Skip to content

Latent upscaler

The Stable Diffusion latent upscaler model was created by Katherine Crowson in collaboration with Stability AI. It is used to enhance the output image resolution by a factor of 2.

Tip

Make sure to check out the Stable Diffusion Tips section to learn how to explore the tradeoff between scheduler speed and quality, and how to reuse pipeline components efficiently!

If you're interested in using one of the official checkpoints for a task, explore the CompVis, Runway, and Stability AI Hub organizations!

mindone.diffusers.StableDiffusionLatentUpscalePipeline

Bases: DiffusionPipeline, StableDiffusionMixin, FromSingleFileMixin

Pipeline for upscaling Stable Diffusion output image resolution by a factor of 2.

This model inherits from [DiffusionPipeline]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).

The pipeline also inherits the following loading methods
  • [~loaders.FromSingleFileMixin.from_single_file] for loading .ckpt files
PARAMETER DESCRIPTION
vae

Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.

TYPE: [`AutoencoderKL`]

text_encoder

Frozen text-encoder (clip-vit-large-patch14).

TYPE: [`~transformers.CLIPTextModel`]

tokenizer

A CLIPTokenizer to tokenize text.

TYPE: [`~transformers.CLIPTokenizer`]

unet

A UNet2DConditionModel to denoise the encoded image latents.

TYPE: [`UNet2DConditionModel`]

scheduler

A [EulerDiscreteScheduler] to be used in combination with unet to denoise the encoded image latents.

TYPE: [`SchedulerMixin`]

Source code in mindone/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
class StableDiffusionLatentUpscalePipeline(DiffusionPipeline, StableDiffusionMixin, FromSingleFileMixin):
    r"""
    Pipeline for upscaling Stable Diffusion output image resolution by a factor of 2.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).

    The pipeline also inherits the following loading methods:
        - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
        text_encoder ([`~transformers.CLIPTextModel`]):
            Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
        tokenizer ([`~transformers.CLIPTokenizer`]):
            A `CLIPTokenizer` to tokenize text.
        unet ([`UNet2DConditionModel`]):
            A `UNet2DConditionModel` to denoise the encoded image latents.
        scheduler ([`SchedulerMixin`]):
            A [`EulerDiscreteScheduler`] to be used in combination with `unet` to denoise the encoded image latents.
    """

    model_cpu_offload_seq = "text_encoder->unet->vae"

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
        scheduler: EulerDiscreteScheduler,
    ):
        super().__init__()

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            scheduler=scheduler,
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, resample="bicubic")

    def _encode_prompt(self, prompt, do_classifier_free_guidance, negative_prompt):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `list(int)`):
                prompt to be encoded
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`):
                The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
                if `guidance_scale` is less than `1`).
        """
        batch_size = len(prompt) if isinstance(prompt, list) else 1

        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
            truncation=True,
            return_length=True,
            return_tensors="np",
        )
        text_input_ids = text_inputs.input_ids

        untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="np").input_ids

        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not np.array_equal(
            text_input_ids, untruncated_ids
        ):
            removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
            logger.warning(
                "The following part of your input was truncated because CLIP can only handle sequences up to"
                f" {self.tokenizer.model_max_length} tokens: {removed_text}"
            )

        text_encoder_out = self.text_encoder(ms.Tensor(text_input_ids), output_hidden_states=True)
        text_embeddings = text_encoder_out[0]
        text_pooler_out = text_encoder_out[1]

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

            max_length = text_input_ids.shape[-1]
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_length=True,
                return_tensors="np",
            )

            uncond_encoder_out = self.text_encoder(ms.Tensor(uncond_input.input_ids), output_hidden_states=True)

            uncond_embeddings = uncond_encoder_out[0]
            uncond_pooler_out = uncond_encoder_out[1]

