Skip to content

ControlNet with Hunyuan-DiT

HunyuanDiTControlNetPipeline is an implementation of ControlNet for Hunyuan-DiT.

ControlNet was introduced in Adding Conditional Control to Text-to-Image Diffusion Models by Lvmin Zhang, Anyi Rao, and Maneesh Agrawala.

With a ControlNet model, you can provide an additional control image to condition and control Hunyuan-DiT generation. For example, if you provide a depth map, the ControlNet model generates an image that'll preserve the spatial information from the depth map. It is a more flexible and accurate way to control the image generation process.

The abstract from the paper is:

We present ControlNet, a neural network architecture to add spatial conditioning controls to large, pretrained text-to-image diffusion models. ControlNet locks the production-ready large diffusion models, and reuses their deep and robust encoding layers pretrained with billions of images as a strong backbone to learn a diverse set of conditional controls. The neural architecture is connected with "zero convolutions" (zero-initialized convolution layers) that progressively grow the parameters from zero and ensure that no harmful noise could affect the finetuning. We test various conditioning controls, eg, edges, depth, segmentation, human pose, etc, with Stable Diffusion, using single or multiple conditions, with or without prompts. We show that the training of ControlNets is robust with small (<50k) and large (>1m) datasets. Extensive results show that ControlNet may facilitate wider applications to control image diffusion models.

This code is implemented by Tencent Hunyuan Team. You can find pre-trained checkpoints for Hunyuan-DiT ControlNets on Tencent Hunyuan.

Tip

Make sure to check out the Schedulers guide to learn how to explore the tradeoff between scheduler speed and quality, and see the reuse components across pipelines section to learn how to efficiently load the same components into multiple pipelines.

mindone.diffusers.HunyuanDiTControlNetPipeline

Bases: DiffusionPipeline

Pipeline for English/Chinese-to-image generation using HunyuanDiT.

This model inherits from [DiffusionPipeline]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

HunyuanDiT uses two text encoders: mT5 and bilingual CLIP

PARAMETER DESCRIPTION
vae

Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. We use sdxl-vae-fp16-fix.

TYPE: [`AutoencoderKL`]

text_encoder

Frozen text-encoder (clip-vit-large-patch14). HunyuanDiT uses a fine-tuned [bilingual CLIP].

TYPE: Optional[`~transformers.BertModel`, `~transformers.CLIPTextModel`]

tokenizer

A BertTokenizer or CLIPTokenizer to tokenize text.

TYPE: Optional[`~transformers.BertTokenizer`, `~transformers.CLIPTokenizer`]

transformer

The HunyuanDiT model designed by Tencent Hunyuan.

TYPE: [`HunyuanDiT2DModel`]

text_encoder_2

The mT5 embedder. Specifically, it is 't5-v1_1-xxl'.

TYPE: `T5EncoderModel` DEFAULT: T5EncoderModel

tokenizer_2

The tokenizer for the mT5 embedder.

TYPE: `MT5Tokenizer` DEFAULT: MT5Tokenizer

scheduler

A scheduler to be used in combination with HunyuanDiT to denoise the encoded image latents.

TYPE: [`DDPMScheduler`]

controlnet

Provides additional conditioning to the unet during the denoising process. If you set multiple ControlNets as a list, the outputs from each ControlNet are added together to create one combined additional conditioning.

TYPE: [`HunyuanDiT2DControlNetModel`] or `List[HunyuanDiT2DControlNetModel]` or [`HunyuanDiT2DControlNetModel`]

Source code in mindone/diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
class HunyuanDiTControlNetPipeline(DiffusionPipeline):
    r"""
    Pipeline for English/Chinese-to-image generation using HunyuanDiT.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    HunyuanDiT uses two text encoders: [mT5](https://huggingface.co/google/mt5-base) and [bilingual CLIP](fine-tuned by
    ourselves)

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. We use
            `sdxl-vae-fp16-fix`.
        text_encoder (Optional[`~transformers.BertModel`, `~transformers.CLIPTextModel`]):
            Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
            HunyuanDiT uses a fine-tuned [bilingual CLIP].
        tokenizer (Optional[`~transformers.BertTokenizer`, `~transformers.CLIPTokenizer`]):
            A `BertTokenizer` or `CLIPTokenizer` to tokenize text.
        transformer ([`HunyuanDiT2DModel`]):
            The HunyuanDiT model designed by Tencent Hunyuan.
        text_encoder_2 (`T5EncoderModel`):
            The mT5 embedder. Specifically, it is 't5-v1_1-xxl'.
        tokenizer_2 (`MT5Tokenizer`):
            The tokenizer for the mT5 embedder.
        scheduler ([`DDPMScheduler`]):
            A scheduler to be used in combination with HunyuanDiT to denoise the encoded image latents.
        controlnet ([`HunyuanDiT2DControlNetModel`] or `List[HunyuanDiT2DControlNetModel]` or [`HunyuanDiT2DControlNetModel`]):
            Provides additional conditioning to the `unet` during the denoising process. If you set multiple
            ControlNets as a list, the outputs from each ControlNet are added together to create one combined
            additional conditioning.
    """

    model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
    _optional_components = [
        "safety_checker",
        "feature_extractor",
        "text_encoder_2",
        "tokenizer_2",
        "text_encoder",
        "tokenizer",
    ]
    _exclude_from_cpu_offload = ["safety_checker"]
    _callback_tensor_inputs = [
        "latents",
        "prompt_embeds",
        "negative_prompt_embeds",
        "prompt_embeds_2",
        "negative_prompt_embeds_2",
    ]

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: BertModel,
        tokenizer: BertTokenizer,
        transformer: HunyuanDiT2DModel,
        scheduler: DDPMScheduler,
        safety_checker: StableDiffusionSafetyChecker,
        feature_extractor: CLIPImageProcessor,
        controlnet: Union[
            HunyuanDiT2DControlNetModel,
            List[HunyuanDiT2DControlNetModel],
            Tuple[HunyuanDiT2DControlNetModel],
            HunyuanDiT2DMultiControlNetModel,
        ],
        text_encoder_2=T5EncoderModel,
        tokenizer_2=MT5Tokenizer,
        requires_safety_checker: bool = True,
    ):
        super().__init__()

