Skip to content

ControlNet with Stable Diffusion 3

StableDiffusion3ControlNetPipeline is an implementation of ControlNet for Stable Diffusion 3.

ControlNet was introduced in Adding Conditional Control to Text-to-Image Diffusion Models by Lvmin Zhang, Anyi Rao, and Maneesh Agrawala.

With a ControlNet model, you can provide an additional control image to condition and control Stable Diffusion generation. For example, if you provide a depth map, the ControlNet model generates an image that'll preserve the spatial information from the depth map. It is a more flexible and accurate way to control the image generation process.

The abstract from the paper is:

We present ControlNet, a neural network architecture to add spatial conditioning controls to large, pretrained text-to-image diffusion models. ControlNet locks the production-ready large diffusion models, and reuses their deep and robust encoding layers pretrained with billions of images as a strong backbone to learn a diverse set of conditional controls. The neural architecture is connected with "zero convolutions" (zero-initialized convolution layers) that progressively grow the parameters from zero and ensure that no harmful noise could affect the finetuning. We test various conditioning controls, eg, edges, depth, segmentation, human pose, etc, with Stable Diffusion, using single or multiple conditions, with or without prompts. We show that the training of ControlNets is robust with small (<50k) and large (>1m) datasets. Extensive results show that ControlNet may facilitate wider applications to control image diffusion models.

This code is implemented by The InstantX Team. You can find pre-trained checkpoints for SD3-ControlNet on The InstantX Team Hub profile.

Tip

Make sure to check out the Schedulers guide to learn how to explore the tradeoff between scheduler speed and quality, and see the reuse components across pipelines section to learn how to efficiently load the same components into multiple pipelines.

mindone.diffusers.StableDiffusion3ControlNetPipeline

Bases: DiffusionPipeline, FromSingleFileMixin

PARAMETER DESCRIPTION
transformer

Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.

TYPE: [`SD3Transformer2DModel`]

scheduler

A scheduler to be used in combination with transformer to denoise the encoded image latents.

TYPE: [`FlowMatchEulerDiscreteScheduler`]

vae

Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.

TYPE: [`AutoencoderKL`]

text_encoder

CLIP, specifically the clip-vit-large-patch14 variant, with an additional added projection layer that is initialized with a diagonal matrix with the hidden_size as its dimension.

TYPE: [`CLIPTextModelWithProjection`]

text_encoder_2

CLIP, specifically the laion/CLIP-ViT-bigG-14-laion2B-39B-b160k variant.

TYPE: [`CLIPTextModelWithProjection`]

text_encoder_3

Frozen text-encoder. Stable Diffusion 3 uses T5, specifically the t5-v1_1-xxl variant.

TYPE: [`T5EncoderModel`]

tokenizer

Tokenizer of class CLIPTokenizer.

TYPE: `CLIPTokenizer`

tokenizer_2

Second Tokenizer of class CLIPTokenizer.

TYPE: `CLIPTokenizer`

tokenizer_3

Tokenizer of class T5Tokenizer.

TYPE: `T5TokenizerFast`

controlnet

Provides additional conditioning to the unet during the denoising process. If you set multiple ControlNets as a list, the outputs from each ControlNet are added together to create one combined additional conditioning.

TYPE: [`SD3ControlNetModel`] or `List[SD3ControlNetModel]` or [`SD3MultiControlNetModel`]

Source code in mindone/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
class StableDiffusion3ControlNetPipeline(DiffusionPipeline, FromSingleFileMixin):
    r"""
    Args:
        transformer ([`SD3Transformer2DModel`]):
            Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
        scheduler ([`FlowMatchEulerDiscreteScheduler`]):
            A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        text_encoder ([`CLIPTextModelWithProjection`]):
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
            specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant,
            with an additional added projection layer that is initialized with a diagonal matrix with the `hidden_size`
            as its dimension.
        text_encoder_2 ([`CLIPTextModelWithProjection`]):
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
            specifically the
            [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
            variant.
        text_encoder_3 ([`T5EncoderModel`]):
            Frozen text-encoder. Stable Diffusion 3 uses
            [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
            [t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
        tokenizer (`CLIPTokenizer`):
            Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
        tokenizer_2 (`CLIPTokenizer`):
            Second Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
        tokenizer_3 (`T5TokenizerFast`):
            Tokenizer of class
            [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
        controlnet ([`SD3ControlNetModel`] or `List[SD3ControlNetModel]` or [`SD3MultiControlNetModel`]):
            Provides additional conditioning to the `unet` during the denoising process. If you set multiple
            ControlNets as a list, the outputs from each ControlNet are added together to create one combined
            additional conditioning.
    """

    model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder_3->transformer->vae"
    _optional_components = []
    _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "negative_pooled_prompt_embeds"]

    def __init__(
        self,
        transformer: SD3Transformer2DModel,
        scheduler: FlowMatchEulerDiscreteScheduler,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModelWithProjection,
        tokenizer: CLIPTokenizer,
        text_encoder_2: CLIPTextModelWithProjection,
        tokenizer_2: CLIPTokenizer,
        text_encoder_3: T5EncoderModel,
        tokenizer_3: T5TokenizerFast,
        controlnet: Union[
            SD3ControlNetModel, List[SD3ControlNetModel], Tuple[SD3ControlNetModel], SD3MultiControlNetModel
        ],
    ):
        super().__init__()

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            text_encoder_2=text_encoder_2,
            text_encoder_3=text_encoder_3,
            tokenizer=tokenizer,
            tokenizer_2=tokenizer_2,
            tokenizer_3=tokenizer_3,
            transformer=transformer,
            scheduler=scheduler,
            controlnet=controlnet,
        )
        self.vae_scale_factor = (
            2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
        )
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
        self.tokenizer_max_length = (
            self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
        )
        self.default_sample_size = (
            self.transformer.config.sample_size
            if hasattr(self, "transformer") and self.transformer is not None
            else 128
        )

    # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline._get_t5_prompt_embeds
    def _get_t5_prompt_embeds(
        self,
        prompt: Union[str, List[str]] = None,
        num_images_per_prompt: int = 1,
        dtype=None,
    ):
        dtype = dtype or self.text_encoder.dtype

        prompt = [prompt] if isinstance(prompt, str) else prompt
        batch_size = len(prompt)

        if self.text_encoder_3 is None:
            return ops.zeros(
                (batch_size, self.tokenizer_max_length, self.transformer.config.joint_attention_dim),
                dtype=dtype,
            )

        text_inputs = self.tokenizer_3(
            prompt,
            padding="max_length",
            max_length=self.tokenizer_max_length,
            truncation=True,
            add_special_tokens=True,
            return_tensors="np",
        )
        text_input_ids = text_inputs.input_ids
        untruncated_ids = self.tokenizer_3(prompt, padding="longest", return_tensors="np").input_ids

        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not np.array_equal(
            text_input_ids, untruncated_ids
        ):
            removed_text = self.tokenizer_3.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
            logger.warning(
                "The following part of your input was truncated because CLIP can only handle sequences up to"
                f" {self.tokenizer_max_length} tokens: {removed_text}"
            )

        prompt_embeds = self.text_encoder_3(ms.tensor(text_input_ids))[0]

        dtype = self.text_encoder_3.dtype
        prompt_embeds = prompt_embeds.to(dtype=dtype)

        _, seq_len, _ = prompt_embeds.shape

        # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.tile((1, num_images_per_prompt, 1))
        prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

        return prompt_embeds

    # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline._get_clip_prompt_embeds
    def _get_clip_prompt_embeds(
        self,
        prompt: Union[str, List[str]],
        num_images_per_prompt: int = 1,
        clip_skip: Optional[int] = None,
        clip_model_index: int = 0,
    ):
        clip_tokenizers = [self.tokenizer, self.tokenizer_2]
        clip_text_encoders = [self.text_encoder, self.text_encoder_2]

        tokenizer = clip_tokenizers[clip_model_index]
        text_encoder = clip_text_encoders[clip_model_index]

        prompt = [prompt] if isinstance(prompt, str) else prompt
        batch_size = len(prompt)

        text_inputs = tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer_max_length,
            truncation=True,
            return_tensors="np",
        )

        text_input_ids = text_inputs.input_ids
        untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="np").input_ids
        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not np.array_equal(
            text_input_ids, untruncated_ids
        ):
            removed_text = tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
            logger.warning(
                "The following part of your input was truncated because CLIP can only handle sequences up to"
                f" {self.tokenizer_max_length} tokens: {removed_text}"
            )
        prompt_embeds = text_encoder(ms.tensor(text_input_ids), output_hidden_states=True)
        pooled_prompt_embeds = prompt_embeds[0]

        if clip_skip is None:
            prompt_embeds = prompt_embeds[2][-2]
        else:
            prompt_embeds = prompt_embeds[2][-(clip_skip + 2)]

        prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype)

        _, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.tile((1, num_images_per_prompt, 1))
        prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

        pooled_prompt_embeds = pooled_prompt_embeds.tile((1, num_images_per_prompt, 1))
        pooled_prompt_embeds = pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1)

        return prompt_embeds, pooled_prompt_embeds

    # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.encode_prompt
    def encode_prompt(
        self,
        prompt: Union[str, List[str]],
        prompt_2: Union[str, List[str]],
        prompt_3: Union[str, List[str]],
        num_images_per_prompt: int = 1,
        do_classifier_free_guidance: bool = True,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        negative_prompt_2: Optional[Union[str, List[str]]] = None,
        negative_prompt_3: Optional[Union[str, List[str]]] = None,
        prompt_embeds: Optional[ms.Tensor] = None,
        negative_prompt_embeds: Optional[ms.Tensor] = None,
        pooled_prompt_embeds: Optional[ms.Tensor] = None,
        negative_pooled_prompt_embeds: Optional[ms.Tensor] = None,
        clip_skip: Optional[int] = None,
    ):
        r"""

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
                used in all text-encoders
            prompt_3 (`str` or `List[str]`, *optional*):
                The prompt or prompts to be sent to the `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
                used in all text-encoders
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            negative_prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
                `text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
            negative_prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
                `text_encoder_3`. If not defined, `negative_prompt` is used in both text-encoders
            prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            pooled_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
                If not provided, pooled text embeddings will be generated from `prompt` input argument.
            negative_pooled_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
                input argument.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
        """
        prompt = [prompt] if isinstance(prompt, str) else prompt
        if prompt is not None:
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if prompt_embeds is None:
            prompt_2 = prompt_2 or prompt
            prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2

            prompt_3 = prompt_3 or prompt
            prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3

            prompt_embed, pooled_prompt_embed = self._get_clip_prompt_embeds(
                prompt=prompt,
                num_images_per_prompt=num_images_per_prompt,
                clip_skip=clip_skip,
                clip_model_index=0,
            )
            prompt_2_embed, pooled_prompt_2_embed = self._get_clip_prompt_embeds(
                prompt=prompt_2,
                num_images_per_prompt=num_images_per_prompt,
                clip_skip=clip_skip,
                clip_model_index=1,
            )
            clip_prompt_embeds = ops.cat([prompt_embed, prompt_2_embed], axis=-1)

            t5_prompt_embed = self._get_t5_prompt_embeds(
                prompt=prompt_3,
                num_images_per_prompt=num_images_per_prompt,
            )

            clip_prompt_embeds = pad(clip_prompt_embeds, (0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1]))

            prompt_embeds = ops.cat([clip_prompt_embeds, t5_prompt_embed], axis=-2)
            pooled_prompt_embeds = ops.cat([pooled_prompt_embed, pooled_prompt_2_embed], axis=-1)

        if do_classifier_free_guidance and negative_prompt_embeds is None:
            negative_prompt = negative_prompt or ""
            negative_prompt_2 = negative_prompt_2 or negative_prompt
            negative_prompt_3 = negative_prompt_3 or negative_prompt

