Skip to content

Hunyuan-DiT

chinese elements understanding

Hunyuan-DiT : A Powerful Multi-Resolution Diffusion Transformer with Fine-Grained Chinese Understanding from Tencent Hunyuan.

The abstract from the paper is:

We present Hunyuan-DiT, a text-to-image diffusion transformer with fine-grained understanding of both English and Chinese. To construct Hunyuan-DiT, we carefully design the transformer structure, text encoder, and positional encoding. We also build from scratch a whole data pipeline to update and evaluate data for iterative model optimization. For fine-grained language understanding, we train a Multimodal Large Language Model to refine the captions of the images. Finally, Hunyuan-DiT can perform multi-turn multimodal dialogue with users, generating and refining images according to the context. Through our holistic human evaluation protocol with more than 50 professional human evaluators, Hunyuan-DiT sets a new state-of-the-art in Chinese-to-image generation compared with other open-source models.

You can find the original codebase at Tencent/HunyuanDiT and all the available checkpoints at Tencent-Hunyuan.

Highlights: HunyuanDiT supports Chinese/English-to-image, multi-resolution generation.

HunyuanDiT has the following components: * It uses a diffusion transformer as the backbone * It combines two text encoders, a bilingual CLIP and a multilingual T5 encoder

Tip

Make sure to check out the Schedulers guide to learn how to explore the tradeoff between scheduler speed and quality, and see the reuse components across pipelines section to learn how to efficiently load the same components into multiple pipelines.

Tip

You can further improve generation quality by passing the generated image from HungyuanDiTPipeline to the SDXL refiner model.

Optimization

You can optimize the pipeline's runtime and memory consumption with mindspore graph mode and feed-forward chunking. To learn about other optimization methods, check out the Speed up inference and Reduce memory usage guides.

Inference

First, load the pipeline:

from mindone.diffusers import HunyuanDiTPipeline
import mindspore as ms

ms.set_context(mode=1)
pipeline = HunyuanDiTPipeline.from_pretrained(
    "Tencent-Hunyuan/HunyuanDiT-Diffusers", mindspore_dtype=ms.float16
)

image = pipeline(prompt="一个宇航员在骑马")[0][0]
image.save("image.png")

mindone.diffusers.HunyuanDiTPipeline

Bases: DiffusionPipeline

Pipeline for English/Chinese-to-image generation using HunyuanDiT.

This model inherits from [DiffusionPipeline]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

HunyuanDiT uses two text encoders: mT5 and bilingual CLIP

PARAMETER DESCRIPTION
vae

Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. We use sdxl-vae-fp16-fix.

TYPE: [`AutoencoderKL`]

text_encoder

Frozen text-encoder (clip-vit-large-patch14). HunyuanDiT uses a fine-tuned [bilingual CLIP].

TYPE: Optional[`~transformers.BertModel`, `~transformers.CLIPTextModel`]

tokenizer

A BertTokenizer or CLIPTokenizer to tokenize text.

TYPE: Optional[`~transformers.BertTokenizer`, `~transformers.CLIPTokenizer`]

transformer

The HunyuanDiT model designed by Tencent Hunyuan.

TYPE: [`HunyuanDiT2DModel`]

text_encoder_2

The mT5 embedder. Specifically, it is 't5-v1_1-xxl'.

TYPE: `T5EncoderModel` DEFAULT: T5EncoderModel

tokenizer_2

The tokenizer for the mT5 embedder.

TYPE: `MT5Tokenizer` DEFAULT: MT5Tokenizer

scheduler

A scheduler to be used in combination with HunyuanDiT to denoise the encoded image latents.

TYPE: [`DDPMScheduler`]

Source code in mindone/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
class HunyuanDiTPipeline(DiffusionPipeline):
    r"""
    Pipeline for English/Chinese-to-image generation using HunyuanDiT.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    HunyuanDiT uses two text encoders: [mT5](https://huggingface.co/google/mt5-base) and [bilingual CLIP](fine-tuned by
    ourselves)

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. We use
            `sdxl-vae-fp16-fix`.
        text_encoder (Optional[`~transformers.BertModel`, `~transformers.CLIPTextModel`]):
            Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
            HunyuanDiT uses a fine-tuned [bilingual CLIP].
        tokenizer (Optional[`~transformers.BertTokenizer`, `~transformers.CLIPTokenizer`]):
            A `BertTokenizer` or `CLIPTokenizer` to tokenize text.
        transformer ([`HunyuanDiT2DModel`]):
            The HunyuanDiT model designed by Tencent Hunyuan.
        text_encoder_2 (`T5EncoderModel`):
            The mT5 embedder. Specifically, it is 't5-v1_1-xxl'.
        tokenizer_2 (`MT5Tokenizer`):
            The tokenizer for the mT5 embedder.
        scheduler ([`DDPMScheduler`]):
            A scheduler to be used in combination with HunyuanDiT to denoise the encoded image latents.
    """

    model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
    _optional_components = [
        "safety_checker",
        "feature_extractor",
        "text_encoder_2",
        "tokenizer_2",
        "text_encoder",
        "tokenizer",
    ]
    _exclude_from_cpu_offload = ["safety_checker"]
    _callback_tensor_inputs = [
        "latents",
        "prompt_embeds",
        "negative_prompt_embeds",
        "prompt_embeds_2",
        "negative_prompt_embeds_2",
    ]

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: BertModel,
        tokenizer: BertTokenizer,
        transformer: HunyuanDiT2DModel,
        scheduler: DDPMScheduler,
        safety_checker: StableDiffusionSafetyChecker,
        feature_extractor: CLIPImageProcessor,
        requires_safety_checker: bool = True,
        text_encoder_2=T5EncoderModel,
        tokenizer_2=MT5Tokenizer,
    ):
        super().__init__()

