unCLIP¶
Hierarchical Text-Conditional Image Generation with CLIP Latents is by Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, Mark Chen. The unCLIP model in 🤗 Diffusers comes from kakaobrain's karlo.
The abstract from the paper is following:
Contrastive models like CLIP have been shown to learn robust representations of images that capture both semantics and style. To leverage these representations for image generation, we propose a two-stage model: a prior that generates a CLIP image embedding given a text caption, and a decoder that generates an image conditioned on the image embedding. We show that explicitly generating image representations improves image diversity with minimal loss in photorealism and caption similarity. Our decoders conditioned on image representations can also produce variations of an image that preserve both its semantics and style, while varying the non-essential details absent from the image representation. Moreover, the joint embedding space of CLIP enables language-guided image manipulations in a zero-shot fashion. We use diffusion models for the decoder and experiment with both autoregressive and diffusion models for the prior, finding that the latter are computationally more efficient and produce higher-quality samples.
You can find lucidrains' DALL-E 2 recreation at lucidrains/DALLE2-pytorch.
Tip
Make sure to check out the Schedulers guide to learn how to explore the tradeoff between scheduler speed and quality, and see the reuse components across pipelines section to learn how to efficiently load the same components into multiple pipelines.
mindone.diffusers.UnCLIPPipeline
¶
Bases: DiffusionPipeline
Pipeline for text-to-image generation using unCLIP.
This model inherits from [DiffusionPipeline
]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
PARAMETER | DESCRIPTION |
---|---|
text_encoder |
Frozen text-encoder.
TYPE:
|
tokenizer |
A
TYPE:
|
prior |
The canonical unCLIP prior to approximate the image embedding from the text embedding.
TYPE:
|
text_proj |
Utility class to prepare and combine the embeddings before they are passed to the decoder.
TYPE:
|
decoder |
The decoder to invert the image embedding into an image.
TYPE:
|
super_res_first |
Super resolution UNet. Used in all but the last step of the super resolution diffusion process.
TYPE:
|
super_res_last |
Super resolution UNet. Used in the last step of the super resolution diffusion process.
TYPE:
|
prior_scheduler |
Scheduler used in the prior denoising process (a modified [
TYPE:
|
decoder_scheduler |
Scheduler used in the decoder denoising process (a modified [
TYPE:
|
super_res_scheduler |
Scheduler used in the super resolution denoising process (a modified [
TYPE:
|
Source code in mindone/diffusers/pipelines/unclip/pipeline_unclip.py
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 |
|
mindone.diffusers.UnCLIPPipeline.__call__(prompt=None, num_images_per_prompt=1, prior_num_inference_steps=25, decoder_num_inference_steps=25, super_res_num_inference_steps=7, generator=None, prior_latents=None, decoder_latents=None, super_res_latents=None, text_model_output=None, text_attention_mask=None, prior_guidance_scale=4.0, decoder_guidance_scale=8.0, output_type='pil', return_dict=False)
¶
The call function to the pipeline for generation.
PARAMETER | DESCRIPTION |
---|---|
prompt |
The prompt or prompts to guide image generation. This can only be left undefined if
TYPE:
|
num_images_per_prompt |
The number of images to generate per prompt.
TYPE:
|
prior_num_inference_steps |
The number of denoising steps for the prior. More denoising steps usually lead to a higher quality image at the expense of slower inference.
TYPE:
|
decoder_num_inference_steps |
The number of denoising steps for the decoder. More denoising steps usually lead to a higher quality image at the expense of slower inference.
TYPE:
|
super_res_num_inference_steps |
The number of denoising steps for super resolution. More denoising steps usually lead to a higher quality image at the expense of slower inference.
TYPE:
|
generator |
A
TYPE:
|
prior_latents |
Pre-generated noisy latents to be used as inputs for the prior.
TYPE:
|
decoder_latents |
Pre-generated noisy latents to be used as inputs for the decoder.
