Dance Diffusion¶
Dance Diffusion is by Zach Evans.
Dance Diffusion is the first in a suite of generative audio tools for producers and musicians released by Harmonai.
Tip
Make sure to check out the Schedulers guide to learn how to explore the tradeoff between scheduler speed and quality, and see the reuse components across pipelines section to learn how to efficiently load the same components into multiple pipelines.
mindone.diffusers.pipelines.dance_diffusion.DanceDiffusionPipeline
¶
Bases: DiffusionPipeline
Pipeline for audio generation.
This model inherits from [DiffusionPipeline
]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
PARAMETER | DESCRIPTION |
---|---|
unet |
A
TYPE:
|
scheduler |
A scheduler to be used in combination with
TYPE:
|
Source code in mindone/diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
|
mindone.diffusers.pipelines.dance_diffusion.DanceDiffusionPipeline.__call__(batch_size=1, num_inference_steps=100, generator=None, audio_length_in_s=None, return_dict=True)
¶
The call function to the pipeline for generation.
PARAMETER | DESCRIPTION |
---|---|
batch_size |
The number of audio samples to generate.
TYPE:
|
num_inference_steps |
The number of denoising steps. More denoising steps usually lead to a higher-quality audio sample at the expense of slower inference.
TYPE:
|
generator |
A
TYPE:
|
audio_length_in_s |
The length of the generated audio sample in seconds.
TYPE:
|
return_dict |
Whether or not to return a [
TYPE:
|
from mindone.diffusers import DiffusionPipeline
from scipy.io.wavfile import write
model_id = "harmonai/maestro-150k"
pipe = DiffusionPipeline.from_pretrained(model_id)
audios = pipe(audio_length_in_s=4.0)[0]
# To save locally
for i, audio in enumerate(audios):
write(f"maestro_test_{i}.wav", pipe.unet.config.sample_rate, audio.transpose())
# To dislay in google colab
import IPython.display as ipd
for audio in audios:
display(ipd.Audio(audio, rate=pipe.unet.config.sample_rate))
RETURNS | DESCRIPTION |
---|---|
Union[AudioPipelineOutput, Tuple]
|
[ |
Source code in mindone/diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
|
mindone.diffusers.pipelines.pipeline_utils.AudioPipelineOutput
dataclass
¶
Bases: BaseOutput
Output class for audio pipelines.
Source code in mindone/diffusers/pipelines/pipeline_utils.py
83 84 85 86 87 88 89 90 91 92 93 |
|