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            tokenizer_2=tokenizer_2,
            transformer=transformer,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
            text_encoder_2=text_encoder_2,
        )

        if safety_checker is None and requires_safety_checker:
            logger.warning(
                f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
                " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
                " results in services or applications open to the public. Both the diffusers team and Hugging Face"
                " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
                " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
                " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
            )

        if safety_checker is not None and feature_extractor is None:
            raise ValueError(
                "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
                " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
            )

        self.vae_scale_factor = (
            2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
        )
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
        self.register_to_config(requires_safety_checker=requires_safety_checker)
        self.default_sample_size = (
            self.transformer.config.sample_size
            if hasattr(self, "transformer") and self.transformer is not None
            else 128
        )

    def encode_prompt(
        self,
        prompt: str,
        dtype: Optional[ms.Type] = None,
        num_images_per_prompt: int = 1,
        do_classifier_free_guidance: bool = True,
        negative_prompt: Optional[str] = None,
        prompt_embeds: Optional[ms.Tensor] = None,
        negative_prompt_embeds: Optional[ms.Tensor] = None,
        prompt_attention_mask: Optional[ms.Tensor] = None,
        negative_prompt_attention_mask: Optional[ms.Tensor] = None,
        max_sequence_length: Optional[int] = None,
        text_encoder_index: int = 0,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            dtype (`mindspore.Type`):
                mindspore dtype
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            prompt_attention_mask (`ms.Tensor`, *optional*):
                Attention mask for the prompt. Required when `prompt_embeds` is passed directly.
            negative_prompt_attention_mask (`ms.Tensor`, *optional*):
                Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly.
            max_sequence_length (`int`, *optional*): maximum sequence length to use for the prompt.
            text_encoder_index (`int`, *optional*):
                Index of the text encoder to use. `0` for clip and `1` for T5.
        """
        if dtype is None:
            if self.text_encoder_2 is not None:
                dtype = self.text_encoder_2.dtype
            elif self.transformer is not None:
                dtype = self.transformer.dtype
            else:
                dtype = None

        tokenizers = [self.tokenizer, self.tokenizer_2]
        text_encoders = [self.text_encoder, self.text_encoder_2]

        tokenizer = tokenizers[text_encoder_index]
        text_encoder = text_encoders[text_encoder_index]

        if max_sequence_length is None:
            if text_encoder_index == 0:
                max_length = 77
            if text_encoder_index == 1:
                max_length = 256
        else:
            max_length = max_sequence_length

        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if prompt_embeds is None:
            text_inputs = tokenizer(
                prompt,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_attention_mask=True,
                return_tensors="np",
            )
            text_input_ids = text_inputs.input_ids
            untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="np").input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not np.array_equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {tokenizer.model_max_length} tokens: {removed_text}"
                )

            prompt_attention_mask = ms.Tensor.from_numpy(text_inputs.attention_mask)
            prompt_embeds = text_encoder(
                ms.tensor(text_input_ids),
                attention_mask=prompt_attention_mask,
            )
            prompt_embeds = prompt_embeds[0]
            prompt_attention_mask = prompt_attention_mask.tile((num_images_per_prompt, 1))

        prompt_embeds = prompt_embeds.to(dtype=dtype)

        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.tile((1, num_images_per_prompt, 1))
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif prompt is not None and type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

            max_length = prompt_embeds.shape[1]
            uncond_input = tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="np",
            )

            negative_prompt_attention_mask = ms.Tensor.from_numpy(uncond_input.attention_mask)
            negative_prompt_embeds = text_encoder(
                ms.Tensor.from_numpy(uncond_input.input_ids),
                attention_mask=negative_prompt_attention_mask,
            )
            negative_prompt_embeds = negative_prompt_embeds[0]
            negative_prompt_attention_mask = negative_prompt_attention_mask.tile((num_images_per_prompt, 1))

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

            negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype)

            negative_prompt_embeds = negative_prompt_embeds.tile((1, num_images_per_prompt, 1))
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

        return prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
    def run_safety_checker(self, image, dtype):
        if self.safety_checker is None:
            has_nsfw_concept = None
        else:
            if ops.is_tensor(image):
                feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
            else:
                feature_extractor_input = self.image_processor.numpy_to_pil(image)
            safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="np")
            image, has_nsfw_concept = self.safety_checker(
                images=image, clip_input=ms.Tensor(safety_checker_input.pixel_values).to(dtype)
            )

            # Warning for safety checker operations here as it couldn't been done in construct()
            if ops.any(has_nsfw_concept):
                logger.warning(
                    "Potential NSFW content was detected in one or more images. A black image will be returned instead."
                    " Try again with a different prompt and/or seed."
                )
        return image, has_nsfw_concept

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def check_inputs(
        self,
        prompt,
        height,
        width,
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
        prompt_attention_mask=None,
        negative_prompt_attention_mask=None,
        prompt_embeds_2=None,
        negative_prompt_embeds_2=None,
        prompt_attention_mask_2=None,
        negative_prompt_attention_mask_2=None,
        callback_on_step_end_tensor_inputs=None,
    ):
        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"  # noqa: E501
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is None and prompt_embeds_2 is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds_2`. Cannot leave both `prompt` and `prompt_embeds_2` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if prompt_embeds is not None and prompt_attention_mask is None:
            raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")

        if prompt_embeds_2 is not None and prompt_attention_mask_2 is None:
            raise ValueError("Must provide `prompt_attention_mask_2` when specifying `prompt_embeds_2`.")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
            raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")

        if negative_prompt_embeds_2 is not None and negative_prompt_attention_mask_2 is None:
            raise ValueError(
                "Must provide `negative_prompt_attention_mask_2` when specifying `negative_prompt_embeds_2`."
            )
        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )
        if prompt_embeds_2 is not None and negative_prompt_embeds_2 is not None:
            if prompt_embeds_2.shape != negative_prompt_embeds_2.shape:
                raise ValueError(
                    "`prompt_embeds_2` and `negative_prompt_embeds_2` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds_2` {prompt_embeds_2.shape} != `negative_prompt_embeds_2`"
                    f" {negative_prompt_embeds_2.shape}."
                )