            # normalize str to list
            negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
            negative_prompt_2 = (
                batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
            )
            negative_prompt_3 = (
                batch_size * [negative_prompt_3] if isinstance(negative_prompt_3, str) else negative_prompt_3
            )

            if prompt is not None and type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )

            negative_prompt_embed, negative_pooled_prompt_embed = self._get_clip_prompt_embeds(
                negative_prompt,
                num_images_per_prompt=num_images_per_prompt,
                clip_skip=None,
                clip_model_index=0,
            )
            negative_prompt_2_embed, negative_pooled_prompt_2_embed = self._get_clip_prompt_embeds(
                negative_prompt_2,
                num_images_per_prompt=num_images_per_prompt,
                clip_skip=None,
                clip_model_index=1,
            )
            negative_clip_prompt_embeds = ops.cat([negative_prompt_embed, negative_prompt_2_embed], axis=-1)

            t5_negative_prompt_embed = self._get_t5_prompt_embeds(
                prompt=negative_prompt_3,
                num_images_per_prompt=num_images_per_prompt,
            )

            negative_clip_prompt_embeds = pad(
                negative_clip_prompt_embeds,
                (0, t5_negative_prompt_embed.shape[-1] - negative_clip_prompt_embeds.shape[-1]),
            )

            negative_prompt_embeds = ops.cat([negative_clip_prompt_embeds, t5_negative_prompt_embed], axis=-2)
            negative_pooled_prompt_embeds = ops.cat(
                [negative_pooled_prompt_embed, negative_pooled_prompt_2_embed], axis=-1
            )

        return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds

    def check_inputs(
        self,
        prompt,
        prompt_2,
        prompt_3,
        height,
        width,
        negative_prompt=None,
        negative_prompt_2=None,
        negative_prompt_3=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
        pooled_prompt_embeds=None,
        negative_pooled_prompt_embeds=None,
        callback_on_step_end_tensor_inputs=None,
    ):
        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"  # noqa: E501
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt_2 is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt_3 is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt_3`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
        elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
            raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
        elif prompt_3 is not None and (not isinstance(prompt_3, str) and not isinstance(prompt_3, list)):
            raise ValueError(f"`prompt_3` has to be of type `str` or `list` but is {type(prompt_3)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )
        elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )
        elif negative_prompt_3 is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt_3`: {negative_prompt_3} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

        if prompt_embeds is not None and pooled_prompt_embeds is None:
            raise ValueError(
                "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."  # noqa: E501
            )

        if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
            raise ValueError(
                "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."  # noqa: E501
            )

    # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.prepare_latents
    def prepare_latents(
        self,
        batch_size,
        num_channels_latents,
        height,
        width,
        dtype,
        generator,
        latents=None,
    ):
        if latents is not None:
            return latents.to(dtype=dtype)

        shape = (
            batch_size,
            num_channels_latents,
            int(height) // self.vae_scale_factor,
            int(width) // self.vae_scale_factor,
        )

        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        latents = randn_tensor(shape, generator=generator, dtype=dtype)

        return latents

    def prepare_image(
        self,
        image,
        width,
        height,
        batch_size,
        num_images_per_prompt,
        dtype,
        do_classifier_free_guidance=False,
        guess_mode=False,
    ):
        if isinstance(image, ms.Tensor):
            pass
        else:
            image = self.image_processor.preprocess(image, height=height, width=width)

        image_batch_size = image.shape[0]

        if image_batch_size == 1:
            repeat_by = batch_size
        else:
            # image batch size is the same as prompt batch size
            repeat_by = num_images_per_prompt

        image = image.repeat_interleave(repeat_by, dim=0)

        image = image.to(dtype=dtype)

        if do_classifier_free_guidance and not guess_mode:
            image = ops.cat([image] * 2)

        return image

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def clip_skip(self):
        return self._clip_skip

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1

    @property
    def joint_attention_kwargs(self):
        return self._joint_attention_kwargs

    @property
    def num_timesteps(self):
        return self._num_timesteps

    @property
    def interrupt(self):
        return self._interrupt

    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        prompt_2: Optional[Union[str, List[str]]] = None,
        prompt_3: Optional[Union[str, List[str]]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 28,
        timesteps: List[int] = None,
        guidance_scale: float = 7.0,
        control_guidance_start: Union[float, List[float]] = 0.0,
        control_guidance_end: Union[float, List[float]] = 1.0,
        control_image: PipelineImageInput = None,
        controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
        controlnet_pooled_projections: Optional[ms.Tensor] = None,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        negative_prompt_2: Optional[Union[str, List[str]]] = None,
        negative_prompt_3: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
        latents: Optional[ms.Tensor] = None,
        prompt_embeds: Optional[ms.Tensor] = None,
        negative_prompt_embeds: Optional[ms.Tensor] = None,
        pooled_prompt_embeds: Optional[ms.Tensor] = None,
        negative_pooled_prompt_embeds: Optional[ms.Tensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = False,
        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
        clip_skip: Optional[int] = None,
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
    ):
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
                instead.
            prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
                will be used instead
            prompt_3 (`str` or `List[str]`, *optional*):
                The prompt or prompts to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
                will be used instead
            height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The height in pixels of the generated image. This is set to 1024 by default for the best results.
            width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The width in pixels of the generated image. This is set to 1024 by default for the best results.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            timesteps (`List[int]`, *optional*):
                Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
                in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
                passed will be used. Must be in descending order.
            guidance_scale (`float`, *optional*, defaults to 5.0):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
                The percentage of total steps at which the ControlNet starts applying.
            control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
                The percentage of total steps at which the ControlNet stops applying.
            control_image (`ms.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[ms.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
                    `List[List[ms.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
                The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
                specified as `ms.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
                as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
                width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
                images must be passed as a list such that each element of the list can be correctly batched for input
                to a single ControlNet.
            controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
                The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
                to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
                the corresponding scale as a list.
            controlnet_pooled_projections (`ms.Tensor` of shape `(batch_size, projection_dim)`):
                Embeddings projected from the embeddings of controlnet input conditions.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            negative_prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
                `text_encoder_2`. If not defined, `negative_prompt` is used instead
            negative_prompt_3 (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
                `text_encoder_3`. If not defined, `negative_prompt` is used instead
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            generator (`np.random.Generator` or `List[np.random.Generator]`, *optional*):
                One or a list of [numpy generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            latents (`ms.Tensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            pooled_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
                If not provided, pooled text embeddings will be generated from `prompt` input argument.
            negative_pooled_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
                input argument.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
                of a plain tuple.
            joint_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            callback_on_step_end (`Callable`, *optional*):
                A function that calls at the end of each denoising steps during the inference. The function is called
                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
                `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
                `._callback_tensor_inputs` attribute of your pipeline class.