TYPE:
|
super_res_latents |
Pre-generated noisy latents to be used as inputs for the decoder.
TYPE:
|
prior_guidance_scale |
A higher guidance scale value encourages the model to generate images closely linked to the text
TYPE:
|
decoder_guidance_scale |
A higher guidance scale value encourages the model to generate images closely linked to the text
TYPE:
|
text_model_output |
Pre-defined [
TYPE:
|
text_attention_mask |
Pre-defined CLIP text attention mask that can be derived from the tokenizer. Pre-defined text attention
masks are necessary when passing
TYPE:
|
output_type |
The output format of the generated image. Choose between
TYPE:
|
return_dict |
Whether or not to return a [
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
[ |
Source code in mindone/diffusers/pipelines/unclip/pipeline_unclip.py
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 |
|
mindone.diffusers.UnCLIPImageVariationPipeline
¶
Bases: DiffusionPipeline
Pipeline to generate image variations from an input image using UnCLIP.
This model inherits from [DiffusionPipeline
]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
PARAMETER | DESCRIPTION |
---|---|
text_encoder |
Frozen text-encoder.
TYPE:
|
tokenizer |
A
TYPE:
|
feature_extractor |
Model that extracts features from generated images to be used as inputs for the
TYPE:
|
image_encoder |
Frozen CLIP image-encoder (clip-vit-large-patch14).
TYPE:
|
text_proj |
Utility class to prepare and combine the embeddings before they are passed to the decoder.
TYPE:
|
decoder |
The decoder to invert the image embedding into an image.
TYPE:
|
super_res_first |
Super resolution UNet. Used in all but the last step of the super resolution diffusion process.
TYPE:
|
super_res_last |
Super resolution UNet. Used in the last step of the super resolution diffusion process.
TYPE:
|
decoder_scheduler |
Scheduler used in the decoder denoising process (a modified [
TYPE:
|
super_res_scheduler |
Scheduler used in the super resolution denoising process (a modified [
TYPE:
|
Source code in mindone/diffusers/pipelines/unclip/pipeline_unclip_image_variation.py
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
|
mindone.diffusers.UnCLIPImageVariationPipeline.__call__(image=None, num_images_per_prompt=1, decoder_num_inference_steps=25, super_res_num_inference_steps=7, generator=None, decoder_latents=None, super_res_latents=None, image_embeddings=None, decoder_guidance_scale=8.0, output_type='pil', return_dict=False)
¶
The call function to the pipeline for generation.
PARAMETER | DESCRIPTION |
---|---|
image |
TYPE:
|
num_images_per_prompt |
The number of images to generate per prompt.
TYPE:
|
decoder_num_inference_steps |
The number of denoising steps for the decoder. More denoising steps usually lead to a higher quality image at the expense of slower inference.
TYPE:
|
super_res_num_inference_steps |
The number of denoising steps for super resolution. More denoising steps usually lead to a higher quality image at the expense of slower inference.
TYPE:
|
generator |
A
TYPE:
|
decoder_latents |
Pre-generated noisy latents to be used as inputs for the decoder.
TYPE:
|
super_res_latents |
Pre-generated noisy latents to be used as inputs for the decoder.
TYPE:
|
decoder_guidance_scale |
A higher guidance scale value encourages the model to generate images closely linked to the text
TYPE:
|
image_embeddings |
Pre-defined image embeddings that can be derived from the image encoder. Pre-defined image embeddings
can be passed for tasks like image interpolations.
TYPE:
|
output_type |
The output format of the generated image. Choose between
TYPE:
|
return_dict |
Whether or not to return a [
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
[ |
Source code in mindone/diffusers/pipelines/unclip/pipeline_unclip_image_variation.py
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
|
mindone.diffusers.pipelines.ImagePipelineOutput
dataclass
¶
Bases: BaseOutput
Output class for image pipelines.
Source code in mindone/diffusers/pipelines/pipeline_utils.py
69 70 71 72 73 74 75 76 77 78 79 80 |
|