Latent Consistency Models¶
Latent Consistency Models (LCMs) were proposed in Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference by Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao.
The abstract of the paper is as follows:
Latent Diffusion models (LDMs) have achieved remarkable results in synthesizing high-resolution images. However, the iterative sampling process is computationally intensive and leads to slow generation. Inspired by Consistency Models (song et al.), we propose Latent Consistency Models (LCMs), enabling swift inference with minimal steps on any pre-trained LDMs, including Stable Diffusion (rombach et al). Viewing the guided reverse diffusion process as solving an augmented probability flow ODE (PF-ODE), LCMs are designed to directly predict the solution of such ODE in latent space, mitigating the need for numerous iterations and allowing rapid, high-fidelity sampling. Efficiently distilled from pre-trained classifier-free guided diffusion models, a high-quality 768 x 768 2~4-step LCM takes only 32 A100 GPU hours for training. Furthermore, we introduce Latent Consistency Fine-tuning (LCF), a novel method that is tailored for fine-tuning LCMs on customized image datasets. Evaluation on the LAION-5B-Aesthetics dataset demonstrates that LCMs achieve state-of-the-art text-to-image generation performance with few-step inference. Project Page: this https URL.
A demo for the SimianLuo/LCM_Dreamshaper_v7 checkpoint can be found here.
The pipelines were contributed by luosiallen, nagolinc, and dg845.
mindone.diffusers.LatentConsistencyModelPipeline
¶
Bases: DiffusionPipeline
, StableDiffusionMixin
, TextualInversionLoaderMixin
, IPAdapterMixin
, LoraLoaderMixin
, FromSingleFileMixin
Pipeline for text-to-image generation using a latent consistency model.
This model inherits from [DiffusionPipeline
]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
The pipeline also inherits the following loading methods
- [
~loaders.TextualInversionLoaderMixin.load_textual_inversion
] for loading textual inversion embeddings - [
~loaders.LoraLoaderMixin.load_lora_weights
] for loading LoRA weights - [
~loaders.LoraLoaderMixin.save_lora_weights
] for saving LoRA weights - [
~loaders.FromSingleFileMixin.from_single_file
] for loading.ckpt
files - [
~loaders.IPAdapterMixin.load_ip_adapter
] for loading IP Adapters
PARAMETER | DESCRIPTION |
---|---|
vae |
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
TYPE:
|
text_encoder |
Frozen text-encoder (clip-vit-large-patch14).
TYPE:
|
tokenizer |
A
TYPE:
|
unet |
A
TYPE:
|
scheduler |
A scheduler to be used in combination with
TYPE:
|
safety_checker |
Classification module that estimates whether generated images could be considered offensive or harmful. Please refer to the model card for more details about a model's potential harms.
TYPE:
|
feature_extractor |
A
TYPE:
|
requires_safety_checker |
Whether the pipeline requires a safety checker component.
TYPE:
|
Source code in mindone/diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 |
|
mindone.diffusers.LatentConsistencyModelPipeline.__call__(prompt=None, height=None, width=None, num_inference_steps=4, original_inference_steps=None, timesteps=None, guidance_scale=8.5, num_images_per_prompt=1, generator=None, latents=None, prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, output_type='pil', return_dict=False, cross_attention_kwargs=None, clip_skip=None, callback_on_step_end=None, callback_on_step_end_tensor_inputs=['latents'], **kwargs)
¶
The call function to the pipeline for generation.
PARAMETER | DESCRIPTION |
---|---|
prompt |
The prompt or prompts to guide image generation. If not defined, you need to pass
TYPE:
|
height |
The height in pixels of the generated image.
TYPE:
|
width |
The width in pixels of the generated image.
TYPE:
|
num_inference_steps |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
TYPE:
|
original_inference_steps |
The original number of inference steps use to generate a linearly-spaced timestep schedule, from which
we will draw
TYPE:
|
timesteps |
Custom timesteps to use for the denoising process. If not defined, equal spaced
TYPE:
|
guidance_scale |
A higher guidance scale value encourages the model to generate images closely linked to the text
TYPE:
|
num_images_per_prompt |
The number of images to generate per prompt.
TYPE:
|
generator |
A
TYPE:
|
latents |
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random
TYPE:
|
prompt_embeds |
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the
TYPE:
|
ip_adapter_image |
(
TYPE:
|
ip_adapter_image_embeds |
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters.
Each element should be a tensor of shape
TYPE:
|
output_type |
The output format of the generated image. Choose between
TYPE:
|
return_dict |
Whether or not to return a [
TYPE:
|
cross_attention_kwargs |
A kwargs dictionary that if specified is passed along to the [
TYPE:
|
clip_skip |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings.
TYPE:
|
callback_on_step_end |
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments:
TYPE:
|
callback_on_step_end_tensor_inputs |
The list of tensor inputs for the
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
[ |
Source code in mindone/diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 |
|
mindone.diffusers.LatentConsistencyModelPipeline.encode_prompt(prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, lora_scale=None, clip_skip=None)
¶
Encodes the prompt into text encoder hidden states.
PARAMETER | DESCRIPTION |
---|---|
prompt |
prompt to be encoded
TYPE:
|
num_images_per_prompt |
number of images that should be generated per prompt
TYPE:
|
do_classifier_free_guidance |
whether to use classifier free guidance or not
TYPE:
|
negative_prompt |
The prompt or prompts not to guide the image generation. If not defined, one has to pass
TYPE:
|
prompt_embeds |
Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not
provided, text embeddings will be generated from
TYPE:
|
negative_prompt_embeds |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt
weighting. If not provided, negative_prompt_embeds will be generated from
TYPE:
|
lora_scale |
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
TYPE:
|
clip_skip |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings.