        Examples:

        Returns:
            [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
            [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
            `tuple`. When returning a tuple, the first element is a list with the generated images.
        """

        height = height or self.default_sample_size * self.vae_scale_factor
        width = width or self.default_sample_size * self.vae_scale_factor

        # align format for control guidance
        if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
            control_guidance_start = len(control_guidance_end) * [control_guidance_start]
        elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
            control_guidance_end = len(control_guidance_start) * [control_guidance_end]
        elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
            mult = len(self.controlnet.nets) if isinstance(self.controlnet, SD3MultiControlNetModel) else 1
            control_guidance_start, control_guidance_end = (
                mult * [control_guidance_start],
                mult * [control_guidance_end],
            )

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            prompt_2,
            prompt_3,
            height,
            width,
            negative_prompt=negative_prompt,
            negative_prompt_2=negative_prompt_2,
            negative_prompt_3=negative_prompt_3,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
            callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
        )

        self._guidance_scale = guidance_scale
        self._clip_skip = clip_skip
        self._joint_attention_kwargs = joint_attention_kwargs
        self._interrupt = False

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        dtype = self.transformer.dtype

        (
            prompt_embeds,
            negative_prompt_embeds,
            pooled_prompt_embeds,
            negative_pooled_prompt_embeds,
        ) = self.encode_prompt(
            prompt=prompt,
            prompt_2=prompt_2,
            prompt_3=prompt_3,
            negative_prompt=negative_prompt,
            negative_prompt_2=negative_prompt_2,
            negative_prompt_3=negative_prompt_3,
            do_classifier_free_guidance=self.do_classifier_free_guidance,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
            clip_skip=self.clip_skip,
            num_images_per_prompt=num_images_per_prompt,
        )

        if self.do_classifier_free_guidance:
            prompt_embeds = ops.cat([negative_prompt_embeds, prompt_embeds], axis=0)
            pooled_prompt_embeds = ops.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], axis=0)

        # 3. Prepare control image
        if isinstance(self.controlnet, SD3ControlNetModel):
            control_image = self.prepare_image(
                image=control_image,
                width=width,
                height=height,
                batch_size=batch_size * num_images_per_prompt,
                num_images_per_prompt=num_images_per_prompt,
                dtype=dtype,
                do_classifier_free_guidance=self.do_classifier_free_guidance,
                guess_mode=False,
            )
            height, width = control_image.shape[-2:]

            control_image = self.vae.diag_gauss_dist.sample(self.vae.encode(control_image)[0])
            control_image = control_image * self.vae.config.scaling_factor

        elif isinstance(self.controlnet, SD3MultiControlNetModel):
            control_images = []

            for control_image_ in control_image:
                control_image_ = self.prepare_image(
                    image=control_image_,
                    width=width,
                    height=height,
                    batch_size=batch_size * num_images_per_prompt,
                    num_images_per_prompt=num_images_per_prompt,
                    dtype=dtype,
                    do_classifier_free_guidance=self.do_classifier_free_guidance,
                    guess_mode=False,
                )

                control_image_ = self.vae.diag_gauss_dist.sample(self.vae.encode(control_image_)[0])
                control_image_ = control_image_ * self.vae.config.scaling_factor

                control_images.append(control_image_)

            control_image = control_images
        else:
            assert False

        if controlnet_pooled_projections is None:
            controlnet_pooled_projections = ops.zeros_like(pooled_prompt_embeds)
        else:
            controlnet_pooled_projections = controlnet_pooled_projections or pooled_prompt_embeds

        # 4. Prepare timesteps
        timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, timesteps)
        num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
        self._num_timesteps = len(timesteps)

        # 5. Prepare latent variables
        num_channels_latents = self.transformer.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            generator,
            latents,
        )

        # 6. Create tensor stating which controlnets to keep
        controlnet_keep = []
        for i in range(len(timesteps)):
            keeps = [
                1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
                for s, e in zip(control_guidance_start, control_guidance_end)
            ]
            controlnet_keep.append(keeps[0] if isinstance(self.controlnet, SD3ControlNetModel) else keeps)

        # 7. Denoising loop
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                if self.interrupt:
                    continue

                # expand the latents if we are doing classifier free guidance
                latent_model_input = ops.cat([latents] * 2) if self.do_classifier_free_guidance else latents
                # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
                timestep = t.broadcast_to((latent_model_input.shape[0],))

                if isinstance(controlnet_keep[i], list):
                    cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
                else:
                    controlnet_cond_scale = controlnet_conditioning_scale
                    if isinstance(controlnet_cond_scale, list):
                        controlnet_cond_scale = controlnet_cond_scale[0]
                    cond_scale = controlnet_cond_scale * controlnet_keep[i]

                # controlnet(s) inference
                control_block_samples = self.controlnet(
                    hidden_states=latent_model_input,
                    timestep=timestep,
                    encoder_hidden_states=prompt_embeds,
                    pooled_projections=controlnet_pooled_projections,
                    joint_attention_kwargs=self.joint_attention_kwargs,
                    controlnet_cond=control_image,
                    conditioning_scale=cond_scale,
                    return_dict=False,
                )[0]

                noise_pred = self.transformer(
                    hidden_states=latent_model_input,
                    timestep=timestep,
                    encoder_hidden_states=prompt_embeds,
                    pooled_projections=pooled_prompt_embeds,
                    block_controlnet_hidden_states=ms.mutable(control_block_samples),
                    joint_attention_kwargs=self.joint_attention_kwargs,
                    return_dict=False,
                )[0]

                # perform guidance
                if self.do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                latents_dtype = latents.dtype
                latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]

                if latents.dtype != latents_dtype:
                    latents = latents.to(latents_dtype)

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
                    negative_pooled_prompt_embeds = callback_outputs.pop(
                        "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
                    )

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()

        if output_type == "latent":
            image = latents

        else:
            latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor

            image = self.vae.decode(latents, return_dict=False)[0]
            image = self.image_processor.postprocess(image, output_type=output_type)

        if not return_dict:
            return (image,)

        return StableDiffusion3PipelineOutput(images=image)

mindone.diffusers.StableDiffusion3ControlNetPipeline.__call__(prompt=None, prompt_2=None, prompt_3=None, height=None, width=None, num_inference_steps=28, timesteps=None, guidance_scale=7.0, control_guidance_start=0.0, control_guidance_end=1.0, control_image=None, controlnet_conditioning_scale=1.0, controlnet_pooled_projections=None, negative_prompt=None, negative_prompt_2=None, negative_prompt_3=None, num_images_per_prompt=1, generator=None, latents=None, prompt_embeds=None, negative_prompt_embeds=None, pooled_prompt_embeds=None, negative_pooled_prompt_embeds=None, output_type='pil', return_dict=False, joint_attention_kwargs=None, clip_skip=None, callback_on_step_end=None, callback_on_step_end_tensor_inputs=['latents'])

Function invoked when calling the pipeline for generation.