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            text_embeddings = ops.cat([uncond_embeddings, text_embeddings])
            text_pooler_out = ops.cat([uncond_pooler_out, text_pooler_out])

        return text_embeddings, text_pooler_out

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
    def decode_latents(self, latents):
        deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
        deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)

        latents = 1 / self.vae.config.scaling_factor * latents
        image = self.vae.decode(latents, return_dict=False)[0]
        image = (image / 2 + 0.5).clamp(0, 1)
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
        image = image.permute(0, 2, 3, 1).float().numpy()
        return image

    def check_inputs(self, prompt, image, callback_steps):
        if not isinstance(prompt, str) and not isinstance(prompt, list):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if not isinstance(image, ms.Tensor) and not isinstance(image, PIL.Image.Image) and not isinstance(image, list):
            raise ValueError(f"`image` has to be of type `ms.Tensor`, `PIL.Image.Image` or `list` but is {type(image)}")

        # verify batch size of prompt and image are same if image is a list or tensor
        if isinstance(image, list) or isinstance(image, ms.Tensor):
            if isinstance(prompt, str):
                batch_size = 1
            else:
                batch_size = len(prompt)
            if isinstance(image, list):
                image_batch_size = len(image)
            else:
                image_batch_size = image.shape[0] if image.ndim == 4 else 1
            if batch_size != image_batch_size:
                raise ValueError(
                    f"`prompt` has batch size {batch_size} and `image` has batch size {image_batch_size}."
                    " Please make sure that passed `prompt` matches the batch size of `image`."
                )

        if (callback_steps is None) or (
            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.prepare_latents
    def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, generator, latents=None):
        shape = (batch_size, num_channels_latents, height, width)
        if latents is None:
            latents = randn_tensor(shape, generator=generator, dtype=dtype)
        else:
            if latents.shape != shape:
                raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
            latents = latents.to(dtype)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        latents = latents.to(dtype)
        return latents

    def __call__(
        self,
        prompt: Union[str, List[str]],
        image: PipelineImageInput = None,
        num_inference_steps: int = 75,
        guidance_scale: float = 9.0,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
        latents: Optional[ms.Tensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, ms.Tensor], None]] = None,
        callback_steps: int = 1,
    ):
        r"""
        The call function to the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`):
                The prompt or prompts to guide image upscaling.
            image (`ms.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[ms.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
                `Image` or tensor representing an image batch to be upscaled. If it's a tensor, it can be either a
                latent output from a Stable Diffusion model or an image tensor in the range `[-1, 1]`. It is considered
                a `latent` if `image.shape[1]` is `4`; otherwise, it is considered to be an image representation and
                encoded using this pipeline's `vae` encoder.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
            generator (`np.random.Generator` or `List[np.random.Generator]`, *optional*):
                A [`np.random.Generator`](https://numpy.org/doc/stable/reference/random/generator.html) to make
                generation deterministic.
            latents (`ms.Tensor`, *optional*):
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor is generated by sampling using the supplied random `generator`.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
                A function that calls every `callback_steps` steps during inference. The function is called with the
                following arguments: `callback(step: int, timestep: int, latents: ms.Tensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function is called. If not specified, the callback is called at
                every step.

        Examples:
        ```py
        >>> from mindone.diffusers import StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline
        >>> import mindspore as ms
        >>> import numpy as np


        >>> pipeline = StableDiffusionPipeline.from_pretrained(
        ...     "CompVis/stable-diffusion-v1-4", mindspore_dtype=ms.float16
        ... )

        >>> model_id = "stabilityai/sd-x2-latent-upscaler"
        >>> upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained(model_id, mindspore_dtype=ms.float16)

        >>> prompt = "a photo of an astronaut high resolution, unreal engine, ultra realistic"
        >>> generator = np.random.default_rng(33)

        >>> low_res_latents = pipeline(prompt, generator=generator, output_type="latent")[0]

        >>> image = pipeline.decode_latents(low_res_latents)
        >>> image = pipeline.numpy_to_pil(image)[0]

        >>> image.save("../images/a1.png")

        >>> upscaled_image = upscaler(
        ...     prompt=prompt,
        ...     image=low_res_latents,
        ...     num_inference_steps=20,
        ...     guidance_scale=0,
        ...     generator=generator,
        ... )[0][0]

        >>> upscaled_image.save("../images/a2.png")
        ```

        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
                otherwise a `tuple` is returned where the first element is a list with the generated images.
        """

        # 1. Check inputs
        self.check_inputs(prompt, image, callback_steps)

        # 2. Define call parameters
        batch_size = 1 if isinstance(prompt, str) else len(prompt)
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        if guidance_scale == 0:
            prompt = [""] * batch_size