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            tokenizer_2=tokenizer_2,
            transformer=transformer,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
            text_encoder_2=text_encoder_2,
            controlnet=controlnet,
        )

        if safety_checker is None and requires_safety_checker:
            logger.warning(
                f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
                " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
                " results in services or applications open to the public. Both the diffusers team and Hugging Face"
                " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
                " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
                " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
            )

        if safety_checker is not None and feature_extractor is None:
            raise ValueError(
                "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
                " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
            )

        self.vae_scale_factor = (
            2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
        )
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
        self.register_to_config(requires_safety_checker=requires_safety_checker)
        self.default_sample_size = (
            self.transformer.config.sample_size
            if hasattr(self, "transformer") and self.transformer is not None
            else 128
        )

    # Copied from diffusers.pipelines.hunyuandit.pipeline_hunyuandit.HunyuanDiTPipeline.encode_prompt
    def encode_prompt(
        self,
        prompt: str,
        dtype: ms.dtype = None,
        num_images_per_prompt: int = 1,
        do_classifier_free_guidance: bool = True,
        negative_prompt: Optional[str] = None,
        prompt_embeds: Optional[ms.Tensor] = None,
        negative_prompt_embeds: Optional[ms.Tensor] = None,
        prompt_attention_mask: Optional[ms.Tensor] = None,
        negative_prompt_attention_mask: Optional[ms.Tensor] = None,
        max_sequence_length: Optional[int] = None,
        text_encoder_index: int = 0,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            dtype (`ms.dtype`):
                mindspore dtype
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            prompt_attention_mask (`ms.Tensor`, *optional*):
                Attention mask for the prompt. Required when `prompt_embeds` is passed directly.
            negative_prompt_attention_mask (`ms.Tensor`, *optional*):
                Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly.
            max_sequence_length (`int`, *optional*): maximum sequence length to use for the prompt.
            text_encoder_index (`int`, *optional*):
                Index of the text encoder to use. `0` for clip and `1` for T5.
        """
        if dtype is None:
            if self.text_encoder_2 is not None:
                dtype = self.text_encoder_2.dtype
            elif self.transformer is not None:
                dtype = self.transformer.dtype
            else:
                dtype = None

        tokenizers = [self.tokenizer, self.tokenizer_2]
        text_encoders = [self.text_encoder, self.text_encoder_2]

        tokenizer = tokenizers[text_encoder_index]
        text_encoder = text_encoders[text_encoder_index]

        if max_sequence_length is None:
            if text_encoder_index == 0:
                max_length = 77
            if text_encoder_index == 1:
                max_length = 256
        else:
            max_length = max_sequence_length

        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if prompt_embeds is None:
            text_inputs = tokenizer(
                prompt,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_attention_mask=True,
                return_tensors="np",
            )
            text_input_ids = text_inputs.input_ids
            untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="np").input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not np.array_equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {tokenizer.model_max_length} tokens: {removed_text}"
                )

            prompt_attention_mask = ms.tensor(text_inputs.attention_mask)
            prompt_embeds = text_encoder(
                ms.tensor(text_input_ids),
                attention_mask=prompt_attention_mask,
            )
            prompt_embeds = prompt_embeds[0]
            prompt_attention_mask = prompt_attention_mask.tile((num_images_per_prompt, 1))

        prompt_embeds = prompt_embeds.to(dtype=dtype)

        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.tile((1, num_images_per_prompt, 1))
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif prompt is not None and type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

            max_length = prompt_embeds.shape[1]
            uncond_input = tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="np",
            )

            negative_prompt_attention_mask = ms.tensor(uncond_input.attention_mask)
            negative_prompt_embeds = text_encoder(
                ms.tensor(uncond_input.input_ids),
                attention_mask=negative_prompt_attention_mask,
            )
            negative_prompt_embeds = negative_prompt_embeds[0]
            negative_prompt_attention_mask = negative_prompt_attention_mask.tile((num_images_per_prompt, 1))

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

            negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype)

            negative_prompt_embeds = negative_prompt_embeds.tile((1, num_images_per_prompt, 1))
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

        return prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
    def run_safety_checker(self, image, dtype):
        if self.safety_checker is None:
            has_nsfw_concept = None
        else:
            if ops.is_tensor(image):
                feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
            else:
                feature_extractor_input = self.image_processor.numpy_to_pil(image)
            safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="np")
            image, has_nsfw_concept = self.safety_checker(
                images=image, clip_input=ms.tensor(safety_checker_input.pixel_values).to(dtype)
            )
        return image, has_nsfw_concept

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    # Copied from diffusers.pipelines.hunyuandit.pipeline_hunyuandit.HunyuanDiTPipeline.check_inputs
    def check_inputs(
        self,
        prompt,
        height,
        width,
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
        prompt_attention_mask=None,
        negative_prompt_attention_mask=None,
        prompt_embeds_2=None,
        negative_prompt_embeds_2=None,
        prompt_attention_mask_2=None,
        negative_prompt_attention_mask_2=None,
        callback_on_step_end_tensor_inputs=None,
    ):
        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, "
                f" but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is None and prompt_embeds_2 is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds_2`. Cannot leave both `prompt` and `prompt_embeds_2` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if prompt_embeds is not None and prompt_attention_mask is None:
            raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")

        if prompt_embeds_2 is not None and prompt_attention_mask_2 is None:
            raise ValueError("Must provide `prompt_attention_mask_2` when specifying `prompt_embeds_2`.")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
            raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")

        if negative_prompt_embeds_2 is not None and negative_prompt_attention_mask_2 is None:
            raise ValueError(
                "Must provide `negative_prompt_attention_mask_2` when specifying `negative_prompt_embeds_2`."
            )
        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )
        if prompt_embeds_2 is not None and negative_prompt_embeds_2 is not None:
            if prompt_embeds_2.shape != negative_prompt_embeds_2.shape:
                raise ValueError(
                    "`prompt_embeds_2` and `negative_prompt_embeds_2` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds_2` {prompt_embeds_2.shape} != `negative_prompt_embeds_2`"
                    f" {negative_prompt_embeds_2.shape}."
                )

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
    def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, generator, latents=None):
        shape = (
            batch_size,
            num_channels_latents,
            int(height) // self.vae_scale_factor,
            int(width) // self.vae_scale_factor,
        )
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(shape, generator=generator, dtype=dtype)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = (latents * self.scheduler.init_noise_sigma).to(dtype)
        return latents