PARAMETER DESCRIPTION
prompt

The prompt or prompts to guide the image generation. If not defined, one has to pass prompt_embeds. instead.

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

prompt_2

The prompt or prompts to be sent to tokenizer_2 and text_encoder_2. If not defined, prompt is will be used instead

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

prompt_3

The prompt or prompts to be sent to tokenizer_3 and text_encoder_3. If not defined, prompt is will be used instead

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

height

The height in pixels of the generated image. This is set to 1024 by default for the best results.

TYPE: `int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor DEFAULT: None

width

The width in pixels of the generated image. This is set to 1024 by default for the best results.

TYPE: `int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor DEFAULT: None

num_inference_steps

The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.

TYPE: `int`, *optional*, defaults to 50 DEFAULT: 28

timesteps

Custom timesteps to use for the denoising process with schedulers which support a timesteps argument in their set_timesteps method. If not defined, the default behavior when num_inference_steps is passed will be used. Must be in descending order.

TYPE: `List[int]`, *optional* DEFAULT: None

guidance_scale

Guidance scale as defined in Classifier-Free Diffusion Guidance. guidance_scale is defined as w of equation 2. of Imagen Paper. Guidance scale is enabled by setting guidance_scale > 1. Higher guidance scale encourages to generate images that are closely linked to the text prompt, usually at the expense of lower image quality.

TYPE: `float`, *optional*, defaults to 5.0 DEFAULT: 7.0

control_guidance_start

The percentage of total steps at which the ControlNet starts applying.

TYPE: `float` or `List[float]`, *optional*, defaults to 0.0 DEFAULT: 0.0

control_guidance_end

The percentage of total steps at which the ControlNet stops applying.

TYPE: `float` or `List[float]`, *optional*, defaults to 1.0 DEFAULT: 1.0

control_image
`List[List[ms.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):

The ControlNet input condition to provide guidance to the unet for generation. If the type is specified as ms.Tensor, it is passed to ControlNet as is. PIL.Image.Image can also be accepted as an image. The dimensions of the output image defaults to image's dimensions. If height and/or width are passed, image is resized accordingly. If multiple ControlNets are specified in init, images must be passed as a list such that each element of the list can be correctly batched for input to a single ControlNet.

TYPE: `ms.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[ms.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`, DEFAULT: None

controlnet_conditioning_scale

The outputs of the ControlNet are multiplied by controlnet_conditioning_scale before they are added to the residual in the original unet. If multiple ControlNets are specified in init, you can set the corresponding scale as a list.

TYPE: `float` or `List[float]`, *optional*, defaults to 1.0 DEFAULT: 1.0

controlnet_pooled_projections

Embeddings projected from the embeddings of controlnet input conditions.

TYPE: `ms.Tensor` of shape `(batch_size, projection_dim)` DEFAULT: None

negative_prompt

The prompt or prompts not to guide the image generation. If not defined, one has to pass negative_prompt_embeds instead. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1).

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

negative_prompt_2

The prompt or prompts not to guide the image generation to be sent to tokenizer_2 and text_encoder_2. If not defined, negative_prompt is used instead

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

negative_prompt_3

The prompt or prompts not to guide the image generation to be sent to tokenizer_3 and text_encoder_3. If not defined, negative_prompt is used instead

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

num_images_per_prompt

The number of images to generate per prompt.

TYPE: `int`, *optional*, defaults to 1 DEFAULT: 1

generator

One or a list of numpy generator(s) to make generation deterministic.

TYPE: `np.random.Generator` or `List[np.random.Generator]`, *optional* DEFAULT: None

latents

Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random generator.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

prompt_embeds

Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_prompt_embeds

Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

pooled_prompt_embeds

Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated from prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_pooled_prompt_embeds

Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled negative_prompt_embeds will be generated from negative_prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

output_type

The output format of the generate image. Choose between PIL: PIL.Image.Image or np.array.

TYPE: `str`, *optional*, defaults to `"pil"` DEFAULT: 'pil'

return_dict

Whether or not to return a [~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput] instead of a plain tuple.

TYPE: `bool`, *optional*, defaults to `False` DEFAULT: False

joint_attention_kwargs

A kwargs dictionary that if specified is passed along to the AttentionProcessor as defined under self.processor in diffusers.models.attention_processor.

TYPE: `dict`, *optional* DEFAULT: None

callback_on_step_end

A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict). callback_kwargs will include a list of all tensors as specified by callback_on_step_end_tensor_inputs.

TYPE: `Callable`, *optional* DEFAULT: None

callback_on_step_end_tensor_inputs

The list of tensor inputs for the callback_on_step_end function. The tensors specified in the list will be passed as callback_kwargs argument. You will only be able to include variables listed in the ._callback_tensor_inputs attribute of your pipeline class.

TYPE: `List`, *optional* DEFAULT: ['latents']

RETURNS DESCRIPTION

[~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput] or tuple:

[~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput] if return_dict is True, otherwise a

tuple. When returning a tuple, the first element is a list with the generated images.

Source code in mindone/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
def __call__(
    self,
    prompt: Union[str, List[str]] = None,
    prompt_2: Optional[Union[str, List[str]]] = None,
    prompt_3: Optional[Union[str, List[str]]] = None,
    height: Optional[int] = None,
    width: Optional[int] = None,
    num_inference_steps: int = 28,
    timesteps: List[int] = None,
    guidance_scale: float = 7.0,
    control_guidance_start: Union[float, List[float]] = 0.0,
    control_guidance_end: Union[float, List[float]] = 1.0,
    control_image: PipelineImageInput = None,
    controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
    controlnet_pooled_projections: Optional[ms.Tensor] = None,
    negative_prompt: Optional[Union[str, List[str]]] = None,
    negative_prompt_2: Optional[Union[str, List[str]]] = None,
    negative_prompt_3: Optional[Union[str, List[str]]] = None,
    num_images_per_prompt: Optional[int] = 1,
    generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
    latents: Optional[ms.Tensor] = None,
    prompt_embeds: Optional[ms.Tensor] = None,
    negative_prompt_embeds: Optional[ms.Tensor] = None,
    pooled_prompt_embeds: Optional[ms.Tensor] = None,
    negative_pooled_prompt_embeds: Optional[ms.Tensor] = None,
    output_type: Optional[str] = "pil",
    return_dict: bool = False,
    joint_attention_kwargs: Optional[Dict[str, Any]] = None,
    clip_skip: Optional[int] = None,
    callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
    callback_on_step_end_tensor_inputs: List[str] = ["latents"],
):
    r"""
    Function invoked when calling the pipeline for generation.