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
    def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, generator, latents=None):
        shape = (
            batch_size,
            num_channels_latents,
            int(height) // self.vae_scale_factor,
            int(width) // self.vae_scale_factor,
        )
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(shape, generator=generator, dtype=dtype)
        else:
            latents = latents.to(dtype)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        # wtf? The above line changes the dtype of latents from fp16 to fp32, so we need a casting.
        latents = latents.to(dtype=dtype)
        return latents

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def guidance_rescale(self):
        return self._guidance_rescale

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1

    @property
    def num_timesteps(self):
        return self._num_timesteps

    @property
    def interrupt(self):
        return self._interrupt

    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: Optional[int] = 50,
        guidance_scale: Optional[float] = 5.0,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: Optional[float] = 0.0,
        generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
        latents: Optional[ms.Tensor] = None,
        prompt_embeds: Optional[ms.Tensor] = None,
        prompt_embeds_2: Optional[ms.Tensor] = None,
        negative_prompt_embeds: Optional[ms.Tensor] = None,
        negative_prompt_embeds_2: Optional[ms.Tensor] = None,
        prompt_attention_mask: Optional[ms.Tensor] = None,
        prompt_attention_mask_2: Optional[ms.Tensor] = None,
        negative_prompt_attention_mask: Optional[ms.Tensor] = None,
        negative_prompt_attention_mask_2: Optional[ms.Tensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = False,
        callback_on_step_end: Optional[
            Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
        ] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        guidance_rescale: float = 0.0,
        original_size: Optional[Tuple[int, int]] = (1024, 1024),
        target_size: Optional[Tuple[int, int]] = None,
        crops_coords_top_left: Tuple[int, int] = (0, 0),
        use_resolution_binning: bool = True,
    ):
        r"""
        The call function to the pipeline for generation with HunyuanDiT.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
            height (`int`):
                The height in pixels of the generated image.
            width (`int`):
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference. This parameter is modulated by `strength`.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
            generator (`np.random.Generator` or `List[np.random.Generator]`, *optional*):
                A [`np.random.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
            prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument.
            prompt_embeds_2 (`ms.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument.
            negative_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
            negative_prompt_embeds_2 (`ms.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
            prompt_attention_mask (`ms.Tensor`, *optional*):
                Attention mask for the prompt. Required when `prompt_embeds` is passed directly.
            prompt_attention_mask_2 (`ms.Tensor`, *optional*):
                Attention mask for the prompt. Required when `prompt_embeds_2` is passed directly.
            negative_prompt_attention_mask (`ms.Tensor`, *optional*):
                Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly.
            negative_prompt_attention_mask_2 (`ms.Tensor`, *optional*):
                Attention mask for the negative prompt. Required when `negative_prompt_embeds_2` is passed directly.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback_on_step_end (`Callable[[int, int, Dict], None]`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
                A callback function or a list of callback functions to be called at the end of each denoising step.
            callback_on_step_end_tensor_inputs (`List[str]`, *optional*):
                A list of tensor inputs that should be passed to the callback function. If not defined, all tensor
                inputs will be passed.
            guidance_rescale (`float`, *optional*, defaults to 0.0):
                Rescale the noise_cfg according to `guidance_rescale`. Based on findings of [Common Diffusion Noise
                Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
            original_size (`Tuple[int, int]`, *optional*, defaults to `(1024, 1024)`):
                The original size of the image. Used to calculate the time ids.
            target_size (`Tuple[int, int]`, *optional*):
                The target size of the image. Used to calculate the time ids.
            crops_coords_top_left (`Tuple[int, int]`, *optional*, defaults to `(0, 0)`):
                The top left coordinates of the crop. Used to calculate the time ids.
            use_resolution_binning (`bool`, *optional*, defaults to `True`):
                Whether to use resolution binning or not. If `True`, the input resolution will be mapped to the closest
                standard resolution. Supported resolutions are 1024x1024, 1280x1280, 1024x768, 1152x864, 1280x960,
                768x1024, 864x1152, 960x1280, 1280x768, and 768x1280. It is recommended to set this to `True`.

        Examples:

        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
                otherwise a `tuple` is returned where the first element is a list with the generated images and the
                second element is a list of `bool`s indicating whether the corresponding generated image contains
                "not-safe-for-work" (nsfw) content.
        """

        if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
            callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs

        # 0. default height and width
        height = height or self.default_sample_size * self.vae_scale_factor
        width = width or self.default_sample_size * self.vae_scale_factor
        height = int((height // 16) * 16)
        width = int((width // 16) * 16)

        if use_resolution_binning and (height, width) not in SUPPORTED_SHAPE:
            width, height = map_to_standard_shapes(width, height)
            height = int(height)
            width = int(width)
            logger.warning(f"Reshaped to (height, width)=({height}, {width}), Supported shapes are {SUPPORTED_SHAPE}")

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            height,
            width,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
            prompt_attention_mask,
            negative_prompt_attention_mask,
            prompt_embeds_2,
            negative_prompt_embeds_2,
            prompt_attention_mask_2,
            negative_prompt_attention_mask_2,
            callback_on_step_end_tensor_inputs,
        )
        self._guidance_scale = guidance_scale
        self._guidance_rescale = guidance_rescale
        self._interrupt = False

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        # 3. Encode input prompt