    # Copied from diffusers.pipelines.controlnet_sd3.pipeline_stable_diffusion_3_controlnet.StableDiffusion3ControlNetPipeline.prepare_image
    def prepare_image(
        self,
        image,
        width,
        height,
        batch_size,
        num_images_per_prompt,
        dtype,
        do_classifier_free_guidance=False,
        guess_mode=False,
    ):
        if isinstance(image, ms.Tensor):
            pass
        else:
            image = self.image_processor.preprocess(image, height=height, width=width)

        image_batch_size = image.shape[0]

        if image_batch_size == 1:
            repeat_by = batch_size
        else:
            # image batch size is the same as prompt batch size
            repeat_by = num_images_per_prompt

        image = image.repeat_interleave(repeat_by, dim=0)

        image = image.to(dtype=dtype)

        if do_classifier_free_guidance and not guess_mode:
            image = ops.cat([image] * 2)

        return image

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def guidance_rescale(self):
        return self._guidance_rescale

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1

    @property
    def num_timesteps(self):
        return self._num_timesteps

    @property
    def interrupt(self):
        return self._interrupt

    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: Optional[int] = 50,
        guidance_scale: Optional[float] = 5.0,
        control_image: PipelineImageInput = None,
        controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: Optional[float] = 0.0,
        generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
        latents: Optional[ms.Tensor] = None,
        prompt_embeds: Optional[ms.Tensor] = None,
        prompt_embeds_2: Optional[ms.Tensor] = None,
        negative_prompt_embeds: Optional[ms.Tensor] = None,
        negative_prompt_embeds_2: Optional[ms.Tensor] = None,
        prompt_attention_mask: Optional[ms.Tensor] = None,
        prompt_attention_mask_2: Optional[ms.Tensor] = None,
        negative_prompt_attention_mask: Optional[ms.Tensor] = None,
        negative_prompt_attention_mask_2: Optional[ms.Tensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = False,
        callback_on_step_end: Optional[
            Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
        ] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        guidance_rescale: float = 0.0,
        original_size: Optional[Tuple[int, int]] = (1024, 1024),
        target_size: Optional[Tuple[int, int]] = None,
        crops_coords_top_left: Tuple[int, int] = (0, 0),
        use_resolution_binning: bool = True,
    ):
        r"""
        The call function to the pipeline for generation with HunyuanDiT.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
            height (`int`):
                The height in pixels of the generated image.
            width (`int`):
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference. This parameter is modulated by `strength`.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
            control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
                The percentage of total steps at which the ControlNet starts applying.
            control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
                The percentage of total steps at which the ControlNet stops applying.
            control_image (`ms.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[ms.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
                    `List[List[ms.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
                The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
                specified as `ms.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
                as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
                width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
                images must be passed as a list such that each element of the list can be correctly batched for input
                to a single ControlNet.
            controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
                The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
                to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
                the corresponding scale as a list.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
            generator (`np.random.Generator` or `List[np.random.Generator]`, *optional*):
                A [`np.random.Generator`](https://numpy.org/doc/stable/reference/random/generator.html) to make
                generation deterministic.
            prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument.
            prompt_embeds_2 (`ms.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument.
            negative_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
            negative_prompt_embeds_2 (`ms.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
            prompt_attention_mask (`ms.Tensor`, *optional*):
                Attention mask for the prompt. Required when `prompt_embeds` is passed directly.
            prompt_attention_mask_2 (`ms.Tensor`, *optional*):
                Attention mask for the prompt. Required when `prompt_embeds_2` is passed directly.
            negative_prompt_attention_mask (`ms.Tensor`, *optional*):
                Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly.
            negative_prompt_attention_mask_2 (`ms.Tensor`, *optional*):
                Attention mask for the negative prompt. Required when `negative_prompt_embeds_2` is passed directly.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback_on_step_end (`Callable[[int, int, Dict], None]`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
                A callback function or a list of callback functions to be called at the end of each denoising step.
            callback_on_step_end_tensor_inputs (`List[str]`, *optional*):
                A list of tensor inputs that should be passed to the callback function. If not defined, all tensor
                inputs will be passed.
            guidance_rescale (`float`, *optional*, defaults to 0.0):
                Rescale the noise_cfg according to `guidance_rescale`. Based on findings of [Common Diffusion Noise
                Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
            original_size (`Tuple[int, int]`, *optional*, defaults to `(1024, 1024)`):
                The original size of the image. Used to calculate the time ids.
            target_size (`Tuple[int, int]`, *optional*):
                The target size of the image. Used to calculate the time ids.
            crops_coords_top_left (`Tuple[int, int]`, *optional*, defaults to `(0, 0)`):
                The top left coordinates of the crop. Used to calculate the time ids.
            use_resolution_binning (`bool`, *optional*, defaults to `True`):
                Whether to use resolution binning or not. If `True`, the input resolution will be mapped to the closest
                standard resolution. Supported resolutions are 1024x1024, 1280x1280, 1024x768, 1152x864, 1280x960,
                768x1024, 864x1152, 960x1280, 1280x768, and 768x1280. It is recommended to set this to `True`.

        Examples:

        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
                otherwise a `tuple` is returned where the first element is a list with the generated images and the
                second element is a list of `bool`s indicating whether the corresponding generated image contains
                "not-safe-for-work" (nsfw) content.
        """

        if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
            callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs

        # 0. default height and width
        height = height or self.default_sample_size * self.vae_scale_factor
        width = width or self.default_sample_size * self.vae_scale_factor
        height = int((height // 16) * 16)
        width = int((width // 16) * 16)

        if use_resolution_binning and (height, width) not in SUPPORTED_SHAPE:
            width, height = map_to_standard_shapes(width, height)
            height = int(height)
            width = int(width)
            logger.warning(f"Reshaped to (height, width)=({height}, {width}), Supported shapes are {SUPPORTED_SHAPE}")

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            height,
            width,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
            prompt_attention_mask,
            negative_prompt_attention_mask,
            prompt_embeds_2,
            negative_prompt_embeds_2,
            prompt_attention_mask_2,
            negative_prompt_attention_mask_2,
            callback_on_step_end_tensor_inputs,
        )
        self._guidance_scale = guidance_scale
        self._guidance_rescale = guidance_rescale
        self._interrupt = False

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        # 3. Encode input prompt

