Stable Cascade¶
This model is built upon the Würstchen architecture and its main difference to other models like Stable Diffusion is that it is working at a much smaller latent space. Why is this important? The smaller the latent space, the faster you can run inference and the cheaper the training becomes. How small is the latent space? Stable Diffusion uses a compression factor of 8, resulting in a 1024x1024 image being encoded to 128x128. Stable Cascade achieves a compression factor of 42, meaning that it is possible to encode a 1024x1024 image to 24x24, while maintaining crisp reconstructions. The text-conditional model is then trained in the highly compressed latent space. Previous versions of this architecture, achieved a 16x cost reduction over Stable Diffusion 1.5.
Therefore, this kind of model is well suited for usages where efficiency is important. Furthermore, all known extensions like finetuning, LoRA, ControlNet, IP-Adapter, LCM etc. are possible with this method as well.
The original codebase can be found at Stability-AI/StableCascade.
Model Overview¶
Stable Cascade consists of three models: Stage A, Stage B and Stage C, representing a cascade to generate images, hence the name "Stable Cascade".
Stage A & B are used to compress images, similar to what the job of the VAE is in Stable Diffusion. However, with this setup, a much higher compression of images can be achieved. While the Stable Diffusion models use a spatial compression factor of 8, encoding an image with resolution of 1024 x 1024 to 128 x 128, Stable Cascade achieves a compression factor of 42. This encodes a 1024 x 1024 image to 24 x 24, while being able to accurately decode the image. This comes with the great benefit of cheaper training and inference. Furthermore, Stage C is responsible for generating the small 24 x 24 latents given a text prompt.
The Stage C model operates on the small 24 x 24 latents and denoises the latents conditioned on text prompts. The model is also the largest component in the Cascade pipeline and is meant to be used with the StableCascadePriorPipeline
The Stage B and Stage A models are used with the StableCascadeDecoderPipeline
and are responsible for generating the final image given the small 24 x 24 latents.
Warning
There are some restrictions on data types that can be used with the Stable Cascade models. The official checkpoints for the StableCascadePriorPipeline
do not support the mindspore.float16
data type. Please use mindspore.bfloat16
instead.
In order to use the mindspore.bfloat16
data type with the StableCascadeDecoderPipeline
you need to have mindspore 2.3.0 or higher installed. This also means that using the StableCascadeCombinedPipeline
with mindspore.bfloat16
requires MindSpore 2.3.0 or higher, since it calls the StableCascadeDecoderPipeline
internally.
If it is not possible to install MindSpore 2.3.0 or higher in your environment, the StableCascadeDecoderPipeline
can be used on its own with the mindspore.float16
data type. You can download the full precision or bf16
variant weights for the pipeline and cast the weights to mindspore.float16
.
Usage example¶
import mindspore as ms
from mindone.diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
from transformers import AutoTokenizer
from mindone.transformers import CLIPTextModelWithProjection
tokenizer = AutoTokenizer.from_pretrained("laion/CLIP-ViT-bigG-14-laion2B-39B-b160k")
text_encoder = CLIPTextModelWithProjection.from_pretrained("path/to/weight", use_safetensors=True)
prompt = "an image of a shiba inu, donning a spacesuit and helmet"
negative_prompt = ""
prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", tokenizer = tokenizer, text_encoder=text_encoder, variant="bf16", mindspore_dtype=ms.bfloat16)
decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", tokenizer = tokenizer, text_encoder=text_encoder, variant="bf16", mindspore_dtype=ms.float16)
prior_output = prior(
prompt=prompt,
height=1024,
width=1024,
negative_prompt=negative_prompt,
guidance_scale=4.0,
num_images_per_prompt=1,
num_inference_steps=20
)
decoder_output = decoder(
image_embeddings=prior_output.image_embeddings.to(ms.float16),
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=0.0,
output_type="pil",
num_inference_steps=10
)[0]
decoder_output.save("cascade.png")
Using the Lite Versions of the Stage B and Stage C models¶
import mindspore as ms
from mindone.diffusers import (
StableCascadeDecoderPipeline,
StableCascadePriorPipeline,
StableCascadeUNet,
)
from transformers import AutoTokenizer
from mindone.transformers import CLIPTextModelWithProjection
tokenizer = AutoTokenizer.from_pretrained("laion/CLIP-ViT-bigG-14-laion2B-39B-b160k")
text_encoder = CLIPTextModelWithProjection.from_pretrained("path/to/weight", use_safetensors=True)
prompt = "an image of a shiba inu, donning a spacesuit and helmet"
negative_prompt = ""
prior_unet = StableCascadeUNet.from_pretrained("stabilityai/stable-cascade-prior", text_encoder=text_encoder, tokenizer=tokenizer, subfolder="prior_lite")
decoder_unet = StableCascadeUNet.from_pretrained("stabilityai/stable-cascade", text_encoder=text_encoder, tokenizer=tokenizer, subfolder="decoder_lite")
prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", prior=prior_unet)
decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", decoder=decoder_unet)
prior_output = prior(
prompt=prompt,
height=1024,
width=1024,
negative_prompt=negative_prompt,
guidance_scale=4.0,
num_images_per_prompt=1,
num_inference_steps=20
)
decoder_output = decoder(
image_embeddings=prior_output.image_embeddings,
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=0.0,
output_type="pil",
num_inference_steps=10
)[0]
decoder_output.save("cascade.png")
Loading original checkpoints with from_single_file
¶
Loading the original format checkpoints is supported via from_single_file
method in the StableCascadeUNet.