        (
            prompt_embeds,
            negative_prompt_embeds,
            prompt_attention_mask,
            negative_prompt_attention_mask,
        ) = self.encode_prompt(
            prompt=prompt,
            dtype=self.transformer.dtype,
            num_images_per_prompt=num_images_per_prompt,
            do_classifier_free_guidance=self.do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            prompt_attention_mask=prompt_attention_mask,
            negative_prompt_attention_mask=negative_prompt_attention_mask,
            max_sequence_length=77,
            text_encoder_index=0,
        )
        (
            prompt_embeds_2,
            negative_prompt_embeds_2,
            prompt_attention_mask_2,
            negative_prompt_attention_mask_2,
        ) = self.encode_prompt(
            prompt=prompt,
            dtype=self.transformer.dtype,
            num_images_per_prompt=num_images_per_prompt,
            do_classifier_free_guidance=self.do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            prompt_embeds=prompt_embeds_2,
            negative_prompt_embeds=negative_prompt_embeds_2,
            prompt_attention_mask=prompt_attention_mask_2,
            negative_prompt_attention_mask=negative_prompt_attention_mask_2,
            max_sequence_length=256,
            text_encoder_index=1,
        )

        # 4. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps)
        timesteps = self.scheduler.timesteps

        # 5. Prepare latent variables
        num_channels_latents = self.transformer.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            generator,
            latents,
        )

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 7 create image_rotary_emb, style embedding & time ids
        grid_height = height // 8 // self.transformer.config.patch_size
        grid_width = width // 8 // self.transformer.config.patch_size
        base_size = 512 // 8 // self.transformer.config.patch_size
        grid_crops_coords = get_resize_crop_region_for_grid((grid_height, grid_width), base_size)
        image_rotary_emb = get_2d_rotary_pos_embed(
            self.transformer.inner_dim // self.transformer.num_heads, grid_crops_coords, (grid_height, grid_width)
        )

        style = ms.Tensor([0])

        target_size = target_size or (height, width)
        add_time_ids = list(original_size + target_size + crops_coords_top_left)
        add_time_ids = ms.Tensor([add_time_ids], dtype=prompt_embeds.dtype)

        if self.do_classifier_free_guidance:
            prompt_embeds = ops.cat([negative_prompt_embeds, prompt_embeds])
            prompt_attention_mask = ops.cat([negative_prompt_attention_mask, prompt_attention_mask])
            prompt_embeds_2 = ops.cat([negative_prompt_embeds_2, prompt_embeds_2])
            prompt_attention_mask_2 = ops.cat([negative_prompt_attention_mask_2, prompt_attention_mask_2])
            add_time_ids = ops.cat([add_time_ids] * 2, axis=0)
            style = ops.cat([style] * 2, axis=0)

        add_time_ids = add_time_ids.to(dtype=prompt_embeds.dtype).tile((batch_size * num_images_per_prompt, 1))
        style = style.tile((batch_size * num_images_per_prompt,))

        # 8. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        self._num_timesteps = len(timesteps)
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                if self.interrupt:
                    continue

                # expand the latents if we are doing classifier free guidance
                latent_model_input = ops.cat([latents] * 2) if self.do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # expand scalar t to 1-D tensor to match the 1st dim of latent_model_input
                # also consider the case where t is not a tensor (the most common case)
                if ops.is_tensor(latent_model_input):
                    t_expand = t.broadcast_to((latent_model_input.shape[0],)).to(dtype=latent_model_input.dtype)
                else:
                    t_expand = ms.Tensor([t] * latent_model_input.shape[0]).to(dtype=latent_model_input.dtype)

                # predict the noise residual
                noise_pred = self.transformer(
                    latent_model_input,
                    t_expand,
                    encoder_hidden_states=prompt_embeds,
                    text_embedding_mask=prompt_attention_mask,
                    encoder_hidden_states_t5=prompt_embeds_2,
                    text_embedding_mask_t5=prompt_attention_mask_2,
                    image_meta_size=add_time_ids,
                    style=style,
                    image_rotary_emb=ms.mutable(image_rotary_emb),
                    return_dict=False,
                )[0]

                noise_pred, _ = noise_pred.chunk(2, axis=1)

                # perform guidance
                if self.do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                if self.do_classifier_free_guidance and guidance_rescale > 0.0:
                    # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
                    noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
                    prompt_embeds_2 = callback_outputs.pop("prompt_embeds_2", prompt_embeds_2)
                    negative_prompt_embeds_2 = callback_outputs.pop(
                        "negative_prompt_embeds_2", negative_prompt_embeds_2
                    )

                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()

        if not output_type == "latent":
            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
            image, has_nsfw_concept = self.run_safety_checker(image, prompt_embeds.dtype)
        else:
            image = latents
            has_nsfw_concept = None

        if has_nsfw_concept is None:
            do_denormalize = [True] * image.shape[0]
        else:
            do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]

        image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)

        if not return_dict:
            return (image, has_nsfw_concept)

        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)

mindone.diffusers.HunyuanDiTPipeline.__call__(prompt=None, height=None, width=None, num_inference_steps=50, guidance_scale=5.0, negative_prompt=None, num_images_per_prompt=1, eta=0.0, generator=None, latents=None, prompt_embeds=None, prompt_embeds_2=None, negative_prompt_embeds=None, negative_prompt_embeds_2=None, prompt_attention_mask=None, prompt_attention_mask_2=None, negative_prompt_attention_mask=None, negative_prompt_attention_mask_2=None, output_type='pil', return_dict=False, callback_on_step_end=None, callback_on_step_end_tensor_inputs=['latents'], guidance_rescale=0.0, original_size=(1024, 1024), target_size=None, crops_coords_top_left=(0, 0), use_resolution_binning=True)

The call function to the pipeline for generation with HunyuanDiT.

PARAMETER DESCRIPTION
prompt

The prompt or prompts to guide image generation. If not defined, you need to pass prompt_embeds.

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

height

The height in pixels of the generated image.

TYPE: `int` DEFAULT: None

width

The width in pixels of the generated image.