        (
            prompt_embeds,
            negative_prompt_embeds,
            prompt_attention_mask,
            negative_prompt_attention_mask,
        ) = self.encode_prompt(
            prompt=prompt,
            dtype=self.transformer.dtype,
            num_images_per_prompt=num_images_per_prompt,
            do_classifier_free_guidance=self.do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            prompt_attention_mask=prompt_attention_mask,
            negative_prompt_attention_mask=negative_prompt_attention_mask,
            max_sequence_length=77,
            text_encoder_index=0,
        )
        (
            prompt_embeds_2,
            negative_prompt_embeds_2,
            prompt_attention_mask_2,
            negative_prompt_attention_mask_2,
        ) = self.encode_prompt(
            prompt=prompt,
            dtype=self.transformer.dtype,
            num_images_per_prompt=num_images_per_prompt,
            do_classifier_free_guidance=self.do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            prompt_embeds=prompt_embeds_2,
            negative_prompt_embeds=negative_prompt_embeds_2,
            prompt_attention_mask=prompt_attention_mask_2,
            negative_prompt_attention_mask=negative_prompt_attention_mask_2,
            max_sequence_length=256,
            text_encoder_index=1,
        )

        # 4. Prepare control image
        if isinstance(self.controlnet, HunyuanDiT2DControlNetModel):
            control_image = self.prepare_image(
                image=control_image,
                width=width,
                height=height,
                batch_size=batch_size * num_images_per_prompt,
                num_images_per_prompt=num_images_per_prompt,
                dtype=self.dtype,
                do_classifier_free_guidance=self.do_classifier_free_guidance,
                guess_mode=False,
            )
            height, width = control_image.shape[-2:]

            control_image = self.vae.diag_gauss_dist.sample(self.vae.encode(control_image)[0])
            control_image = control_image * self.vae.config.scaling_factor

        elif isinstance(self.controlnet, HunyuanDiT2DMultiControlNetModel):
            control_images = []

            for control_image_ in control_image:
                control_image_ = self.prepare_image(
                    image=control_image_,
                    width=width,
                    height=height,
                    batch_size=batch_size * num_images_per_prompt,
                    num_images_per_prompt=num_images_per_prompt,
                    dtype=self.dtype,
                    do_classifier_free_guidance=self.do_classifier_free_guidance,
                    guess_mode=False,
                )

                control_image_ = self.vae.diag_gauss_dist.sample(self.vae.encode(control_image_)[0])
                control_image_ = control_image_ * self.vae.config.scaling_factor

                control_images.append(control_image_)

            control_image = control_images
        else:
            assert False

        # 5. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps)
        timesteps = self.scheduler.timesteps

        # 6. Prepare latent variables
        num_channels_latents = self.transformer.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            generator,
            latents,
        )

        # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 8. create image_rotary_emb, style embedding & time ids
        grid_height = height // 8 // self.transformer.config.patch_size
        grid_width = width // 8 // self.transformer.config.patch_size
        base_size = 512 // 8 // self.transformer.config.patch_size
        grid_crops_coords = get_resize_crop_region_for_grid((grid_height, grid_width), base_size)
        image_rotary_emb = get_2d_rotary_pos_embed(
            self.transformer.inner_dim // self.transformer.num_heads, grid_crops_coords, (grid_height, grid_width)
        )

        style = ms.tensor([0])

        target_size = target_size or (height, width)
        add_time_ids = list(original_size + target_size + crops_coords_top_left)
        add_time_ids = ms.tensor([add_time_ids], dtype=prompt_embeds.dtype)

        if self.do_classifier_free_guidance:
            prompt_embeds = ops.cat([negative_prompt_embeds, prompt_embeds])
            prompt_attention_mask = ops.cat([negative_prompt_attention_mask, prompt_attention_mask])
            prompt_embeds_2 = ops.cat([negative_prompt_embeds_2, prompt_embeds_2])
            prompt_attention_mask_2 = ops.cat([negative_prompt_attention_mask_2, prompt_attention_mask_2])
            add_time_ids = ops.cat([add_time_ids] * 2, axis=0)
            style = ops.cat([style] * 2, axis=0)

        add_time_ids = add_time_ids.to(dtype=prompt_embeds.dtype).tile((batch_size * num_images_per_prompt, 1))
        style = style.tile((batch_size * num_images_per_prompt,))

        # 9. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        self._num_timesteps = len(timesteps)
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                if self.interrupt:
                    continue

                # expand the latents if we are doing classifier free guidance
                latent_model_input = ops.cat([latents] * 2) if self.do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # expand scalar t to 1-D tensor to match the 1st dim of latent_model_input
                t_expand = ms.tensor([t.item()] * latent_model_input.shape[0]).to(dtype=latent_model_input.dtype)

                # controlnet(s) inference
                control_block_samples = self.controlnet(
                    latent_model_input,
                    t_expand,
                    encoder_hidden_states=prompt_embeds,
                    text_embedding_mask=prompt_attention_mask,
                    encoder_hidden_states_t5=prompt_embeds_2,
                    text_embedding_mask_t5=prompt_attention_mask_2,
                    image_meta_size=add_time_ids,
                    style=style,
                    image_rotary_emb=ms.mutable(image_rotary_emb),
                    return_dict=False,
                    controlnet_cond=control_image,
                    conditioning_scale=controlnet_conditioning_scale,
                )[0]

                # predict the noise residual
                noise_pred = self.transformer(
                    latent_model_input,
                    t_expand,
                    encoder_hidden_states=prompt_embeds,
                    text_embedding_mask=prompt_attention_mask,
                    encoder_hidden_states_t5=prompt_embeds_2,
                    text_embedding_mask_t5=prompt_attention_mask_2,
                    image_meta_size=add_time_ids,
                    style=style,
                    image_rotary_emb=ms.mutable(image_rotary_emb),
                    return_dict=False,
                    controlnet_block_samples=ms.mutable(control_block_samples),
                )[0]

                noise_pred, _ = noise_pred.chunk(2, axis=1)

                # perform guidance
                if self.do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                if self.do_classifier_free_guidance and guidance_rescale > 0.0:
                    # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
                    noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
                    prompt_embeds_2 = callback_outputs.pop("prompt_embeds_2", prompt_embeds_2)
                    negative_prompt_embeds_2 = callback_outputs.pop(
                        "negative_prompt_embeds_2", negative_prompt_embeds_2
                    )

                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()

        if not output_type == "latent":
            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
            image, has_nsfw_concept = self.run_safety_checker(image, prompt_embeds.dtype)
        else:
            image = latents
            has_nsfw_concept = None

        if has_nsfw_concept is None:
            do_denormalize = [True] * image.shape[0]
        else:
            do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]

        image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)

        if not return_dict:
            return (image, has_nsfw_concept)

        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)

mindone.diffusers.HunyuanDiTControlNetPipeline.__call__(prompt=None, height=None, width=None, num_inference_steps=50, guidance_scale=5.0, control_image=None, controlnet_conditioning_scale=1.0, negative_prompt=None, num_images_per_prompt=1, eta=0.0, generator=None, latents=None, prompt_embeds=None, prompt_embeds_2=None, negative_prompt_embeds=None, negative_prompt_embeds_2=None, prompt_attention_mask=None, prompt_attention_mask_2=None, negative_prompt_attention_mask=None, negative_prompt_attention_mask_2=None, output_type='pil', return_dict=False, callback_on_step_end=None, callback_on_step_end_tensor_inputs=['latents'], guidance_rescale=0.0, original_size=(1024, 1024), target_size=None, crops_coords_top_left=(0, 0), use_resolution_binning=True)

The call function to the pipeline for generation with HunyuanDiT.

