:
|
prompt_embeds |
Pre-generated text embeddings for the prior. Can be used to easily tweak text inputs, e.g. prompt
weighting. If not provided, text embeddings will be generated from
TYPE:
|
negative_prompt_embeds |
Pre-generated negative text embeddings for the prior. Can be used to easily tweak text inputs, e.g.
prompt weighting. If not provided, negative_prompt_embeds will be generated from
TYPE:
|
num_images_per_prompt |
The number of images to generate per prompt.
TYPE:
|
height |
The height in pixels of the generated image.
TYPE:
|
width |
The width in pixels of the generated image.
TYPE:
|
prior_guidance_scale |
Guidance scale as defined in Classifier-Free Diffusion Guidance.
TYPE:
|
prior_num_inference_steps |
The number of prior denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference. For more specific timestep spacing, you can pass customized
TYPE:
|
num_inference_steps |
The number of decoder denoising steps. More denoising steps usually lead to a higher quality image at
the expense of slower inference. For more specific timestep spacing, you can pass customized
TYPE:
|
prior_timesteps |
Custom timesteps to use for the denoising process for the prior. If not defined, equal spaced
TYPE:
|
decoder_timesteps |
Custom timesteps to use for the denoising process for the decoder. If not defined, equal spaced
TYPE:
|
decoder_guidance_scale |
Guidance scale as defined in Classifier-Free Diffusion Guidance.
TYPE:
|
generator |
One or a list of np.random.Generator(s) to make generation deterministic.
TYPE:
|
latents |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random
TYPE:
|
output_type |
The output format of the generate image. Choose between:
TYPE:
|
return_dict |
Whether or not to return a [
TYPE:
|
prior_callback_on_step_end |
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments:
TYPE:
|
prior_callback_on_step_end_tensor_inputs |
The list of tensor inputs for the
TYPE:
|
callback_on_step_end |
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments:
TYPE:
|
callback_on_step_end_tensor_inputs |
The list of tensor inputs for the
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
[ |
|
otherwise a |
Source code in mindone/diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
|
mindone.diffusers.WuerstchenPriorPipeline
¶
Bases: DiffusionPipeline
, LoraLoaderMixin
Pipeline for generating image prior for Wuerstchen.
This model inherits from [DiffusionPipeline
]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
The pipeline also inherits the following loading methods
- [
~loaders.LoraLoaderMixin.load_lora_weights
] for loading LoRA weights - [
~loaders.LoraLoaderMixin.save_lora_weights
] for saving LoRA weights
PARAMETER | DESCRIPTION |
---|---|
prior |
The canonical unCLIP prior to approximate the image embedding from the text embedding.
TYPE:
|
text_encoder |
Frozen text-encoder.
TYPE:
|
tokenizer |
Tokenizer of class CLIPTokenizer.
TYPE:
|
scheduler |
A scheduler to be used in combination with
TYPE:
|
latent_mean |
Mean value for latent diffusers.
TYPE:
|
latent_std |
Standard value for latent diffusers.
TYPE:
|
resolution_multiple |
Default resolution for multiple images generated.
TYPE:
|
Source code in mindone/diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
|
mindone.diffusers.WuerstchenPriorPipeline.__call__(prompt=None, height=1024, width=1024, num_inference_steps=60, timesteps=None, guidance_scale=8.0, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, num_images_per_prompt=1, generator=None, latents=None, output_type='ms', return_dict=False, callback_on_step_end=None, callback_on_step_end_tensor_inputs=['latents'], **kwargs)
¶
Function invoked when calling the pipeline for generation.
PARAMETER | DESCRIPTION |
---|---|
prompt |
The prompt or prompts to guide the image generation.
TYPE:
|
height |
The height in pixels of the generated image.
TYPE:
|
width |
The width in pixels of the generated image.
TYPE:
|
num_inference_steps |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
TYPE:
|
timesteps |
Custom timesteps to use for the denoising process. If not defined, equal spaced
TYPE:
|
guidance_scale |
Guidance scale as defined in Classifier-Free Diffusion Guidance.