TYPE: `int` DEFAULT: None

num_inference_steps

The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. This parameter is modulated by strength.

TYPE: `int`, *optional*, defaults to 50 DEFAULT: 50

guidance_scale

A higher guidance scale value encourages the model to generate images closely linked to the text prompt at the expense of lower image quality. Guidance scale is enabled when guidance_scale > 1.

TYPE: `float`, *optional*, defaults to 7.5 DEFAULT: 5.0

negative_prompt

The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass negative_prompt_embeds instead. Ignored when not using guidance (guidance_scale < 1).

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

num_images_per_prompt

The number of images to generate per prompt.

TYPE: `int`, *optional*, defaults to 1 DEFAULT: 1

eta

Corresponds to parameter eta (η) from the DDIM paper. Only applies to the [~schedulers.DDIMScheduler], and is ignored in other schedulers.

TYPE: `float`, *optional*, defaults to 0.0 DEFAULT: 0.0

generator

A np.random.Generator to make generation deterministic.

TYPE: `np.random.Generator` or `List[np.random.Generator]`, *optional* DEFAULT: None

prompt_embeds

Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

prompt_embeds_2

Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_prompt_embeds

Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, negative_prompt_embeds are generated from the negative_prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_prompt_embeds_2

Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, negative_prompt_embeds are generated from the negative_prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

prompt_attention_mask

Attention mask for the prompt. Required when prompt_embeds is passed directly.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

prompt_attention_mask_2

Attention mask for the prompt. Required when prompt_embeds_2 is passed directly.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_prompt_attention_mask

Attention mask for the negative prompt. Required when negative_prompt_embeds is passed directly.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_prompt_attention_mask_2

Attention mask for the negative prompt. Required when negative_prompt_embeds_2 is passed directly.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

output_type

The output format of the generated image. Choose between PIL.Image or np.array.

TYPE: `str`, *optional*, defaults to `"pil"` DEFAULT: 'pil'

return_dict

Whether or not to return a [~pipelines.stable_diffusion.StableDiffusionPipelineOutput] instead of a plain tuple.

TYPE: `bool`, *optional*, defaults to `False` DEFAULT: False

callback_on_step_end

A callback function or a list of callback functions to be called at the end of each denoising step.

TYPE: `Callable[[int, int, Dict], None]`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional* DEFAULT: None

callback_on_step_end_tensor_inputs

A list of tensor inputs that should be passed to the callback function. If not defined, all tensor inputs will be passed.

TYPE: `List[str]`, *optional* DEFAULT: ['latents']

guidance_rescale

Rescale the noise_cfg according to guidance_rescale. Based on findings of Common Diffusion Noise Schedules and Sample Steps are Flawed. See Section 3.4

TYPE: `float`, *optional*, defaults to 0.0 DEFAULT: 0.0

original_size

The original size of the image. Used to calculate the time ids.

TYPE: `Tuple[int, int]`, *optional*, defaults to `(1024, 1024)` DEFAULT: (1024, 1024)

target_size

The target size of the image. Used to calculate the time ids.

TYPE: `Tuple[int, int]`, *optional* DEFAULT: None

crops_coords_top_left

The top left coordinates of the crop. Used to calculate the time ids.

TYPE: `Tuple[int, int]`, *optional*, defaults to `(0, 0)` DEFAULT: (0, 0)

use_resolution_binning

Whether to use resolution binning or not. If True, the input resolution will be mapped to the closest standard resolution. Supported resolutions are 1024x1024, 1280x1280, 1024x768, 1152x864, 1280x960, 768x1024, 864x1152, 960x1280, 1280x768, and 768x1280. It is recommended to set this to True.

TYPE: `bool`, *optional*, defaults to `True` DEFAULT: True

RETURNS DESCRIPTION

[~pipelines.stable_diffusion.StableDiffusionPipelineOutput] or tuple: If return_dict is True, [~pipelines.stable_diffusion.StableDiffusionPipelineOutput] is returned, otherwise a tuple is returned where the first element is a list with the generated images and the second element is a list of bools indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content.

Source code in mindone/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
def __call__(
    self,
    prompt: Union[str, List[str]] = None,
    height: Optional[int] = None,
    width: Optional[int] = None,
    num_inference_steps: Optional[int] = 50,
    guidance_scale: Optional[float] = 5.0,
    negative_prompt: Optional[Union[str, List[str]]] = None,
    num_images_per_prompt: Optional[int] = 1,
    eta: Optional[float] = 0.0,
    generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
    latents: Optional[ms.Tensor] = None,
    prompt_embeds: Optional[ms.Tensor] = None,
    prompt_embeds_2: Optional[ms.Tensor] = None,
    negative_prompt_embeds: Optional[ms.Tensor] = None,
    negative_prompt_embeds_2: Optional[ms.Tensor] = None,
    prompt_attention_mask: Optional[ms.Tensor] = None,
    prompt_attention_mask_2: Optional[ms.Tensor] = None,
    negative_prompt_attention_mask: Optional[ms.Tensor] = None,
    negative_prompt_attention_mask_2: Optional[ms.Tensor] = None,
    output_type: Optional[str] = "pil",
    return_dict: bool = False,
    callback_on_step_end: Optional[
        Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
    ] = None,
    callback_on_step_end_tensor_inputs: List[str] = ["latents"],
    guidance_rescale: float = 0.0,
    original_size: Optional[Tuple[int, int]] = (1024, 1024),
    target_size: Optional[Tuple[int, int]] = None,
    crops_coords_top_left: Tuple[int, int] = (0, 0),
    use_resolution_binning: bool = True,
):
    r"""
    The call function to the pipeline for generation with HunyuanDiT.