        # 3. Encode input prompt
        text_embeddings, text_pooler_out = self._encode_prompt(prompt, do_classifier_free_guidance, negative_prompt)

        # 4. Preprocess image
        image = self.image_processor.preprocess(image)
        image = image.to(dtype=text_embeddings.dtype)
        if image.shape[1] == 3:
            # encode image if not in latent-space yet
            image = self.vae.encode(image).latent_dist.sample() * self.vae.config.scaling_factor

        # 5. set timesteps
        self.scheduler.set_timesteps(num_inference_steps)
        timesteps = self.scheduler.timesteps

        batch_multiplier = 2 if do_classifier_free_guidance else 1
        image = image[None, :] if image.ndim == 3 else image
        image = ops.cat([image] * batch_multiplier)

        # 5. Add noise to image (set to be 0):
        # (see below notes from the author):
        # "the This step theoretically can make the model work better on out-of-distribution inputs, but mostly just
        # seems to make it match the input less, so it's turned off by default."
        noise_level = ms.Tensor([0.0], dtype=ms.int32)
        noise_level = ops.cat([noise_level] * image.shape[0])
        inv_noise_level = (noise_level**2 + 1) ** (-0.5)

        # TODO: maybe Numerical error
        image_cond = (
            ops.interpolate(image, scale_factor=2.0, mode="nearest", recompute_scale_factor=True)
            * inv_noise_level[:, None, None, None]
        )
        image_cond = image_cond.to(text_embeddings.dtype)

        noise_level_embed = ops.cat(
            [
                ops.ones((text_pooler_out.shape[0], 64), dtype=text_pooler_out.dtype),
                ops.zeros((text_pooler_out.shape[0], 64), dtype=text_pooler_out.dtype),
            ],
            axis=1,
        )

        timestep_condition = ops.cat([noise_level_embed, text_pooler_out], axis=1)

        # 6. Prepare latent variables
        height, width = image.shape[2:]
        num_channels_latents = self.vae.config.latent_channels
        latents = self.prepare_latents(
            batch_size,
            num_channels_latents,
            height * 2,  # 2x upscale
            width * 2,
            text_embeddings.dtype,
            generator,
            latents,
        )

        # 7. Check that sizes of image and latents match
        num_channels_image = image.shape[1]
        if num_channels_latents + num_channels_image != self.unet.config.in_channels:
            raise ValueError(
                f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
                f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
                f" `num_channels_image`: {num_channels_image} "
                f" = {num_channels_latents+num_channels_image}. Please verify the config of"
                " `pipeline.unet` or your `image` input."
            )

        # 9. Denoising loop
        num_warmup_steps = 0

        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                sigma = self.scheduler.sigmas[i]
                # expand the latents if we are doing classifier free guidance
                latent_model_input = ops.cat([latents] * 2) if do_classifier_free_guidance else latents
                scaled_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                scaled_model_input = ops.cat([scaled_model_input, image_cond], axis=1)
                # preconditioning parameter based on  Karras et al. (2022) (table 1)
                timestep = ops.log(sigma) * 0.25

                noise_pred = self.unet(
                    scaled_model_input,
                    timestep,
                    encoder_hidden_states=text_embeddings,
                    timestep_cond=timestep_condition,
                )[0]

                # in original repo, the output contains a variance channel that's not used
                noise_pred = noise_pred[:, :-1]

                # apply preconditioning, based on table 1 in Karras et al. (2022)
                inv_sigma = 1 / (sigma**2 + 1)
                noise_pred = (
                    inv_sigma * latent_model_input + self.scheduler.scale_model_input(sigma, t) * noise_pred
                ).to(dtype=noise_pred.dtype)

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents)[0]

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)

        if not output_type == "latent":
            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
        else:
            image = latents

        image = self.image_processor.postprocess(image, output_type=output_type)

        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)

mindone.diffusers.StableDiffusionLatentUpscalePipeline.__call__(prompt, image=None, num_inference_steps=75, guidance_scale=9.0, negative_prompt=None, generator=None, latents=None, output_type='pil', return_dict=True, callback=None, callback_steps=1)

The call function to the pipeline for generation.