    Args:
        prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
            instead.
        prompt_2 (`str` or `List[str]`, *optional*):
            The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
            will be used instead
        prompt_3 (`str` or `List[str]`, *optional*):
            The prompt or prompts to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
            will be used instead
        height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
            The height in pixels of the generated image. This is set to 1024 by default for the best results.
        width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
            The width in pixels of the generated image. This is set to 1024 by default for the best results.
        num_inference_steps (`int`, *optional*, defaults to 50):
            The number of denoising steps. More denoising steps usually lead to a higher quality image at the
            expense of slower inference.
        timesteps (`List[int]`, *optional*):
            Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
            in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
            passed will be used. Must be in descending order.
        guidance_scale (`float`, *optional*, defaults to 5.0):
            Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
            `guidance_scale` is defined as `w` of equation 2. of [Imagen
            Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
            1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
            usually at the expense of lower image quality.
        control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
            The percentage of total steps at which the ControlNet starts applying.
        control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
            The percentage of total steps at which the ControlNet stops applying.
        control_image (`ms.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[ms.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
                `List[List[ms.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
            The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
            specified as `ms.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
            as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
            width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
            images must be passed as a list such that each element of the list can be correctly batched for input
            to a single ControlNet.
        controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
            The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
            to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
            the corresponding scale as a list.
        controlnet_pooled_projections (`ms.Tensor` of shape `(batch_size, projection_dim)`):
            Embeddings projected from the embeddings of controlnet input conditions.
        negative_prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts not to guide the image generation. If not defined, one has to pass
            `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
            less than `1`).
        negative_prompt_2 (`str` or `List[str]`, *optional*):
            The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
            `text_encoder_2`. If not defined, `negative_prompt` is used instead
        negative_prompt_3 (`str` or `List[str]`, *optional*):
            The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
            `text_encoder_3`. If not defined, `negative_prompt` is used instead
        num_images_per_prompt (`int`, *optional*, defaults to 1):
            The number of images to generate per prompt.
        generator (`np.random.Generator` or `List[np.random.Generator]`, *optional*):
            One or a list of [numpy generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
            to make generation deterministic.
        latents (`ms.Tensor`, *optional*):
            Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
            generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
            tensor will ge generated by sampling using the supplied random `generator`.
        prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
            provided, text embeddings will be generated from `prompt` input argument.
        negative_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
            weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
            argument.
        pooled_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
            If not provided, pooled text embeddings will be generated from `prompt` input argument.
        negative_pooled_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
            weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
            input argument.
        output_type (`str`, *optional*, defaults to `"pil"`):
            The output format of the generate image. Choose between
            [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
        return_dict (`bool`, *optional*, defaults to `False`):
            Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
            of a plain tuple.
        joint_attention_kwargs (`dict`, *optional*):
            A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
            `self.processor` in
            [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
        callback_on_step_end (`Callable`, *optional*):
            A function that calls at the end of each denoising steps during the inference. The function is called
            with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
            callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
            `callback_on_step_end_tensor_inputs`.
        callback_on_step_end_tensor_inputs (`List`, *optional*):
            The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
            will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
            `._callback_tensor_inputs` attribute of your pipeline class.

    Examples:

    Returns:
        [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
        [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
        `tuple`. When returning a tuple, the first element is a list with the generated images.
    """

    height = height or self.default_sample_size * self.vae_scale_factor
    width = width or self.default_sample_size * self.vae_scale_factor

    # align format for control guidance
    if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
        control_guidance_start = len(control_guidance_end) * [control_guidance_start]
    elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
        control_guidance_end = len(control_guidance_start) * [control_guidance_end]
    elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
        mult = len(self.controlnet.nets) if isinstance(self.controlnet, SD3MultiControlNetModel) else 1
        control_guidance_start, control_guidance_end = (
            mult * [control_guidance_start],
            mult * [control_guidance_end],
        )

    # 1. Check inputs. Raise error if not correct
    self.check_inputs(
        prompt,
        prompt_2,
        prompt_3,
        height,
        width,
        negative_prompt=negative_prompt,
        negative_prompt_2=negative_prompt_2,
        negative_prompt_3=negative_prompt_3,
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=negative_prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
        callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
    )

    self._guidance_scale = guidance_scale
    self._clip_skip = clip_skip
    self._joint_attention_kwargs = joint_attention_kwargs
    self._interrupt = False

    # 2. Define call parameters
    if prompt is not None and isinstance(prompt, str):
        batch_size = 1
    elif prompt is not None and isinstance(prompt, list):
        batch_size = len(prompt)
    else:
        batch_size = prompt_embeds.shape[0]

    dtype = self.transformer.dtype

    (
        prompt_embeds,
        negative_prompt_embeds,
        pooled_prompt_embeds,
        negative_pooled_prompt_embeds,
    ) = self.encode_prompt(
        prompt=prompt,
        prompt_2=prompt_2,
        prompt_3=prompt_3,
        negative_prompt=negative_prompt,
        negative_prompt_2=negative_prompt_2,
        negative_prompt_3=negative_prompt_3,
        do_classifier_free_guidance=self.do_classifier_free_guidance,
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=negative_prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
        clip_skip=self.clip_skip,
        num_images_per_prompt=num_images_per_prompt,
    )

    if self.do_classifier_free_guidance:
        prompt_embeds = ops.cat([negative_prompt_embeds, prompt_embeds], axis=0)
        pooled_prompt_embeds = ops.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], axis=0)