TYPE:
|
negative_prompt |
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if
TYPE:
|
prompt_embeds |
Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not
provided, text embeddings will be generated from
TYPE:
|
negative_prompt_embeds |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt
weighting. If not provided, negative_prompt_embeds will be generated from
TYPE:
|
num_images_per_prompt |
The number of images to generate per prompt.
TYPE:
|
generator |
One or a list of np.random.Generator(s) to make generation deterministic.
TYPE:
|
latents |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random
TYPE:
|
output_type |
The output format of the generate image. Choose between:
TYPE:
|
return_dict |
Whether or not to return a [
TYPE:
|
callback_on_step_end |
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments:
TYPE:
|
callback_on_step_end_tensor_inputs |
The list of tensor inputs for the
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
[ |
|
|
|
generated image embeddings. |
Source code in mindone/diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
|
mindone.diffusers.pipelines.wuerstchen.pipeline_wuerstchen_prior.WuerstchenPriorPipelineOutput
dataclass
¶
Bases: BaseOutput
Output class for WuerstchenPriorPipeline.
Source code in mindone/diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py
54 55 56 57 58 59 60 61 62 63 64 65 |
|
mindone.diffusers.WuerstchenDecoderPipeline
¶
Bases: DiffusionPipeline
Pipeline for generating images from the Wuerstchen model.
This model inherits from [DiffusionPipeline
]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
PARAMETER | DESCRIPTION |
---|---|
tokenizer |
The CLIP tokenizer.
TYPE:
|
text_encoder |
The CLIP text encoder.
TYPE:
|
decoder |
The WuerstchenDiffNeXt unet decoder.
TYPE:
|
vqgan |
The VQGAN model.
TYPE:
|
scheduler |
A scheduler to be used in combination with
TYPE:
|
latent_dim_scale |
Multiplier to determine the VQ latent space size from the image embeddings. If the image embeddings are height=24 and width=24, the VQ latent shape needs to be height=int(24*10.67)=256 and width=int(24*10.67)=256 in order to match the training conditions.
TYPE:
|
Source code in mindone/diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
|
mindone.diffusers.WuerstchenDecoderPipeline.__call__(image_embeddings, prompt=None, num_inference_steps=12, timesteps=None, guidance_scale=0.0, negative_prompt=None, num_images_per_prompt=1, generator=None, latents=None, output_type='pil', return_dict=False, callback_on_step_end=None, callback_on_step_end_tensor_inputs=['latents'], **kwargs)
¶
Function invoked when calling the pipeline for generation.
PARAMETER | DESCRIPTION |
---|---|
image_embedding |
Image Embeddings either extracted from an image or generated by a Prior Model.
TYPE:
|
prompt |
The prompt or prompts to guide the image generation.
TYPE:
|
num_inference_steps |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
TYPE:
|
timesteps |
Custom timesteps to use for the denoising process. If not defined, equal spaced
TYPE:
|
guidance_scale |
Guidance scale as defined in Classifier-Free Diffusion Guidance.
TYPE:
|
negative_prompt |
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if
TYPE:
|
num_images_per_prompt |
The number of images to generate per prompt.
TYPE:
|
generator |
One or a list of np.random.Generator(s) to make generation deterministic.
TYPE:
|
latents |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random
TYPE:
|
output_type |
The output format of the generate image. Choose between:
TYPE:
|
return_dict |
Whether or not to return a [
TYPE:
|
callback_on_step_end |
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments:
TYPE:
|
callback_on_step_end_tensor_inputs |
The list of tensor inputs for the
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
[ |
|
otherwise a |
|
embeddings. |
Source code in mindone/diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
|
Citation¶
@misc{pernias2023wuerstchen,
title={Wuerstchen: An Efficient Architecture for Large-Scale Text-to-Image Diffusion Models},
author={Pablo Pernias and Dominic Rampas and Mats L. Richter and Christopher J. Pal and Marc Aubreville},
year={2023},
eprint={2306.00637},
archivePrefix={arXiv},
primaryClass={cs.CV}
}