I2VGen-XL¶
I2VGen-XL: High-Quality Image-to-Video Synthesis via Cascaded Diffusion Models by Shiwei Zhang, Jiayu Wang, Yingya Zhang, Kang Zhao, Hangjie Yuan, Zhiwu Qin, Xiang Wang, Deli Zhao, and Jingren Zhou.
The abstract from the paper is:
Video synthesis has recently made remarkable strides benefiting from the rapid development of diffusion models. However, it still encounters challenges in terms of semantic accuracy, clarity and spatio-temporal continuity. They primarily arise from the scarcity of well-aligned text-video data and the complex inherent structure of videos, making it difficult for the model to simultaneously ensure semantic and qualitative excellence. In this report, we propose a cascaded I2VGen-XL approach that enhances model performance by decoupling these two factors and ensures the alignment of the input data by utilizing static images as a form of crucial guidance. I2VGen-XL consists of two stages: i) the base stage guarantees coherent semantics and preserves content from input images by using two hierarchical encoders, and ii) the refinement stage enhances the video's details by incorporating an additional brief text and improves the resolution to 1280×720. To improve the diversity, we collect around 35 million single-shot text-video pairs and 6 billion text-image pairs to optimize the model. By this means, I2VGen-XL can simultaneously enhance the semantic accuracy, continuity of details and clarity of generated videos. Through extensive experiments, we have investigated the underlying principles of I2VGen-XL and compared it with current top methods, which can demonstrate its effectiveness on diverse data. The source code and models will be publicly available at this https URL.
The original codebase can be found here. The model checkpoints can be found here.
Tip
Make sure to check out the Schedulers guide to learn how to explore the tradeoff between scheduler speed and quality, and see the reuse components across pipelines section to learn how to efficiently load the same components into multiple pipelines. Also, to know more about reducing the memory usage of this pipeline, refer to the ["Reduce memory usage"] section here.
Sample output with I2VGenXL:
Notes¶
- I2VGenXL always uses a
clip_skip
value of 1. This means it leverages the penultimate layer representations from the text encoder of CLIP. - It can generate videos of quality that is often on par with Stable Video Diffusion (SVD).
- Unlike SVD, it additionally accepts text prompts as inputs.
- It can generate higher resolution videos.
- When using the
DDIMScheduler
(which is default for this pipeline), less than 50 steps for inference leads to bad results. - This implementation is 1-stage variant of I2VGenXL. The main figure in the I2VGen-XL paper shows a 2-stage variant, however, 1-stage variant works well. See this discussion for more details.
mindone.diffusers.I2VGenXLPipeline
¶
Bases: DiffusionPipeline
, StableDiffusionMixin
Pipeline for image-to-video generation as proposed in I2VGenXL.
This model inherits from [DiffusionPipeline
]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
PARAMETER | DESCRIPTION |
---|---|
vae |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
TYPE:
|
text_encoder |
Frozen text-encoder (clip-vit-large-patch14).
TYPE:
|
tokenizer |
A [
TYPE:
|
unet |
A [
TYPE:
|
scheduler |
A scheduler to be used in combination with
TYPE:
|
Source code in mindone/diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 |
|
mindone.diffusers.I2VGenXLPipeline.__call__(prompt=None, image=None, height=704, width=1280, target_fps=16, num_frames=16, num_inference_steps=50, guidance_scale=9.0, negative_prompt=None, eta=0.0, num_videos_per_prompt=1, decode_chunk_size=1, generator=None, latents=None, prompt_embeds=None, negative_prompt_embeds=None, output_type='pil', return_dict=False, cross_attention_kwargs=None, clip_skip=1)
¶
The call function to the pipeline for image-to-video generation with [I2VGenXLPipeline
].
PARAMETER | DESCRIPTION |
---|---|
prompt |
The prompt or prompts to guide image generation. If not defined, you need to pass
TYPE:
|
image |
Image or images to guide image generation. If you provide a tensor, it needs to be compatible with
TYPE:
|
height |
The height in pixels of the generated image.
TYPE:
|
width |
The width in pixels of the generated image.
TYPE:
|
target_fps |
Frames per second. The rate at which the generated images shall be exported to a video after generation. This is also used as a "micro-condition" while generation.
TYPE:
|
num_frames |
The number of video frames to generate.
TYPE:
|
num_inference_steps |
The number of denoising steps.
TYPE:
|
guidance_scale |
A higher guidance scale value encourages the model to generate images closely linked to the text
TYPE:
|
negative_prompt |
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
pass
TYPE:
|
eta |
Corresponds to parameter eta (η) from the DDIM paper. Only applies
to the [
TYPE:
|
num_videos_per_prompt |
The number of images to generate per prompt.
TYPE:
|
decode_chunk_size |
The number of frames to decode at a time. The higher the chunk size, the higher the temporal
consistency between frames, but also the higher the memory consumption. By default, the decoder will
decode all frames at once for maximal quality. Reduce
TYPE:
|
generator |
A
TYPE:
|
latents |
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random
TYPE:
|
prompt_embeds |
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the
TYPE:
|
negative_prompt_embeds |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided,
TYPE:
|
output_type |
The output format of the generated image. Choose between
TYPE:
|
return_dict |
Whether or not to return a [
TYPE:
|
cross_attention_kwargs |
A kwargs dictionary that if specified is passed along to the [
TYPE:
|
clip_skip |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
[ |
Source code in mindone/diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 |
|
mindone.diffusers.I2VGenXLPipeline.encode_prompt(prompt, num_videos_per_prompt, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, clip_skip=None)
¶
Encodes the prompt into text encoder hidden states.
PARAMETER | DESCRIPTION |
---|---|
prompt |
prompt to be encoded
TYPE:
|
num_videos_per_prompt |
number of images that should be generated per prompt
TYPE:
|
do_classifier_free_guidance |
whether to use classifier free guidance or not
TYPE:
|
negative_prompt |
The prompt or prompts not to guide the image generation. If not defined, one has to pass
TYPE:
|
prompt_embeds |
Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not
provided, text embeddings will be generated from
TYPE:
|
negative_prompt_embeds |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt
weighting. If not provided, negative_prompt_embeds will be generated from
TYPE:
|
clip_skip |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings.
TYPE:
|
Source code in mindone/diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
|
mindone.diffusers.pipelines.i2vgen_xl.pipeline_i2vgen_xl.I2VGenXLPipelineOutput
dataclass
¶
Bases: BaseOutput
Output class for image-to-video pipeline.
Args:
frames (torch.Tensor
, np.ndarray
, or List[List[PIL.Image.Image]]):
List of video outputs - It can be a nested list of length batch_size,
with each sub-list containing
denoised
PIL image sequences of length num_frames.
It can also be a NumPy array or Torch tensor of shape
(batch_size, num_frames, channels, height, width)
Source code in mindone/diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py
72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
|