    Args:
        prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
        height (`int`):
            The height in pixels of the generated image.
        width (`int`):
            The width in pixels of the generated image.
        num_inference_steps (`int`, *optional*, defaults to 50):
            The number of denoising steps. More denoising steps usually lead to a higher quality image at the
            expense of slower inference. This parameter is modulated by `strength`.
        guidance_scale (`float`, *optional*, defaults to 7.5):
            A higher guidance scale value encourages the model to generate images closely linked to the text
            `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
        negative_prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts to guide what to not include in image generation. If not defined, you need to
            pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
        num_images_per_prompt (`int`, *optional*, defaults to 1):
            The number of images to generate per prompt.
        eta (`float`, *optional*, defaults to 0.0):
            Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
            to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
        generator (`np.random.Generator` or `List[np.random.Generator]`, *optional*):
            A [`np.random.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
            generation deterministic.
        prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
            provided, text embeddings are generated from the `prompt` input argument.
        prompt_embeds_2 (`ms.Tensor`, *optional*):
            Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
            provided, text embeddings are generated from the `prompt` input argument.
        negative_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
            not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
        negative_prompt_embeds_2 (`ms.Tensor`, *optional*):
            Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
            not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
        prompt_attention_mask (`ms.Tensor`, *optional*):
            Attention mask for the prompt. Required when `prompt_embeds` is passed directly.
        prompt_attention_mask_2 (`ms.Tensor`, *optional*):
            Attention mask for the prompt. Required when `prompt_embeds_2` is passed directly.
        negative_prompt_attention_mask (`ms.Tensor`, *optional*):
            Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly.
        negative_prompt_attention_mask_2 (`ms.Tensor`, *optional*):
            Attention mask for the negative prompt. Required when `negative_prompt_embeds_2` is passed directly.
        output_type (`str`, *optional*, defaults to `"pil"`):
            The output format of the generated image. Choose between `PIL.Image` or `np.array`.
        return_dict (`bool`, *optional*, defaults to `False`):
            Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
            plain tuple.
        callback_on_step_end (`Callable[[int, int, Dict], None]`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
            A callback function or a list of callback functions to be called at the end of each denoising step.
        callback_on_step_end_tensor_inputs (`List[str]`, *optional*):
            A list of tensor inputs that should be passed to the callback function. If not defined, all tensor
            inputs will be passed.
        guidance_rescale (`float`, *optional*, defaults to 0.0):
            Rescale the noise_cfg according to `guidance_rescale`. Based on findings of [Common Diffusion Noise
            Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
        original_size (`Tuple[int, int]`, *optional*, defaults to `(1024, 1024)`):
            The original size of the image. Used to calculate the time ids.
        target_size (`Tuple[int, int]`, *optional*):
            The target size of the image. Used to calculate the time ids.
        crops_coords_top_left (`Tuple[int, int]`, *optional*, defaults to `(0, 0)`):
            The top left coordinates of the crop. Used to calculate the time ids.
        use_resolution_binning (`bool`, *optional*, defaults to `True`):
            Whether to use resolution binning or not. If `True`, the input resolution will be mapped to the closest
            standard resolution. Supported resolutions are 1024x1024, 1280x1280, 1024x768, 1152x864, 1280x960,
            768x1024, 864x1152, 960x1280, 1280x768, and 768x1280. It is recommended to set this to `True`.

    Examples:

    Returns:
        [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
            If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
            otherwise a `tuple` is returned where the first element is a list with the generated images and the
            second element is a list of `bool`s indicating whether the corresponding generated image contains
            "not-safe-for-work" (nsfw) content.
    """

    if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
        callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs

    # 0. default height and width
    height = height or self.default_sample_size * self.vae_scale_factor
    width = width or self.default_sample_size * self.vae_scale_factor
    height = int((height // 16) * 16)
    width = int((width // 16) * 16)

    if use_resolution_binning and (height, width) not in SUPPORTED_SHAPE:
        width, height = map_to_standard_shapes(width, height)
        height = int(height)
        width = int(width)
        logger.warning(f"Reshaped to (height, width)=({height}, {width}), Supported shapes are {SUPPORTED_SHAPE}")

    # 1. Check inputs. Raise error if not correct
    self.check_inputs(
        prompt,
        height,
        width,
        negative_prompt,
        prompt_embeds,
        negative_prompt_embeds,
        prompt_attention_mask,
        negative_prompt_attention_mask,
        prompt_embeds_2,
        negative_prompt_embeds_2,
        prompt_attention_mask_2,
        negative_prompt_attention_mask_2,
        callback_on_step_end_tensor_inputs,
    )
    self._guidance_scale = guidance_scale
    self._guidance_rescale = guidance_rescale
    self._interrupt = False

    # 2. Define call parameters
    if prompt is not None and isinstance(prompt, str):
        batch_size = 1
    elif prompt is not None and isinstance(prompt, list):
        batch_size = len(prompt)
    else:
        batch_size = prompt_embeds.shape[0]

    # 3. Encode input prompt

    (
        prompt_embeds,
        negative_prompt_embeds,
        prompt_attention_mask,
        negative_prompt_attention_mask,
    ) = self.encode_prompt(
        prompt=prompt,
        dtype=self.transformer.dtype,
        num_images_per_prompt=num_images_per_prompt,
        do_classifier_free_guidance=self.do_classifier_free_guidance,
        negative_prompt=negative_prompt,
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=negative_prompt_embeds,
        prompt_attention_mask=prompt_attention_mask,
        negative_prompt_attention_mask=negative_prompt_attention_mask,
        max_sequence_length=77,
        text_encoder_index=0,
    )
    (
        prompt_embeds_2,
        negative_prompt_embeds_2,
        prompt_attention_mask_2,
        negative_prompt_attention_mask_2,
    ) = self.encode_prompt(
        prompt=prompt,
        dtype=self.transformer.dtype,
        num_images_per_prompt=num_images_per_prompt,
        do_classifier_free_guidance=self.do_classifier_free_guidance,
        negative_prompt=negative_prompt,
        prompt_embeds=prompt_embeds_2,
        negative_prompt_embeds=negative_prompt_embeds_2,
        prompt_attention_mask=prompt_attention_mask_2,
        negative_prompt_attention_mask=negative_prompt_attention_mask_2,
        max_sequence_length=256,
        text_encoder_index=1,
    )