TYPE:
|
Source code in mindone/diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
|
mindone.diffusers.LatentConsistencyModelPipeline.get_guidance_scale_embedding(w, embedding_dim=512, dtype=ms.float32)
¶
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
PARAMETER | DESCRIPTION |
---|---|
w |
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
TYPE:
|
embedding_dim |
Dimension of the embeddings to generate.
TYPE:
|
dtype |
Data type of the generated embeddings.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
|
Source code in mindone/diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
|
mindone.diffusers.LatentConsistencyModelImg2ImgPipeline
¶
Bases: DiffusionPipeline
, StableDiffusionMixin
, TextualInversionLoaderMixin
, IPAdapterMixin
, LoraLoaderMixin
, FromSingleFileMixin
Pipeline for image-to-image generation using a latent consistency model.
This model inherits from [DiffusionPipeline
]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
The pipeline also inherits the following loading methods
- [
~loaders.TextualInversionLoaderMixin.load_textual_inversion
] for loading textual inversion embeddings - [
~loaders.LoraLoaderMixin.load_lora_weights
] for loading LoRA weights - [
~loaders.LoraLoaderMixin.save_lora_weights
] for saving LoRA weights - [
~loaders.FromSingleFileMixin.from_single_file
] for loading.ckpt
files - [
~loaders.IPAdapterMixin.load_ip_adapter
] for loading IP Adapters
PARAMETER | DESCRIPTION |
---|---|
vae |
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
TYPE:
|
text_encoder |
Frozen text-encoder (clip-vit-large-patch14).
TYPE:
|
tokenizer |
A
TYPE:
|
unet |
A
TYPE:
|
scheduler |
A scheduler to be used in combination with
TYPE:
|
safety_checker |
Classification module that estimates whether generated images could be considered offensive or harmful. Please refer to the model card for more details about a model's potential harms.
TYPE:
|
feature_extractor |
A
TYPE:
|
requires_safety_checker |
Whether the pipeline requires a safety checker component.
TYPE:
|
Source code in mindone/diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 |
|
mindone.diffusers.LatentConsistencyModelImg2ImgPipeline.__call__(prompt=None, image=None, num_inference_steps=4, strength=0.8, original_inference_steps=None, timesteps=None, guidance_scale=8.5, num_images_per_prompt=1, generator=None, latents=None, prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, output_type='pil', return_dict=False, cross_attention_kwargs=None, clip_skip=None, callback_on_step_end=None, callback_on_step_end_tensor_inputs=['latents'], **kwargs)
¶
The call function to the pipeline for generation.
PARAMETER | DESCRIPTION |
---|---|
prompt |
The prompt or prompts to guide image generation. If not defined, you need to pass
TYPE:
|
height |
The height in pixels of the generated image.
TYPE:
|
width |
The width in pixels of the generated image.
TYPE:
|
num_inference_steps |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
TYPE:
|
original_inference_steps |
The original number of inference steps use to generate a linearly-spaced timestep schedule, from which
we will draw
TYPE:
|
timesteps |
Custom timesteps to use for the denoising process. If not defined, equal spaced
TYPE:
|
guidance_scale |
A higher guidance scale value encourages the model to generate images closely linked to the text
TYPE:
|
num_images_per_prompt |
The number of images to generate per prompt.
TYPE:
|
generator |
A
TYPE:
|
latents |
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random
TYPE:
|
prompt_embeds |
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the
TYPE:
|
ip_adapter_image |
(
TYPE:
|
ip_adapter_image_embeds |
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters.
Each element should be a tensor of shape
TYPE:
|
output_type |
The output format of the generated image. Choose between
TYPE:
|
return_dict |
Whether or not to return a [
TYPE:
|
cross_attention_kwargs |
A kwargs dictionary that if specified is passed along to the [
TYPE:
|
clip_skip |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings.
TYPE:
|
callback_on_step_end |
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments:
TYPE:
|
callback_on_step_end_tensor_inputs |
The list of tensor inputs for the
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
[ |
Source code in mindone/diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 |
|
mindone.diffusers.LatentConsistencyModelImg2ImgPipeline.encode_prompt(prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, lora_scale=None, clip_skip=None)
¶
Encodes the prompt into text encoder hidden states.
PARAMETER | DESCRIPTION |
---|---|
prompt |
prompt to be encoded
TYPE:
|
num_images_per_prompt |
number of images that should be generated per prompt
TYPE:
|
do_classifier_free_guidance |
whether to use classifier free guidance or not
TYPE:
|
negative_prompt |
The prompt or prompts not to guide the image generation. If not defined, one has to pass
TYPE:
|
prompt_embeds |
Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not
provided, text embeddings will be generated from
TYPE:
|
negative_prompt_embeds |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt
weighting. If not provided, negative_prompt_embeds will be generated from
TYPE:
|
lora_scale |
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
TYPE:
|
clip_skip |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings.
TYPE:
|
Source code in mindone/diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
|
mindone.diffusers.LatentConsistencyModelImg2ImgPipeline.get_guidance_scale_embedding(w, embedding_dim=512, dtype=ms.float32)
¶
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
PARAMETER | DESCRIPTION |
---|---|
w |
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
TYPE:
|
embedding_dim |
Dimension of the embeddings to generate.
TYPE:
|
dtype |
Data type of the generated embeddings.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
|
Source code in mindone/diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 |
|
mindone.diffusers.pipelines.stable_diffusion.StableDiffusionPipelineOutput
dataclass
¶
Bases: BaseOutput
Output class for Stable Diffusion pipelines.
Source code in mindone/diffusers/pipelines/stable_diffusion/pipeline_output.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
|