    # 3. Prepare control image
    if isinstance(self.controlnet, SD3ControlNetModel):
        control_image = self.prepare_image(
            image=control_image,
            width=width,
            height=height,
            batch_size=batch_size * num_images_per_prompt,
            num_images_per_prompt=num_images_per_prompt,
            dtype=dtype,
            do_classifier_free_guidance=self.do_classifier_free_guidance,
            guess_mode=False,
        )
        height, width = control_image.shape[-2:]

        control_image = self.vae.diag_gauss_dist.sample(self.vae.encode(control_image)[0])
        control_image = control_image * self.vae.config.scaling_factor

    elif isinstance(self.controlnet, SD3MultiControlNetModel):
        control_images = []

        for control_image_ in control_image:
            control_image_ = self.prepare_image(
                image=control_image_,
                width=width,
                height=height,
                batch_size=batch_size * num_images_per_prompt,
                num_images_per_prompt=num_images_per_prompt,
                dtype=dtype,
                do_classifier_free_guidance=self.do_classifier_free_guidance,
                guess_mode=False,
            )

            control_image_ = self.vae.diag_gauss_dist.sample(self.vae.encode(control_image_)[0])
            control_image_ = control_image_ * self.vae.config.scaling_factor

            control_images.append(control_image_)

        control_image = control_images
    else:
        assert False

    if controlnet_pooled_projections is None:
        controlnet_pooled_projections = ops.zeros_like(pooled_prompt_embeds)
    else:
        controlnet_pooled_projections = controlnet_pooled_projections or pooled_prompt_embeds

    # 4. Prepare timesteps
    timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, timesteps)
    num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
    self._num_timesteps = len(timesteps)

    # 5. Prepare latent variables
    num_channels_latents = self.transformer.config.in_channels
    latents = self.prepare_latents(
        batch_size * num_images_per_prompt,
        num_channels_latents,
        height,
        width,
        prompt_embeds.dtype,
        generator,
        latents,
    )

    # 6. Create tensor stating which controlnets to keep
    controlnet_keep = []
    for i in range(len(timesteps)):
        keeps = [
            1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
            for s, e in zip(control_guidance_start, control_guidance_end)
        ]
        controlnet_keep.append(keeps[0] if isinstance(self.controlnet, SD3ControlNetModel) else keeps)

    # 7. Denoising loop
    with self.progress_bar(total=num_inference_steps) as progress_bar:
        for i, t in enumerate(timesteps):
            if self.interrupt:
                continue

            # expand the latents if we are doing classifier free guidance
            latent_model_input = ops.cat([latents] * 2) if self.do_classifier_free_guidance else latents
            # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
            timestep = t.broadcast_to((latent_model_input.shape[0],))

            if isinstance(controlnet_keep[i], list):
                cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
            else:
                controlnet_cond_scale = controlnet_conditioning_scale
                if isinstance(controlnet_cond_scale, list):
                    controlnet_cond_scale = controlnet_cond_scale[0]
                cond_scale = controlnet_cond_scale * controlnet_keep[i]

            # controlnet(s) inference
            control_block_samples = self.controlnet(
                hidden_states=latent_model_input,
                timestep=timestep,
                encoder_hidden_states=prompt_embeds,
                pooled_projections=controlnet_pooled_projections,
                joint_attention_kwargs=self.joint_attention_kwargs,
                controlnet_cond=control_image,
                conditioning_scale=cond_scale,
                return_dict=False,
            )[0]

            noise_pred = self.transformer(
                hidden_states=latent_model_input,
                timestep=timestep,
                encoder_hidden_states=prompt_embeds,
                pooled_projections=pooled_prompt_embeds,
                block_controlnet_hidden_states=ms.mutable(control_block_samples),
                joint_attention_kwargs=self.joint_attention_kwargs,
                return_dict=False,
            )[0]

            # perform guidance
            if self.do_classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)

            # compute the previous noisy sample x_t -> x_t-1
            latents_dtype = latents.dtype
            latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]

            if latents.dtype != latents_dtype:
                latents = latents.to(latents_dtype)

            if callback_on_step_end is not None:
                callback_kwargs = {}
                for k in callback_on_step_end_tensor_inputs:
                    callback_kwargs[k] = locals()[k]
                callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                latents = callback_outputs.pop("latents", latents)
                prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
                negative_pooled_prompt_embeds = callback_outputs.pop(
                    "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
                )

            # call the callback, if provided
            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                progress_bar.update()

    if output_type == "latent":
        image = latents

    else:
        latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor

        image = self.vae.decode(latents, return_dict=False)[0]
        image = self.image_processor.postprocess(image, output_type=output_type)

    if not return_dict:
        return (image,)

    return StableDiffusion3PipelineOutput(images=image)

mindone.diffusers.StableDiffusion3ControlNetPipeline.encode_prompt(prompt, prompt_2, prompt_3, num_images_per_prompt=1, do_classifier_free_guidance=True, negative_prompt=None, negative_prompt_2=None, negative_prompt_3=None, prompt_embeds=None, negative_prompt_embeds=None, pooled_prompt_embeds=None, negative_pooled_prompt_embeds=None, clip_skip=None)

PARAMETER DESCRIPTION
prompt

prompt to be encoded

TYPE: `str` or `List[str]`, *optional*

prompt_2

The prompt or prompts to be sent to the tokenizer_2 and text_encoder_2. If not defined, prompt is used in all text-encoders

TYPE: `str` or `List[str]`, *optional*

prompt_3

The prompt or prompts to be sent to the tokenizer_3 and text_encoder_3. If not defined, prompt is used in all text-encoders

TYPE: `str` or `List[str]`, *optional*

num_images_per_prompt

number of images that should be generated per prompt

TYPE: `int` DEFAULT: 1

do_classifier_free_guidance

whether to use classifier free guidance or not

TYPE: `bool` DEFAULT: True

negative_prompt

The prompt or prompts not to guide the image generation. If not defined, one has to pass negative_prompt_embeds instead. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1).

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

negative_prompt_2

The prompt or prompts not to guide the image generation to be sent to tokenizer_2 and text_encoder_2. If not defined, negative_prompt is used in all the text-encoders.

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

negative_prompt_2

The prompt or prompts not to guide the image generation to be sent to tokenizer_3 and text_encoder_3. If not defined, negative_prompt is used in both text-encoders

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

prompt_embeds

Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_prompt_embeds

Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

pooled_prompt_embeds

Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated from prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_pooled_prompt_embeds

Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled negative_prompt_embeds will be generated from negative_prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

clip_skip

Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings.