PARAMETER DESCRIPTION
prompt

The prompt or prompts to guide image generation. If not defined, you need to pass prompt_embeds.

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

height

The height in pixels of the generated image.

TYPE: `int` DEFAULT: None

width

The width in pixels of the generated image.

TYPE: `int` DEFAULT: None

num_inference_steps

The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. This parameter is modulated by strength.

TYPE: `int`, *optional*, defaults to 50 DEFAULT: 50

guidance_scale

A higher guidance scale value encourages the model to generate images closely linked to the text prompt at the expense of lower image quality. Guidance scale is enabled when guidance_scale > 1.

TYPE: `float`, *optional*, defaults to 7.5 DEFAULT: 5.0

control_guidance_start

The percentage of total steps at which the ControlNet starts applying.

TYPE: `float` or `List[float]`, *optional*, defaults to 0.0

control_guidance_end

The percentage of total steps at which the ControlNet stops applying.

TYPE: `float` or `List[float]`, *optional*, defaults to 1.0

control_image
`List[List[ms.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):

The ControlNet input condition to provide guidance to the unet for generation. If the type is specified as ms.Tensor, it is passed to ControlNet as is. PIL.Image.Image can also be accepted as an image. The dimensions of the output image defaults to image's dimensions. If height and/or width are passed, image is resized accordingly. If multiple ControlNets are specified in init, images must be passed as a list such that each element of the list can be correctly batched for input to a single ControlNet.

TYPE: `ms.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[ms.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`, DEFAULT: None

controlnet_conditioning_scale

The outputs of the ControlNet are multiplied by controlnet_conditioning_scale before they are added to the residual in the original unet. If multiple ControlNets are specified in init, you can set the corresponding scale as a list.

TYPE: `float` or `List[float]`, *optional*, defaults to 1.0 DEFAULT: 1.0

negative_prompt

The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass negative_prompt_embeds instead. Ignored when not using guidance (guidance_scale < 1).

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

num_images_per_prompt

The number of images to generate per prompt.

TYPE: `int`, *optional*, defaults to 1 DEFAULT: 1

eta

Corresponds to parameter eta (η) from the DDIM paper. Only applies to the [~schedulers.DDIMScheduler], and is ignored in other schedulers.

TYPE: `float`, *optional*, defaults to 0.0 DEFAULT: 0.0

generator

A np.random.Generator to make generation deterministic.

TYPE: `np.random.Generator` or `List[np.random.Generator]`, *optional* DEFAULT: None

prompt_embeds

Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

prompt_embeds_2

Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_prompt_embeds

Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, negative_prompt_embeds are generated from the negative_prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_prompt_embeds_2

Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, negative_prompt_embeds are generated from the negative_prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

prompt_attention_mask

Attention mask for the prompt. Required when prompt_embeds is passed directly.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

prompt_attention_mask_2

Attention mask for the prompt. Required when prompt_embeds_2 is passed directly.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_prompt_attention_mask

Attention mask for the negative prompt. Required when negative_prompt_embeds is passed directly.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_prompt_attention_mask_2

Attention mask for the negative prompt. Required when negative_prompt_embeds_2 is passed directly.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

output_type

The output format of the generated image. Choose between PIL.Image or np.array.

TYPE: `str`, *optional*, defaults to `"pil"` DEFAULT: 'pil'

return_dict

Whether or not to return a [~pipelines.stable_diffusion.StableDiffusionPipelineOutput] instead of a plain tuple.

TYPE: `bool`, *optional*, defaults to `False` DEFAULT: False

callback_on_step_end

A callback function or a list of callback functions to be called at the end of each denoising step.

TYPE: `Callable[[int, int, Dict], None]`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional* DEFAULT: None

callback_on_step_end_tensor_inputs

A list of tensor inputs that should be passed to the callback function. If not defined, all tensor inputs will be passed.

TYPE: `List[str]`, *optional* DEFAULT: ['latents']

guidance_rescale

Rescale the noise_cfg according to guidance_rescale. Based on findings of Common Diffusion Noise Schedules and Sample Steps are Flawed. See Section 3.4

TYPE: `float`, *optional*, defaults to 0.0 DEFAULT: 0.0

original_size

The original size of the image. Used to calculate the time ids.

TYPE: `Tuple[int, int]`, *optional*, defaults to `(1024, 1024)` DEFAULT: (1024, 1024)

target_size

The target size of the image. Used to calculate the time ids.

TYPE: `Tuple[int, int]`, *optional* DEFAULT: None

crops_coords_top_left

The top left coordinates of the crop. Used to calculate the time ids.

TYPE: `Tuple[int, int]`, *optional*, defaults to `(0, 0)` DEFAULT: (0, 0)

use_resolution_binning

Whether to use resolution binning or not. If True, the input resolution will be mapped to the closest standard resolution. Supported resolutions are 1024x1024, 1280x1280, 1024x768, 1152x864, 1280x960, 768x1024, 864x1152, 960x1280, 1280x768, and 768x1280. It is recommended to set this to True.

TYPE: `bool`, *optional*, defaults to `True` DEFAULT: True

RETURNS DESCRIPTION

[~pipelines.stable_diffusion.StableDiffusionPipelineOutput] or tuple: If return_dict is True, [~pipelines.stable_diffusion.StableDiffusionPipelineOutput] is returned, otherwise a tuple is returned where the first element is a list with the generated images and the second element is a list of bools indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content.