PARAMETER DESCRIPTION
prompt

The prompt or prompts to guide image upscaling.

TYPE: `str` or `List[str]`

image

Image or tensor representing an image batch to be upscaled. If it's a tensor, it can be either a latent output from a Stable Diffusion model or an image tensor in the range [-1, 1]. It is considered a latent if image.shape[1] is 4; otherwise, it is considered to be an image representation and encoded using this pipeline's vae encoder.

TYPE: `ms.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[ms.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]` DEFAULT: None

num_inference_steps

The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.

TYPE: `int`, *optional*, defaults to 50 DEFAULT: 75

guidance_scale

A higher guidance scale value encourages the model to generate images closely linked to the text prompt at the expense of lower image quality. Guidance scale is enabled when guidance_scale > 1.

TYPE: `float`, *optional*, defaults to 7.5 DEFAULT: 9.0

negative_prompt

The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass negative_prompt_embeds instead. Ignored when not using guidance (guidance_scale < 1).

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

eta

Corresponds to parameter eta (η) from the DDIM paper. Only applies to the [~schedulers.DDIMScheduler], and is ignored in other schedulers.

TYPE: `float`, *optional*, defaults to 0.0

generator

A np.random.Generator to make generation deterministic.

TYPE: `np.random.Generator` or `List[np.random.Generator]`, *optional* DEFAULT: None

latents

Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random generator.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

output_type

The output format of the generated image. Choose between PIL.Image or np.array.

TYPE: `str`, *optional*, defaults to `"pil"` DEFAULT: 'pil'

return_dict

Whether or not to return a [~pipelines.stable_diffusion.StableDiffusionPipelineOutput] instead of a plain tuple.

TYPE: `bool`, *optional*, defaults to `True` DEFAULT: True

callback

A function that calls every callback_steps steps during inference. The function is called with the following arguments: callback(step: int, timestep: int, latents: ms.Tensor).

TYPE: `Callable`, *optional* DEFAULT: None

callback_steps

The frequency at which the callback function is called. If not specified, the callback is called at every step.

TYPE: `int`, *optional*, defaults to 1 DEFAULT: 1

>>> from mindone.diffusers import StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline
>>> import mindspore as ms
>>> import numpy as np


>>> pipeline = StableDiffusionPipeline.from_pretrained(
...     "CompVis/stable-diffusion-v1-4", mindspore_dtype=ms.float16
... )

>>> model_id = "stabilityai/sd-x2-latent-upscaler"
>>> upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained(model_id, mindspore_dtype=ms.float16)

>>> prompt = "a photo of an astronaut high resolution, unreal engine, ultra realistic"
>>> generator = np.random.default_rng(33)

>>> low_res_latents = pipeline(prompt, generator=generator, output_type="latent")[0]

>>> image = pipeline.decode_latents(low_res_latents)
>>> image = pipeline.numpy_to_pil(image)[0]

>>> image.save("../images/a1.png")

>>> upscaled_image = upscaler(
...     prompt=prompt,
...     image=low_res_latents,
...     num_inference_steps=20,
...     guidance_scale=0,
...     generator=generator,
... )[0][0]

>>> upscaled_image.save("../images/a2.png")
RETURNS DESCRIPTION

[~pipelines.stable_diffusion.StableDiffusionPipelineOutput] or tuple: If return_dict is True, [~pipelines.stable_diffusion.StableDiffusionPipelineOutput] is returned, otherwise a tuple is returned where the first element is a list with the generated images.

Source code in mindone/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
def __call__(
    self,
    prompt: Union[str, List[str]],
    image: PipelineImageInput = None,
    num_inference_steps: int = 75,
    guidance_scale: float = 9.0,
    negative_prompt: Optional[Union[str, List[str]]] = None,
    generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
    latents: Optional[ms.Tensor] = None,
    output_type: Optional[str] = "pil",
    return_dict: bool = True,
    callback: Optional[Callable[[int, int, ms.Tensor], None]] = None,
    callback_steps: int = 1,
):
    r"""
    The call function to the pipeline for generation.