    # 4. Prepare timesteps
    self.scheduler.set_timesteps(num_inference_steps)
    timesteps = self.scheduler.timesteps

    # 5. Prepare latent variables
    num_channels_latents = self.transformer.config.in_channels
    latents = self.prepare_latents(
        batch_size * num_images_per_prompt,
        num_channels_latents,
        height,
        width,
        prompt_embeds.dtype,
        generator,
        latents,
    )

    # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
    extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

    # 7 create image_rotary_emb, style embedding & time ids
    grid_height = height // 8 // self.transformer.config.patch_size
    grid_width = width // 8 // self.transformer.config.patch_size
    base_size = 512 // 8 // self.transformer.config.patch_size
    grid_crops_coords = get_resize_crop_region_for_grid((grid_height, grid_width), base_size)
    image_rotary_emb = get_2d_rotary_pos_embed(
        self.transformer.inner_dim // self.transformer.num_heads, grid_crops_coords, (grid_height, grid_width)
    )

    style = ms.Tensor([0])

    target_size = target_size or (height, width)
    add_time_ids = list(original_size + target_size + crops_coords_top_left)
    add_time_ids = ms.Tensor([add_time_ids], dtype=prompt_embeds.dtype)

    if self.do_classifier_free_guidance:
        prompt_embeds = ops.cat([negative_prompt_embeds, prompt_embeds])
        prompt_attention_mask = ops.cat([negative_prompt_attention_mask, prompt_attention_mask])
        prompt_embeds_2 = ops.cat([negative_prompt_embeds_2, prompt_embeds_2])
        prompt_attention_mask_2 = ops.cat([negative_prompt_attention_mask_2, prompt_attention_mask_2])
        add_time_ids = ops.cat([add_time_ids] * 2, axis=0)
        style = ops.cat([style] * 2, axis=0)

    add_time_ids = add_time_ids.to(dtype=prompt_embeds.dtype).tile((batch_size * num_images_per_prompt, 1))
    style = style.tile((batch_size * num_images_per_prompt,))

    # 8. Denoising loop
    num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
    self._num_timesteps = len(timesteps)
    with self.progress_bar(total=num_inference_steps) as progress_bar:
        for i, t in enumerate(timesteps):
            if self.interrupt:
                continue

            # expand the latents if we are doing classifier free guidance
            latent_model_input = ops.cat([latents] * 2) if self.do_classifier_free_guidance else latents
            latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

            # expand scalar t to 1-D tensor to match the 1st dim of latent_model_input
            # also consider the case where t is not a tensor (the most common case)
            if ops.is_tensor(latent_model_input):
                t_expand = t.broadcast_to((latent_model_input.shape[0],)).to(dtype=latent_model_input.dtype)
            else:
                t_expand = ms.Tensor([t] * latent_model_input.shape[0]).to(dtype=latent_model_input.dtype)

            # predict the noise residual
            noise_pred = self.transformer(
                latent_model_input,
                t_expand,
                encoder_hidden_states=prompt_embeds,
                text_embedding_mask=prompt_attention_mask,
                encoder_hidden_states_t5=prompt_embeds_2,
                text_embedding_mask_t5=prompt_attention_mask_2,
                image_meta_size=add_time_ids,
                style=style,
                image_rotary_emb=ms.mutable(image_rotary_emb),
                return_dict=False,
            )[0]

            noise_pred, _ = noise_pred.chunk(2, axis=1)

            # perform guidance
            if self.do_classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

            if self.do_classifier_free_guidance and guidance_rescale > 0.0:
                # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
                noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)

            # compute the previous noisy sample x_t -> x_t-1
            latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

            if callback_on_step_end is not None:
                callback_kwargs = {}
                for k in callback_on_step_end_tensor_inputs:
                    callback_kwargs[k] = locals()[k]
                callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                latents = callback_outputs.pop("latents", latents)
                prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
                prompt_embeds_2 = callback_outputs.pop("prompt_embeds_2", prompt_embeds_2)
                negative_prompt_embeds_2 = callback_outputs.pop(
                    "negative_prompt_embeds_2", negative_prompt_embeds_2
                )

            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                progress_bar.update()

    if not output_type == "latent":
        image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
        image, has_nsfw_concept = self.run_safety_checker(image, prompt_embeds.dtype)
    else:
        image = latents
        has_nsfw_concept = None

    if has_nsfw_concept is None:
        do_denormalize = [True] * image.shape[0]
    else:
        do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]

    image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)

    if not return_dict:
        return (image, has_nsfw_concept)

    return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)

mindone.diffusers.HunyuanDiTPipeline.encode_prompt(prompt, dtype=None, num_images_per_prompt=1, do_classifier_free_guidance=True, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, prompt_attention_mask=None, negative_prompt_attention_mask=None, max_sequence_length=None, text_encoder_index=0)

Encodes the prompt into text encoder hidden states.

PARAMETER DESCRIPTION
prompt

prompt to be encoded

TYPE: `str` or `List[str]`, *optional*

dtype

mindspore dtype

TYPE: `mindspore.Type` DEFAULT: None

num_images_per_prompt

number of images that should be generated per prompt

TYPE: `int` DEFAULT: 1

do_classifier_free_guidance

whether to use classifier free guidance or not

TYPE: `bool` DEFAULT: True

negative_prompt

The prompt or prompts not to guide the image generation. If not defined, one has to pass negative_prompt_embeds instead. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1).