Source code in mindone/diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
def __call__(
    self,
    prompt: Union[str, List[str]] = None,
    height: Optional[int] = None,
    width: Optional[int] = None,
    num_inference_steps: Optional[int] = 50,
    guidance_scale: Optional[float] = 5.0,
    control_image: PipelineImageInput = None,
    controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
    negative_prompt: Optional[Union[str, List[str]]] = None,
    num_images_per_prompt: Optional[int] = 1,
    eta: Optional[float] = 0.0,
    generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
    latents: Optional[ms.Tensor] = None,
    prompt_embeds: Optional[ms.Tensor] = None,
    prompt_embeds_2: Optional[ms.Tensor] = None,
    negative_prompt_embeds: Optional[ms.Tensor] = None,
    negative_prompt_embeds_2: Optional[ms.Tensor] = None,
    prompt_attention_mask: Optional[ms.Tensor] = None,
    prompt_attention_mask_2: Optional[ms.Tensor] = None,
    negative_prompt_attention_mask: Optional[ms.Tensor] = None,
    negative_prompt_attention_mask_2: Optional[ms.Tensor] = None,
    output_type: Optional[str] = "pil",
    return_dict: bool = False,
    callback_on_step_end: Optional[
        Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
    ] = None,
    callback_on_step_end_tensor_inputs: List[str] = ["latents"],
    guidance_rescale: float = 0.0,
    original_size: Optional[Tuple[int, int]] = (1024, 1024),
    target_size: Optional[Tuple[int, int]] = None,
    crops_coords_top_left: Tuple[int, int] = (0, 0),
    use_resolution_binning: bool = True,
):
    r"""
    The call function to the pipeline for generation with HunyuanDiT.

    Args:
        prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
        height (`int`):
            The height in pixels of the generated image.
        width (`int`):
            The width in pixels of the generated image.
        num_inference_steps (`int`, *optional*, defaults to 50):
            The number of denoising steps. More denoising steps usually lead to a higher quality image at the
            expense of slower inference. This parameter is modulated by `strength`.
        guidance_scale (`float`, *optional*, defaults to 7.5):
            A higher guidance scale value encourages the model to generate images closely linked to the text
            `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
        control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
            The percentage of total steps at which the ControlNet starts applying.
        control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
            The percentage of total steps at which the ControlNet stops applying.
        control_image (`ms.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[ms.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
                `List[List[ms.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
            The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
            specified as `ms.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
            as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
            width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
            images must be passed as a list such that each element of the list can be correctly batched for input
            to a single ControlNet.
        controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
            The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
            to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
            the corresponding scale as a list.
        negative_prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts to guide what to not include in image generation. If not defined, you need to
            pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
        num_images_per_prompt (`int`, *optional*, defaults to 1):
            The number of images to generate per prompt.
        eta (`float`, *optional*, defaults to 0.0):
            Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
            to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
        generator (`np.random.Generator` or `List[np.random.Generator]`, *optional*):
            A [`np.random.Generator`](https://numpy.org/doc/stable/reference/random/generator.html) to make
            generation deterministic.
        prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
            provided, text embeddings are generated from the `prompt` input argument.
        prompt_embeds_2 (`ms.Tensor`, *optional*):
            Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
            provided, text embeddings are generated from the `prompt` input argument.
        negative_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
            not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
        negative_prompt_embeds_2 (`ms.Tensor`, *optional*):
            Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
            not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
        prompt_attention_mask (`ms.Tensor`, *optional*):
            Attention mask for the prompt. Required when `prompt_embeds` is passed directly.
        prompt_attention_mask_2 (`ms.Tensor`, *optional*):
            Attention mask for the prompt. Required when `prompt_embeds_2` is passed directly.
        negative_prompt_attention_mask (`ms.Tensor`, *optional*):
            Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly.
        negative_prompt_attention_mask_2 (`ms.Tensor`, *optional*):
            Attention mask for the negative prompt. Required when `negative_prompt_embeds_2` is passed directly.
        output_type (`str`, *optional*, defaults to `"pil"`):
            The output format of the generated image. Choose between `PIL.Image` or `np.array`.
        return_dict (`bool`, *optional*, defaults to `False`):
            Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
            plain tuple.
        callback_on_step_end (`Callable[[int, int, Dict], None]`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
            A callback function or a list of callback functions to be called at the end of each denoising step.
        callback_on_step_end_tensor_inputs (`List[str]`, *optional*):
            A list of tensor inputs that should be passed to the callback function. If not defined, all tensor
            inputs will be passed.
        guidance_rescale (`float`, *optional*, defaults to 0.0):
            Rescale the noise_cfg according to `guidance_rescale`. Based on findings of [Common Diffusion Noise
            Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
        original_size (`Tuple[int, int]`, *optional*, defaults to `(1024, 1024)`):
            The original size of the image. Used to calculate the time ids.
        target_size (`Tuple[int, int]`, *optional*):
            The target size of the image. Used to calculate the time ids.
        crops_coords_top_left (`Tuple[int, int]`, *optional*, defaults to `(0, 0)`):
            The top left coordinates of the crop. Used to calculate the time ids.
        use_resolution_binning (`bool`, *optional*, defaults to `True`):
            Whether to use resolution binning or not. If `True`, the input resolution will be mapped to the closest
            standard resolution. Supported resolutions are 1024x1024, 1280x1280, 1024x768, 1152x864, 1280x960,
            768x1024, 864x1152, 960x1280, 1280x768, and 768x1280. It is recommended to set this to `True`.

    Examples:

    Returns:
        [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
            If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
            otherwise a `tuple` is returned where the first element is a list with the generated images and the
            second element is a list of `bool`s indicating whether the corresponding generated image contains
            "not-safe-for-work" (nsfw) content.
    """

    if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
        callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs

    # 0. default height and width
    height = height or self.default_sample_size * self.vae_scale_factor
    width = width or self.default_sample_size * self.vae_scale_factor
    height = int((height // 16) * 16)
    width = int((width // 16) * 16)

    if use_resolution_binning and (height, width) not in SUPPORTED_SHAPE:
        width, height = map_to_standard_shapes(width, height)
        height = int(height)
        width = int(width)
        logger.warning(f"Reshaped to (height, width)=({height}, {width}), Supported shapes are {SUPPORTED_SHAPE}")

    # 1. Check inputs. Raise error if not correct
    self.check_inputs(
        prompt,
        height,
        width,
        negative_prompt,
        prompt_embeds,
        negative_prompt_embeds,
        prompt_attention_mask,
        negative_prompt_attention_mask,
        prompt_embeds_2,
        negative_prompt_embeds_2,
        prompt_attention_mask_2,
        negative_prompt_attention_mask_2,
        callback_on_step_end_tensor_inputs,
    )
    self._guidance_scale = guidance_scale
    self._guidance_rescale = guidance_rescale
    self._interrupt = False