    Args:
        prompt (`str` or `List[str]`):
            The prompt or prompts to guide image upscaling.
        image (`ms.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[ms.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
            `Image` or tensor representing an image batch to be upscaled. If it's a tensor, it can be either a
            latent output from a Stable Diffusion model or an image tensor in the range `[-1, 1]`. It is considered
            a `latent` if `image.shape[1]` is `4`; otherwise, it is considered to be an image representation and
            encoded using this pipeline's `vae` encoder.
        num_inference_steps (`int`, *optional*, defaults to 50):
            The number of denoising steps. More denoising steps usually lead to a higher quality image at the
            expense of slower inference.
        guidance_scale (`float`, *optional*, defaults to 7.5):
            A higher guidance scale value encourages the model to generate images closely linked to the text
            `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
        negative_prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts to guide what to not include in image generation. If not defined, you need to
            pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
        eta (`float`, *optional*, defaults to 0.0):
            Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
            to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
        generator (`np.random.Generator` or `List[np.random.Generator]`, *optional*):
            A [`np.random.Generator`](https://numpy.org/doc/stable/reference/random/generator.html) to make
            generation deterministic.
        latents (`ms.Tensor`, *optional*):
            Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
            generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
            tensor is generated by sampling using the supplied random `generator`.
        output_type (`str`, *optional*, defaults to `"pil"`):
            The output format of the generated image. Choose between `PIL.Image` or `np.array`.
        return_dict (`bool`, *optional*, defaults to `True`):
            Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
            plain tuple.
        callback (`Callable`, *optional*):
            A function that calls every `callback_steps` steps during inference. The function is called with the
            following arguments: `callback(step: int, timestep: int, latents: ms.Tensor)`.
        callback_steps (`int`, *optional*, defaults to 1):
            The frequency at which the `callback` function is called. If not specified, the callback is called at
            every step.

    Examples:
    ```py
    >>> from mindone.diffusers import StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline
    >>> import mindspore as ms
    >>> import numpy as np


    >>> pipeline = StableDiffusionPipeline.from_pretrained(
    ...     "CompVis/stable-diffusion-v1-4", mindspore_dtype=ms.float16
    ... )

    >>> model_id = "stabilityai/sd-x2-latent-upscaler"
    >>> upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained(model_id, mindspore_dtype=ms.float16)

    >>> prompt = "a photo of an astronaut high resolution, unreal engine, ultra realistic"
    >>> generator = np.random.default_rng(33)

    >>> low_res_latents = pipeline(prompt, generator=generator, output_type="latent")[0]

    >>> image = pipeline.decode_latents(low_res_latents)
    >>> image = pipeline.numpy_to_pil(image)[0]

    >>> image.save("../images/a1.png")

    >>> upscaled_image = upscaler(
    ...     prompt=prompt,
    ...     image=low_res_latents,
    ...     num_inference_steps=20,
    ...     guidance_scale=0,
    ...     generator=generator,
    ... )[0][0]

    >>> upscaled_image.save("../images/a2.png")
    ```

    Returns:
        [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
            If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
            otherwise a `tuple` is returned where the first element is a list with the generated images.
    """

    # 1. Check inputs
    self.check_inputs(prompt, image, callback_steps)

    # 2. Define call parameters
    batch_size = 1 if isinstance(prompt, str) else len(prompt)
    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    do_classifier_free_guidance = guidance_scale > 1.0

    if guidance_scale == 0:
        prompt = [""] * batch_size

    # 3. Encode input prompt
    text_embeddings, text_pooler_out = self._encode_prompt(prompt, do_classifier_free_guidance, negative_prompt)

    # 4. Preprocess image
    image = self.image_processor.preprocess(image)
    image = image.to(dtype=text_embeddings.dtype)
    if image.shape[1] == 3:
        # encode image if not in latent-space yet
        image = self.vae.encode(image).latent_dist.sample() * self.vae.config.scaling_factor

    # 5. set timesteps
    self.scheduler.set_timesteps(num_inference_steps)
    timesteps = self.scheduler.timesteps

    batch_multiplier = 2 if do_classifier_free_guidance else 1
    image = image[None, :] if image.ndim == 3 else image
    image = ops.cat([image] * batch_multiplier)