TYPE: `int`, *optional* DEFAULT: None

Source code in mindone/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
def encode_prompt(
    self,
    prompt: Union[str, List[str]],
    prompt_2: Union[str, List[str]],
    prompt_3: Union[str, List[str]],
    num_images_per_prompt: int = 1,
    do_classifier_free_guidance: bool = True,
    negative_prompt: Optional[Union[str, List[str]]] = None,
    negative_prompt_2: Optional[Union[str, List[str]]] = None,
    negative_prompt_3: Optional[Union[str, List[str]]] = None,
    prompt_embeds: Optional[ms.Tensor] = None,
    negative_prompt_embeds: Optional[ms.Tensor] = None,
    pooled_prompt_embeds: Optional[ms.Tensor] = None,
    negative_pooled_prompt_embeds: Optional[ms.Tensor] = None,
    clip_skip: Optional[int] = None,
):
    r"""

    Args:
        prompt (`str` or `List[str]`, *optional*):
            prompt to be encoded
        prompt_2 (`str` or `List[str]`, *optional*):
            The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
            used in all text-encoders
        prompt_3 (`str` or `List[str]`, *optional*):
            The prompt or prompts to be sent to the `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
            used in all text-encoders
        num_images_per_prompt (`int`):
            number of images that should be generated per prompt
        do_classifier_free_guidance (`bool`):
            whether to use classifier free guidance or not
        negative_prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts not to guide the image generation. If not defined, one has to pass
            `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
            less than `1`).
        negative_prompt_2 (`str` or `List[str]`, *optional*):
            The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
            `text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
        negative_prompt_2 (`str` or `List[str]`, *optional*):
            The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
            `text_encoder_3`. If not defined, `negative_prompt` is used in both text-encoders
        prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
            provided, text embeddings will be generated from `prompt` input argument.
        negative_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
            weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
            argument.
        pooled_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
            If not provided, pooled text embeddings will be generated from `prompt` input argument.
        negative_pooled_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
            weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
            input argument.
        clip_skip (`int`, *optional*):
            Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
            the output of the pre-final layer will be used for computing the prompt embeddings.
    """
    prompt = [prompt] if isinstance(prompt, str) else prompt
    if prompt is not None:
        batch_size = len(prompt)
    else:
        batch_size = prompt_embeds.shape[0]

    if prompt_embeds is None:
        prompt_2 = prompt_2 or prompt
        prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2

        prompt_3 = prompt_3 or prompt
        prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3

        prompt_embed, pooled_prompt_embed = self._get_clip_prompt_embeds(
            prompt=prompt,
            num_images_per_prompt=num_images_per_prompt,
            clip_skip=clip_skip,
            clip_model_index=0,
        )
        prompt_2_embed, pooled_prompt_2_embed = self._get_clip_prompt_embeds(
            prompt=prompt_2,
            num_images_per_prompt=num_images_per_prompt,
            clip_skip=clip_skip,
            clip_model_index=1,
        )
        clip_prompt_embeds = ops.cat([prompt_embed, prompt_2_embed], axis=-1)

        t5_prompt_embed = self._get_t5_prompt_embeds(
            prompt=prompt_3,
            num_images_per_prompt=num_images_per_prompt,
        )

        clip_prompt_embeds = pad(clip_prompt_embeds, (0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1]))

        prompt_embeds = ops.cat([clip_prompt_embeds, t5_prompt_embed], axis=-2)
        pooled_prompt_embeds = ops.cat([pooled_prompt_embed, pooled_prompt_2_embed], axis=-1)

    if do_classifier_free_guidance and negative_prompt_embeds is None:
        negative_prompt = negative_prompt or ""
        negative_prompt_2 = negative_prompt_2 or negative_prompt
        negative_prompt_3 = negative_prompt_3 or negative_prompt

        # normalize str to list
        negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
        negative_prompt_2 = (
            batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
        )
        negative_prompt_3 = (
            batch_size * [negative_prompt_3] if isinstance(negative_prompt_3, str) else negative_prompt_3
        )

        if prompt is not None and type(prompt) is not type(negative_prompt):
            raise TypeError(
                f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                f" {type(prompt)}."
            )
        elif batch_size != len(negative_prompt):
            raise ValueError(
                f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                " the batch size of `prompt`."
            )

        negative_prompt_embed, negative_pooled_prompt_embed = self._get_clip_prompt_embeds(
            negative_prompt,
            num_images_per_prompt=num_images_per_prompt,
            clip_skip=None,
            clip_model_index=0,
        )
        negative_prompt_2_embed, negative_pooled_prompt_2_embed = self._get_clip_prompt_embeds(
            negative_prompt_2,
            num_images_per_prompt=num_images_per_prompt,
            clip_skip=None,
            clip_model_index=1,
        )
        negative_clip_prompt_embeds = ops.cat([negative_prompt_embed, negative_prompt_2_embed], axis=-1)

        t5_negative_prompt_embed = self._get_t5_prompt_embeds(
            prompt=negative_prompt_3,
            num_images_per_prompt=num_images_per_prompt,
        )

        negative_clip_prompt_embeds = pad(
            negative_clip_prompt_embeds,
            (0, t5_negative_prompt_embed.shape[-1] - negative_clip_prompt_embeds.shape[-1]),
        )

        negative_prompt_embeds = ops.cat([negative_clip_prompt_embeds, t5_negative_prompt_embed], axis=-2)
        negative_pooled_prompt_embeds = ops.cat(
            [negative_pooled_prompt_embed, negative_pooled_prompt_2_embed], axis=-1
        )

    return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds

mindone.diffusers.pipelines.stable_diffusion_3.pipeline_output.StableDiffusion3PipelineOutput dataclass

Bases: BaseOutput

Output class for Stable Diffusion pipelines.

Source code in mindone/diffusers/pipelines/stable_diffusion_3/pipeline_output.py
10
11
12
13
14
15
16
17
18
19
20
21
@dataclass
class StableDiffusion3PipelineOutput(BaseOutput):
    """
    Output class for Stable Diffusion pipelines.

    Args:
        images (`List[PIL.Image.Image]` or `np.ndarray`)
            List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
            num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
    """

    images: Union[List[PIL.Image.Image], np.ndarray]