    # 2. Define call parameters
    if prompt is not None and isinstance(prompt, str):
        batch_size = 1
    elif prompt is not None and isinstance(prompt, list):
        batch_size = len(prompt)
    else:
        batch_size = prompt_embeds.shape[0]

    # 3. Encode input prompt

    (
        prompt_embeds,
        negative_prompt_embeds,
        prompt_attention_mask,
        negative_prompt_attention_mask,
    ) = self.encode_prompt(
        prompt=prompt,
        dtype=self.transformer.dtype,
        num_images_per_prompt=num_images_per_prompt,
        do_classifier_free_guidance=self.do_classifier_free_guidance,
        negative_prompt=negative_prompt,
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=negative_prompt_embeds,
        prompt_attention_mask=prompt_attention_mask,
        negative_prompt_attention_mask=negative_prompt_attention_mask,
        max_sequence_length=77,
        text_encoder_index=0,
    )
    (
        prompt_embeds_2,
        negative_prompt_embeds_2,
        prompt_attention_mask_2,
        negative_prompt_attention_mask_2,
    ) = self.encode_prompt(
        prompt=prompt,
        dtype=self.transformer.dtype,
        num_images_per_prompt=num_images_per_prompt,
        do_classifier_free_guidance=self.do_classifier_free_guidance,
        negative_prompt=negative_prompt,
        prompt_embeds=prompt_embeds_2,
        negative_prompt_embeds=negative_prompt_embeds_2,
        prompt_attention_mask=prompt_attention_mask_2,
        negative_prompt_attention_mask=negative_prompt_attention_mask_2,
        max_sequence_length=256,
        text_encoder_index=1,
    )

    # 4. Prepare control image
    if isinstance(self.controlnet, HunyuanDiT2DControlNetModel):
        control_image = self.prepare_image(
            image=control_image,
            width=width,
            height=height,
            batch_size=batch_size * num_images_per_prompt,
            num_images_per_prompt=num_images_per_prompt,
            dtype=self.dtype,
            do_classifier_free_guidance=self.do_classifier_free_guidance,
            guess_mode=False,
        )
        height, width = control_image.shape[-2:]

        control_image = self.vae.diag_gauss_dist.sample(self.vae.encode(control_image)[0])
        control_image = control_image * self.vae.config.scaling_factor

    elif isinstance(self.controlnet, HunyuanDiT2DMultiControlNetModel):
        control_images = []

        for control_image_ in control_image:
            control_image_ = self.prepare_image(
                image=control_image_,
                width=width,
                height=height,
                batch_size=batch_size * num_images_per_prompt,
                num_images_per_prompt=num_images_per_prompt,
                dtype=self.dtype,
                do_classifier_free_guidance=self.do_classifier_free_guidance,
                guess_mode=False,
            )

            control_image_ = self.vae.diag_gauss_dist.sample(self.vae.encode(control_image_)[0])
            control_image_ = control_image_ * self.vae.config.scaling_factor

            control_images.append(control_image_)

        control_image = control_images
    else:
        assert False

    # 5. Prepare timesteps
    self.scheduler.set_timesteps(num_inference_steps)
    timesteps = self.scheduler.timesteps

    # 6. Prepare latent variables
    num_channels_latents = self.transformer.config.in_channels
    latents = self.prepare_latents(
        batch_size * num_images_per_prompt,
        num_channels_latents,
        height,
        width,
        prompt_embeds.dtype,
        generator,
        latents,
    )

    # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
    extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

    # 8. create image_rotary_emb, style embedding & time ids
    grid_height = height // 8 // self.transformer.config.patch_size
    grid_width = width // 8 // self.transformer.config.patch_size
    base_size = 512 // 8 // self.transformer.config.patch_size
    grid_crops_coords = get_resize_crop_region_for_grid((grid_height, grid_width), base_size)
    image_rotary_emb = get_2d_rotary_pos_embed(
        self.transformer.inner_dim // self.transformer.num_heads, grid_crops_coords, (grid_height, grid_width)
    )

    style = ms.tensor([0])

    target_size = target_size or (height, width)
    add_time_ids = list(original_size + target_size + crops_coords_top_left)
    add_time_ids = ms.tensor([add_time_ids], dtype=prompt_embeds.dtype)

    if self.do_classifier_free_guidance:
        prompt_embeds = ops.cat([negative_prompt_embeds, prompt_embeds])
        prompt_attention_mask = ops.cat([negative_prompt_attention_mask, prompt_attention_mask])
        prompt_embeds_2 = ops.cat([negative_prompt_embeds_2, prompt_embeds_2])
        prompt_attention_mask_2 = ops.cat([negative_prompt_attention_mask_2, prompt_attention_mask_2])
        add_time_ids = ops.cat([add_time_ids] * 2, axis=0)
        style = ops.cat([style] * 2, axis=0)

    add_time_ids = add_time_ids.to(dtype=prompt_embeds.dtype).tile((batch_size * num_images_per_prompt, 1))
    style = style.tile((batch_size * num_images_per_prompt,))

    # 9. Denoising loop
    num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
    self._num_timesteps = len(timesteps)
    with self.progress_bar(total=num_inference_steps) as progress_bar:
        for i, t in enumerate(timesteps):
            if self.interrupt:
                continue

            # expand the latents if we are doing classifier free guidance
            latent_model_input = ops.cat([latents] * 2) if self.do_classifier_free_guidance else latents
            latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

            # expand scalar t to 1-D tensor to match the 1st dim of latent_model_input
            t_expand = ms.tensor([t.item()] * latent_model_input.shape[0]).to(dtype=latent_model_input.dtype)

            # controlnet(s) inference
            control_block_samples = self.controlnet(
                latent_model_input,
                t_expand,
                encoder_hidden_states=prompt_embeds,
                text_embedding_mask=prompt_attention_mask,
                encoder_hidden_states_t5=prompt_embeds_2,
                text_embedding_mask_t5=prompt_attention_mask_2,
                image_meta_size=add_time_ids,
                style=style,
                image_rotary_emb=ms.mutable(image_rotary_emb),
                return_dict=False,
                controlnet_cond=control_image,
                conditioning_scale=controlnet_conditioning_scale,
            )[0]

            # predict the noise residual
            noise_pred = self.transformer(
                latent_model_input,
                t_expand,
                encoder_hidden_states=prompt_embeds,
                text_embedding_mask=prompt_attention_mask,
                encoder_hidden_states_t5=prompt_embeds_2,
                text_embedding_mask_t5=prompt_attention_mask_2,
                image_meta_size=add_time_ids,
                style=style,
                image_rotary_emb=ms.mutable(image_rotary_emb),
                return_dict=False,
                controlnet_block_samples=ms.mutable(control_block_samples),
            )[0]

            noise_pred, _ = noise_pred.chunk(2, axis=1)