    # 5. Add noise to image (set to be 0):
    # (see below notes from the author):
    # "the This step theoretically can make the model work better on out-of-distribution inputs, but mostly just
    # seems to make it match the input less, so it's turned off by default."
    noise_level = ms.Tensor([0.0], dtype=ms.int32)
    noise_level = ops.cat([noise_level] * image.shape[0])
    inv_noise_level = (noise_level**2 + 1) ** (-0.5)

    # TODO: maybe Numerical error
    image_cond = (
        ops.interpolate(image, scale_factor=2.0, mode="nearest", recompute_scale_factor=True)
        * inv_noise_level[:, None, None, None]
    )
    image_cond = image_cond.to(text_embeddings.dtype)

    noise_level_embed = ops.cat(
        [
            ops.ones((text_pooler_out.shape[0], 64), dtype=text_pooler_out.dtype),
            ops.zeros((text_pooler_out.shape[0], 64), dtype=text_pooler_out.dtype),
        ],
        axis=1,
    )

    timestep_condition = ops.cat([noise_level_embed, text_pooler_out], axis=1)

    # 6. Prepare latent variables
    height, width = image.shape[2:]
    num_channels_latents = self.vae.config.latent_channels
    latents = self.prepare_latents(
        batch_size,
        num_channels_latents,
        height * 2,  # 2x upscale
        width * 2,
        text_embeddings.dtype,
        generator,
        latents,
    )

    # 7. Check that sizes of image and latents match
    num_channels_image = image.shape[1]
    if num_channels_latents + num_channels_image != self.unet.config.in_channels:
        raise ValueError(
            f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
            f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
            f" `num_channels_image`: {num_channels_image} "
            f" = {num_channels_latents+num_channels_image}. Please verify the config of"
            " `pipeline.unet` or your `image` input."
        )

    # 9. Denoising loop
    num_warmup_steps = 0

    with self.progress_bar(total=num_inference_steps) as progress_bar:
        for i, t in enumerate(timesteps):
            sigma = self.scheduler.sigmas[i]
            # expand the latents if we are doing classifier free guidance
            latent_model_input = ops.cat([latents] * 2) if do_classifier_free_guidance else latents
            scaled_model_input = self.scheduler.scale_model_input(latent_model_input, t)

            scaled_model_input = ops.cat([scaled_model_input, image_cond], axis=1)
            # preconditioning parameter based on  Karras et al. (2022) (table 1)
            timestep = ops.log(sigma) * 0.25

            noise_pred = self.unet(
                scaled_model_input,
                timestep,
                encoder_hidden_states=text_embeddings,
                timestep_cond=timestep_condition,
            )[0]

            # in original repo, the output contains a variance channel that's not used
            noise_pred = noise_pred[:, :-1]

            # apply preconditioning, based on table 1 in Karras et al. (2022)
            inv_sigma = 1 / (sigma**2 + 1)
            noise_pred = (
                inv_sigma * latent_model_input + self.scheduler.scale_model_input(sigma, t) * noise_pred
            ).to(dtype=noise_pred.dtype)

            # perform guidance
            if do_classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

            # compute the previous noisy sample x_t -> x_t-1
            latents = self.scheduler.step(noise_pred, t, latents)[0]

            # call the callback, if provided
            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                progress_bar.update()
                if callback is not None and i % callback_steps == 0:
                    step_idx = i // getattr(self.scheduler, "order", 1)
                    callback(step_idx, t, latents)

    if not output_type == "latent":
        image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
    else:
        image = latents

    image = self.image_processor.postprocess(image, output_type=output_type)

    if not return_dict:
        return (image,)

    return ImagePipelineOutput(images=image)

mindone.diffusers.pipelines.stable_diffusion.StableDiffusionPipelineOutput dataclass

Bases: BaseOutput

Output class for Stable Diffusion pipelines.

Source code in mindone/diffusers/pipelines/stable_diffusion/pipeline_output.py
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
@dataclass
class StableDiffusionPipelineOutput(BaseOutput):
    """
    Output class for Stable Diffusion pipelines.

    Args:
        images (`List[PIL.Image.Image]` or `np.ndarray`)
            List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
            num_channels)`.
        nsfw_content_detected (`List[bool]`)
            List indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content or
            `None` if safety checking could not be performed.
    """

    images: Union[List[PIL.Image.Image], np.ndarray]
    nsfw_content_detected: Optional[List[bool]]