import mindspore as ms
from mindone.diffusers import (
StableCascadeDecoderPipeline,
StableCascadePriorPipeline,
StableCascadeUNet,
)
from transformers import AutoTokenizer
from mindone.transformers import CLIPTextModelWithProjection
tokenizer = AutoTokenizer.from_pretrained("laion/CLIP-ViT-bigG-14-laion2B-39B-b160k")
text_encoder = CLIPTextModelWithProjection.from_pretrained("path/to/weight", use_safetensors=True)
prompt = "an image of a shiba inu, donning a spacesuit and helmet"
negative_prompt = ""
prior_unet = StableCascadeUNet.from_single_file(
"https://huggingface.co/stabilityai/stable-cascade/stage_c_bf16.safetensors",
mindspore_dtype=ms.bfloat16
)
decoder_unet = StableCascadeUNet.from_single_file(
"https://huggingface.co/stabilityai/stable-cascade/stage_b_bf16.safetensors",
mindspore_dtype=ms.bfloat16
)
prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", tokenizer=tokenizer, text_encoder=text_encoder, prior=prior_unet, mindspore_dtype=ms.bfloat16)
decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", tokenizer=tokenizer, text_encoder=text_encoder, decoder=decoder_unet, mindspore_dtype=ms.bfloat16)
prior_output = prior(
prompt=prompt,
height=1024,
width=1024,
negative_prompt=negative_prompt,
guidance_scale=4.0,
num_images_per_prompt=1,
num_inference_steps=20
)
decoder_output = decoder(
image_embeddings=prior_output.image_embeddings,
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=0.0,
output_type="pil",
num_inference_steps=10
).images[0]
decoder_output.save("cascade-single-file.png")
Uses¶
Direct Use¶
The model is intended for research purposes for now. Possible research areas and tasks include
- Research on generative models.
- Safe deployment of models which have the potential to generate harmful content.
- Probing and understanding the limitations and biases of generative models.
- Generation of artworks and use in design and other artistic processes.
- Applications in educational or creative tools.
Excluded uses are described below.
Out-of-Scope Use¶
The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model. The model should not be used in any way that violates Stability AI's Acceptable Use Policy.
Limitations and Bias¶
Limitations¶
- Faces and people in general may not be generated properly.
- The autoencoding part of the model is lossy.
mindone.diffusers.StableCascadeCombinedPipeline
¶
Bases: DiffusionPipeline
Combined Pipeline for text-to-image generation using Stable Cascade.
This model inherits from [DiffusionPipeline
]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
PARAMETER | DESCRIPTION |
---|---|
tokenizer |
The decoder tokenizer to be used for text inputs.
TYPE:
|
text_encoder |
The decoder text encoder to be used for text inputs.
TYPE:
|
decoder |
The decoder model to be used for decoder image generation pipeline.
TYPE:
|
scheduler |
The scheduler to be used for decoder image generation pipeline.
TYPE:
|
vqgan |
The VQGAN model to be used for decoder image generation pipeline.
TYPE:
|
feature_extractor |
Model that extracts features from generated images to be used as inputs for the
TYPE:
|
image_encoder |
Frozen CLIP image-encoder (clip-vit-large-patch14).
TYPE:
|
prior_prior |
The prior model to be used for prior pipeline.
TYPE:
|
prior_scheduler |
The scheduler to be used for prior pipeline.
TYPE:
|
Source code in mindone/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
|
mindone.diffusers.StableCascadeCombinedPipeline.__call__(prompt=None, images=None, height=512, width=512, prior_num_inference_steps=60, prior_guidance_scale=4.0, num_inference_steps=12, decoder_guidance_scale=0.0, negative_prompt=None, prompt_embeds=None, prompt_embeds_pooled=None, negative_prompt_embeds=None, negative_prompt_embeds_pooled=None, num_images_per_prompt=1, generator=None, latents=None, output_type='pil', return_dict=False, prior_callback_on_step_end=None, prior_callback_on_step_end_tensor_inputs=['latents'], callback_on_step_end=None, callback_on_step_end_tensor_inputs=['latents'])
¶
Function invoked when calling the pipeline for generation.