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

prompt_embeds

Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_prompt_embeds

Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

prompt_attention_mask

Attention mask for the prompt. Required when prompt_embeds is passed directly.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_prompt_attention_mask

Attention mask for the negative prompt. Required when negative_prompt_embeds is passed directly.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

max_sequence_length

maximum sequence length to use for the prompt.

TYPE: `int`, *optional* DEFAULT: None

text_encoder_index

Index of the text encoder to use. 0 for clip and 1 for T5.

TYPE: `int`, *optional* DEFAULT: 0

Source code in mindone/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
def encode_prompt(
    self,
    prompt: str,
    dtype: Optional[ms.Type] = None,
    num_images_per_prompt: int = 1,
    do_classifier_free_guidance: bool = True,
    negative_prompt: Optional[str] = None,
    prompt_embeds: Optional[ms.Tensor] = None,
    negative_prompt_embeds: Optional[ms.Tensor] = None,
    prompt_attention_mask: Optional[ms.Tensor] = None,
    negative_prompt_attention_mask: Optional[ms.Tensor] = None,
    max_sequence_length: Optional[int] = None,
    text_encoder_index: int = 0,
):
    r"""
    Encodes the prompt into text encoder hidden states.

    Args:
        prompt (`str` or `List[str]`, *optional*):
            prompt to be encoded
        dtype (`mindspore.Type`):
            mindspore dtype
        num_images_per_prompt (`int`):
            number of images that should be generated per prompt
        do_classifier_free_guidance (`bool`):
            whether to use classifier free guidance or not
        negative_prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts not to guide the image generation. If not defined, one has to pass
            `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
            less than `1`).
        prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
            provided, text embeddings will be generated from `prompt` input argument.
        negative_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
            weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
            argument.
        prompt_attention_mask (`ms.Tensor`, *optional*):
            Attention mask for the prompt. Required when `prompt_embeds` is passed directly.
        negative_prompt_attention_mask (`ms.Tensor`, *optional*):
            Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly.
        max_sequence_length (`int`, *optional*): maximum sequence length to use for the prompt.
        text_encoder_index (`int`, *optional*):
            Index of the text encoder to use. `0` for clip and `1` for T5.
    """
    if dtype is None:
        if self.text_encoder_2 is not None:
            dtype = self.text_encoder_2.dtype
        elif self.transformer is not None:
            dtype = self.transformer.dtype
        else:
            dtype = None

    tokenizers = [self.tokenizer, self.tokenizer_2]
    text_encoders = [self.text_encoder, self.text_encoder_2]

    tokenizer = tokenizers[text_encoder_index]
    text_encoder = text_encoders[text_encoder_index]

    if max_sequence_length is None:
        if text_encoder_index == 0:
            max_length = 77
        if text_encoder_index == 1:
            max_length = 256
    else:
        max_length = max_sequence_length

    if prompt is not None and isinstance(prompt, str):
        batch_size = 1
    elif prompt is not None and isinstance(prompt, list):
        batch_size = len(prompt)
    else:
        batch_size = prompt_embeds.shape[0]

    if prompt_embeds is None:
        text_inputs = tokenizer(
            prompt,
            padding="max_length",
            max_length=max_length,
            truncation=True,
            return_attention_mask=True,
            return_tensors="np",
        )
        text_input_ids = text_inputs.input_ids
        untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="np").input_ids

        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not np.array_equal(
            text_input_ids, untruncated_ids
        ):
            removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
            logger.warning(
                "The following part of your input was truncated because CLIP can only handle sequences up to"
                f" {tokenizer.model_max_length} tokens: {removed_text}"
            )

        prompt_attention_mask = ms.Tensor.from_numpy(text_inputs.attention_mask)
        prompt_embeds = text_encoder(
            ms.tensor(text_input_ids),
            attention_mask=prompt_attention_mask,
        )
        prompt_embeds = prompt_embeds[0]
        prompt_attention_mask = prompt_attention_mask.tile((num_images_per_prompt, 1))

    prompt_embeds = prompt_embeds.to(dtype=dtype)

    bs_embed, seq_len, _ = prompt_embeds.shape
    # duplicate text embeddings for each generation per prompt, using mps friendly method
    prompt_embeds = prompt_embeds.tile((1, num_images_per_prompt, 1))
    prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

    # get unconditional embeddings for classifier free guidance
    if do_classifier_free_guidance and negative_prompt_embeds is None:
        uncond_tokens: List[str]
        if negative_prompt is None:
            uncond_tokens = [""] * batch_size
        elif prompt is not None and type(prompt) is not type(negative_prompt):
            raise TypeError(
                f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                f" {type(prompt)}."
            )
        elif isinstance(negative_prompt, str):
            uncond_tokens = [negative_prompt]
        elif batch_size != len(negative_prompt):
            raise ValueError(
                f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                " the batch size of `prompt`."
            )
        else:
            uncond_tokens = negative_prompt

        max_length = prompt_embeds.shape[1]
        uncond_input = tokenizer(
            uncond_tokens,
            padding="max_length",
            max_length=max_length,
            truncation=True,
            return_tensors="np",
        )

        negative_prompt_attention_mask = ms.Tensor.from_numpy(uncond_input.attention_mask)
        negative_prompt_embeds = text_encoder(
            ms.Tensor.from_numpy(uncond_input.input_ids),
            attention_mask=negative_prompt_attention_mask,
        )
        negative_prompt_embeds = negative_prompt_embeds[0]
        negative_prompt_attention_mask = negative_prompt_attention_mask.tile((num_images_per_prompt, 1))

    if do_classifier_free_guidance:
        # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
        seq_len = negative_prompt_embeds.shape[1]

        negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype)

        negative_prompt_embeds = negative_prompt_embeds.tile((1, num_images_per_prompt, 1))
        negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

    return prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask