Stable Video Diffusion¶
Stable Video Diffusion was proposed in Stable Video Diffusion: Scaling Latent Video Diffusion Models to Large Datasets by Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, Varun Jampani, Robin Rombach.
The abstract from the paper is:
We present Stable Video Diffusion - a latent video diffusion model for high-resolution, state-of-the-art text-to-video and image-to-video generation. Recently, latent diffusion models trained for 2D image synthesis have been turned into generative video models by inserting temporal layers and finetuning them on small, high-quality video datasets. However, training methods in the literature vary widely, and the field has yet to agree on a unified strategy for curating video data. In this paper, we identify and evaluate three different stages for successful training of video LDMs: text-to-image pretraining, video pretraining, and high-quality video finetuning. Furthermore, we demonstrate the necessity of a well-curated pretraining dataset for generating high-quality videos and present a systematic curation process to train a strong base model, including captioning and filtering strategies. We then explore the impact of finetuning our base model on high-quality data and train a text-to-video model that is competitive with closed-source video generation. We also show that our base model provides a powerful motion representation for downstream tasks such as image-to-video generation and adaptability to camera motion-specific LoRA modules. Finally, we demonstrate that our model provides a strong multi-view 3D-prior and can serve as a base to finetune a multi-view diffusion model that jointly generates multiple views of objects in a feedforward fashion, outperforming image-based methods at a fraction of their compute budget. We release code and model weights at this https URL.
Tip
To learn how to use Stable Video Diffusion, take a look at the Stable Video Diffusion guide.
Check out the Stability AI Hub organization for the base and extended frame checkpoints!
Tips¶
Video generation is memory-intensive and one way to reduce your memory usage is to set enable_forward_chunking
on the pipeline's UNet so you don't run the entire feedforward layer at once. Breaking it up into chunks in a loop is more efficient.
Check out the Text or image-to-video guide for more details about how certain parameters can affect video generation and how to optimize inference by reducing memory usage.
mindone.diffusers.StableVideoDiffusionPipeline
¶
Bases: DiffusionPipeline
Pipeline to generate video from an input image using Stable Video Diffusion.
This model inherits from [DiffusionPipeline
]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
PARAMETER | DESCRIPTION |
---|---|
vae |
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
TYPE:
|
image_encoder |
Frozen CLIP image-encoder (laion/CLIP-ViT-H-14-laion2B-s32B-b79K).
TYPE:
|
unet |
A
TYPE:
|
scheduler |
A scheduler to be used in combination with
TYPE:
|
feature_extractor |
A
TYPE:
|
Source code in mindone/diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 |
|
mindone.diffusers.StableVideoDiffusionPipeline.__call__(image, height=576, width=1024, num_frames=None, num_inference_steps=25, sigmas=None, min_guidance_scale=1.0, max_guidance_scale=3.0, fps=7, motion_bucket_id=127, noise_aug_strength=0.02, decode_chunk_size=None, num_videos_per_prompt=1, generator=None, latents=None, output_type='pil', callback_on_step_end=None, callback_on_step_end_tensor_inputs=['latents'], return_dict=False)
¶
The call function to the pipeline for generation.
PARAMETER | DESCRIPTION |
---|---|
image |
Image(s) to guide image generation. If you provide a tensor, the expected value range is between
TYPE:
|
height |
The height in pixels of the generated image.
TYPE:
|
width |
The width in pixels of the generated image.
TYPE:
|
num_frames |
The number of video frames to generate. Defaults to
TYPE:
|
num_inference_steps |
The number of denoising steps. More denoising steps usually lead to a higher quality video at the
expense of slower inference. This parameter is modulated by
TYPE:
|
sigmas |
Custom sigmas to use for the denoising process with schedulers which support a
TYPE:
|
min_guidance_scale |
The minimum guidance scale. Used for the classifier free guidance with first frame.
TYPE:
|
max_guidance_scale |
The maximum guidance scale. Used for the classifier free guidance with last frame.
TYPE:
|
fps |
Frames per second. The rate at which the generated images shall be exported to a video after generation. Note that Stable Diffusion Video's UNet was micro-conditioned on fps-1 during training.
TYPE:
|
motion_bucket_id |
Used for conditioning the amount of motion for the generation. The higher the number the more motion will be in the video.
TYPE:
|
noise_aug_strength |
The amount of noise added to the init image, the higher it is the less the video will look like the init image. Increase it for more motion.
TYPE:
|
decode_chunk_size |
The number of frames to decode at a time. Higher chunk size leads to better temporal consistency at the expense of more memory usage.
By default, the decoder decodes all frames at once for maximal quality. For lower memory usage, reduce
TYPE:
|
num_videos_per_prompt |
The number of videos to generate per prompt.
TYPE:
|
generator |
A
TYPE:
|
latents |
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random
TYPE:
|
output_type |
The output format of the generated image. Choose between
TYPE:
|
callback_on_step_end |
A function that is called at the end of each denoising step during inference. The function is called
with the following arguments:
TYPE:
|
callback_on_step_end_tensor_inputs |
The list of tensor inputs for the
TYPE:
|
return_dict |
Whether or not to return a [
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
[ |
Source code in mindone/diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 |
|
mindone.diffusers.pipelines.stable_video_diffusion.StableVideoDiffusionPipelineOutput
dataclass
¶
Bases: BaseOutput
Output class for Stable Video Diffusion pipeline.
PARAMETER | DESCRIPTION |
---|---|
frames |
List of denoised PIL images of length
TYPE:
|
Source code in mindone/diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py
121 122 123 124 125 126 127 128 129 130 131 132 |
|