PARAMETER | DESCRIPTION |
---|---|
prompt |
The prompt or prompts to guide the image generation for the prior and decoder.
TYPE:
|
images |
The images to guide the image generation for the prior.
TYPE:
|
negative_prompt |
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if
TYPE:
|
prompt_embeds |
Pre-generated text embeddings for the prior. Can be used to easily tweak text inputs, e.g. prompt
weighting. If not provided, text embeddings will be generated from
TYPE:
|
prompt_embeds_pooled |
Pre-generated text embeddings for the prior. Can be used to easily tweak text inputs, e.g. prompt
weighting. If not provided, text embeddings will be generated from
TYPE:
|
negative_prompt_embeds |
Pre-generated negative text embeddings for the prior. Can be used to easily tweak text inputs, e.g.
prompt weighting. If not provided, negative_prompt_embeds will be generated from
TYPE:
|
negative_prompt_embeds_pooled |
Pre-generated negative text embeddings for the prior. Can be used to easily tweak text inputs, e.g.
prompt weighting. If not provided, negative_prompt_embeds will be generated from
TYPE:
|
num_images_per_prompt |
The number of images to generate per prompt.
TYPE:
|
height |
The height in pixels of the generated image.
TYPE:
|
width |
The width in pixels of the generated image.
TYPE:
|
prior_guidance_scale |
Guidance scale as defined in Classifier-Free Diffusion Guidance.
TYPE:
|
prior_num_inference_steps |
The number of prior denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference. For more specific timestep spacing, you can pass customized
TYPE:
|
num_inference_steps |
The number of decoder denoising steps. More denoising steps usually lead to a higher quality image at
the expense of slower inference. For more specific timestep spacing, you can pass customized
TYPE:
|
decoder_guidance_scale |
Guidance scale as defined in Classifier-Free Diffusion Guidance.
TYPE:
|
generator |
One or a list of np.random.Generator(s) to make generation deterministic.
TYPE:
|
latents |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random
TYPE:
|
output_type |
The output format of the generate image. Choose between:
TYPE:
|
return_dict |
Whether or not to return a [
TYPE:
|
prior_callback_on_step_end |
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments:
TYPE:
|
prior_callback_on_step_end_tensor_inputs |
The list of tensor inputs for the
TYPE:
|
callback_on_step_end |
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments:
TYPE:
|
callback_on_step_end_tensor_inputs |
The list of tensor inputs for the
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
[ |
|
otherwise a |
Source code in mindone/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
|
mindone.diffusers.StableCascadePriorPipeline
¶
Bases: DiffusionPipeline
Pipeline for generating image prior for Stable Cascade.
This model inherits from [DiffusionPipeline
]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
PARAMETER | DESCRIPTION |
---|---|
prior |
The Stable Cascade prior to approximate the image embedding from the text and/or image embedding.
TYPE:
|
text_encoder |
Frozen text-encoder (laion/CLIP-ViT-bigG-14-laion2B-39B-b160k).
TYPE:
|
feature_extractor |
Model that extracts features from generated images to be used as inputs for the
TYPE:
|
image_encoder |
Frozen CLIP image-encoder (clip-vit-large-patch14).
TYPE:
|
tokenizer |
Tokenizer of class CLIPTokenizer.
TYPE:
|
scheduler |
A scheduler to be used in combination with
TYPE:
|
resolution_multiple |
Default resolution for multiple images generated.
TYPE:
|
Source code in mindone/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 |
|
mindone.diffusers.StableCascadePriorPipeline.__call__(prompt=None, images=None, height=1024, width=1024, num_inference_steps=20, timesteps=None, guidance_scale=4.0, negative_prompt=None, prompt_embeds=None, prompt_embeds_pooled=None, negative_prompt_embeds=None, negative_prompt_embeds_pooled=None, image_embeds=None, num_images_per_prompt=1, generator=None, latents=None, output_type='ms', return_dict=False, callback_on_step_end=None, callback_on_step_end_tensor_inputs=['latents'])
¶
Function invoked when calling the pipeline for generation.
PARAMETER | DESCRIPTION |
---|---|
prompt |
The prompt or prompts to guide the image generation.
TYPE:
|
height |
The height in pixels of the generated image.
TYPE:
|
width |
The width in pixels of the generated image.
TYPE:
|
num_inference_steps |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
TYPE:
|
guidance_scale |
Guidance scale as defined in Classifier-Free Diffusion Guidance.
TYPE:
|
negative_prompt |
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if
TYPE:
|
prompt_embeds |
Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not
provided, text embeddings will be generated from
TYPE:
|
prompt_embeds_pooled |
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting.
If not provided, pooled text embeddings will be generated from
TYPE:
|
negative_prompt_embeds |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt
weighting. If not provided, negative_prompt_embeds will be generated from
TYPE:
|
negative_prompt_embeds_pooled |
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt
weighting. If not provided, negative_prompt_embeds_pooled will be generated from
TYPE:
|
image_embeds |
Pre-generated image embeddings. Can be used to easily tweak image inputs, e.g. prompt weighting.
If not provided, image embeddings will be generated from
TYPE:
|
num_images_per_prompt |
The number of images to generate per prompt.
TYPE:
|
generator |
One or a list of np.random.Generator(s) to make generation deterministic.
TYPE:
|
latents |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random
TYPE:
|
output_type |
The output format of the generate image. Choose between:
TYPE:
|
return_dict |
Whether or not to return a [
TYPE:
|
callback_on_step_end |
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments:
TYPE:
|
callback_on_step_end_tensor_inputs |
The list of tensor inputs for the
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
[ |
|
|
|
generated image embeddings. |
Source code in mindone/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 |
|
mindone.diffusers.pipelines.stable_cascade.pipeline_stable_cascade_prior.StableCascadePriorPipelineOutput
dataclass
¶
Bases: BaseOutput
Output class for WuerstchenPriorPipeline.
PARAMETER | DESCRIPTION |
---|---|
prompt_embeds |
Text embeddings for the prompt.
TYPE:
|
negative_prompt_embeds |
Text embeddings for the negative prompt.
TYPE:
|
Source code in mindone/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
|
mindone.diffusers.StableCascadeDecoderPipeline
¶
Bases: DiffusionPipeline
Pipeline for generating images from the Stable Cascade model.
This model inherits from [DiffusionPipeline
]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
PARAMETER | DESCRIPTION |
---|---|
tokenizer |
The CLIP tokenizer.
TYPE:
|
text_encoder |
The CLIP text encoder.
TYPE:
|
decoder |
The Stable Cascade decoder unet.
TYPE:
|
vqgan |
The VQGAN model.
TYPE:
|
scheduler |
A scheduler to be used in combination with
TYPE:
|
latent_dim_scale |
Multiplier to determine the VQ latent space size from the image embeddings. If the image embeddings are height=24 and width=24, the VQ latent shape needs to be height=int(24*10.67)=256 and width=int(24*10.67)=256 in order to match the training conditions.
TYPE:
|
Source code in mindone/diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 |
|
mindone.diffusers.StableCascadeDecoderPipeline.__call__(image_embeddings, prompt=None, num_inference_steps=10, guidance_scale=0.0, negative_prompt=None, prompt_embeds=None, prompt_embeds_pooled=None, negative_prompt_embeds=None, negative_prompt_embeds_pooled=None, num_images_per_prompt=1, generator=None, latents=None, output_type='pil', return_dict=False, callback_on_step_end=None, callback_on_step_end_tensor_inputs=['latents'])
¶
Function invoked when calling the pipeline for generation.
PARAMETER | DESCRIPTION |
---|---|
image_embedding |
Image Embeddings either extracted from an image or generated by a Prior Model.
TYPE:
|
prompt |
The prompt or prompts to guide the image generation.
TYPE:
|
num_inference_steps |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
TYPE:
|
guidance_scale |
Guidance scale as defined in Classifier-Free Diffusion Guidance.
TYPE:
|
negative_prompt |
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if
TYPE:
|
prompt_embeds |
Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not
provided, text embeddings will be generated from
TYPE:
|
prompt_embeds_pooled |
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting.
If not provided, pooled text embeddings will be generated from
TYPE:
|
negative_prompt_embeds |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt
weighting. If not provided, negative_prompt_embeds will be generated from
TYPE:
|
negative_prompt_embeds_pooled |
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt
weighting. If not provided, negative_prompt_embeds_pooled will be generated from
TYPE:
|
num_images_per_prompt |
The number of images to generate per prompt.
TYPE:
|
generator |
One or a list of np.random.Generator(s) to make generation deterministic.
TYPE:
|
latents |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random
TYPE:
|
output_type |
The output format of the generate image. Choose between:
TYPE:
|
return_dict |
Whether or not to return a [
TYPE:
|
callback_on_step_end |
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments:
TYPE:
|
callback_on_step_end_tensor_inputs |
The list of tensor inputs for the
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
[ |
|
otherwise a |
|
embeddings. |
Source code in mindone/diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 |
|