            # perform guidance
            if self.do_classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

            if self.do_classifier_free_guidance and guidance_rescale > 0.0:
                # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
                noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)

            # compute the previous noisy sample x_t -> x_t-1
            latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

            if callback_on_step_end is not None:
                callback_kwargs = {}
                for k in callback_on_step_end_tensor_inputs:
                    callback_kwargs[k] = locals()[k]
                callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                latents = callback_outputs.pop("latents", latents)
                prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
                prompt_embeds_2 = callback_outputs.pop("prompt_embeds_2", prompt_embeds_2)
                negative_prompt_embeds_2 = callback_outputs.pop(
                    "negative_prompt_embeds_2", negative_prompt_embeds_2
                )

            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                progress_bar.update()

    if not output_type == "latent":
        image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
        image, has_nsfw_concept = self.run_safety_checker(image, prompt_embeds.dtype)
    else:
        image = latents
        has_nsfw_concept = None

    if has_nsfw_concept is None:
        do_denormalize = [True] * image.shape[0]
    else:
        do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]

    image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)

    if not return_dict:
        return (image, has_nsfw_concept)

    return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)

mindone.diffusers.HunyuanDiTControlNetPipeline.encode_prompt(prompt, dtype=None, num_images_per_prompt=1, do_classifier_free_guidance=True, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, prompt_attention_mask=None, negative_prompt_attention_mask=None, max_sequence_length=None, text_encoder_index=0)

Encodes the prompt into text encoder hidden states.

PARAMETER DESCRIPTION
prompt

prompt to be encoded

TYPE: `str` or `List[str]`, *optional*

dtype

mindspore dtype

TYPE: `ms.dtype` DEFAULT: None

num_images_per_prompt

number of images that should be generated per prompt

TYPE: `int` DEFAULT: 1

do_classifier_free_guidance

whether to use classifier free guidance or not

TYPE: `bool` DEFAULT: True

negative_prompt

The prompt or prompts not to guide the image generation. If not defined, one has to pass negative_prompt_embeds instead. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1).

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

prompt_embeds

Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_prompt_embeds

Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

prompt_attention_mask

Attention mask for the prompt. Required when prompt_embeds is passed directly.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_prompt_attention_mask

Attention mask for the negative prompt. Required when negative_prompt_embeds is passed directly.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

max_sequence_length

maximum sequence length to use for the prompt.

TYPE: `int`, *optional* DEFAULT: None

text_encoder_index

Index of the text encoder to use. 0 for clip and 1 for T5.

TYPE: `int`, *optional* DEFAULT: 0

Source code in mindone/diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
def encode_prompt(
    self,
    prompt: str,
    dtype: ms.dtype = None,
    num_images_per_prompt: int = 1,
    do_classifier_free_guidance: bool = True,
    negative_prompt: Optional[str] = None,
    prompt_embeds: Optional[ms.Tensor] = None,
    negative_prompt_embeds: Optional[ms.Tensor] = None,
    prompt_attention_mask: Optional[ms.Tensor] = None,
    negative_prompt_attention_mask: Optional[ms.Tensor] = None,
    max_sequence_length: Optional[int] = None,
    text_encoder_index: int = 0,
):
    r"""
    Encodes the prompt into text encoder hidden states.

    Args:
        prompt (`str` or `List[str]`, *optional*):
            prompt to be encoded
        dtype (`ms.dtype`):
            mindspore dtype
        num_images_per_prompt (`int`):
            number of images that should be generated per prompt
        do_classifier_free_guidance (`bool`):
            whether to use classifier free guidance or not
        negative_prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts not to guide the image generation. If not defined, one has to pass
            `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
            less than `1`).
        prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
            provided, text embeddings will be generated from `prompt` input argument.
        negative_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
            weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
            argument.
        prompt_attention_mask (`ms.Tensor`, *optional*):
            Attention mask for the prompt. Required when `prompt_embeds` is passed directly.
        negative_prompt_attention_mask (`ms.Tensor`, *optional*):
            Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly.
        max_sequence_length (`int`, *optional*): maximum sequence length to use for the prompt.
        text_encoder_index (`int`, *optional*):
            Index of the text encoder to use. `0` for clip and `1` for T5.
    """
    if dtype is None:
        if self.text_encoder_2 is not None:
            dtype = self.text_encoder_2.dtype
        elif self.transformer is not None:
            dtype = self.transformer.dtype
        else:
            dtype = None

    tokenizers = [self.tokenizer, self.tokenizer_2]
    text_encoders = [self.text_encoder, self.text_encoder_2]

    tokenizer = tokenizers[text_encoder_index]
    text_encoder = text_encoders[text_encoder_index]

    if max_sequence_length is None:
        if text_encoder_index == 0:
            max_length = 77
        if text_encoder_index == 1:
            max_length = 256
    else:
        max_length = max_sequence_length

    if prompt is not None and isinstance(prompt, str):
        batch_size = 1
    elif prompt is not None and isinstance(prompt, list):
        batch_size = len(prompt)
    else:
        batch_size = prompt_embeds.shape[0]

    if prompt_embeds is None:
        text_inputs = tokenizer(
            prompt,
            padding="max_length",
            max_length=max_length,
            truncation=True,
            return_attention_mask=True,
            return_tensors="np",
        )
        text_input_ids = text_inputs.input_ids
        untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="np").input_ids

        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not np.array_equal(
            text_input_ids, untruncated_ids
        ):
            removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
            logger.warning(
                "The following part of your input was truncated because CLIP can only handle sequences up to"
                f" {tokenizer.model_max_length} tokens: {removed_text}"
            )

        prompt_attention_mask = ms.tensor(text_inputs.attention_mask)
        prompt_embeds = text_encoder(
            ms.tensor(text_input_ids),
            attention_mask=prompt_attention_mask,
        )
        prompt_embeds = prompt_embeds[0]
        prompt_attention_mask = prompt_attention_mask.tile((num_images_per_prompt, 1))

    prompt_embeds = prompt_embeds.to(dtype=dtype)

    bs_embed, seq_len, _ = prompt_embeds.shape
    # duplicate text embeddings for each generation per prompt, using mps friendly method
    prompt_embeds = prompt_embeds.tile((1, num_images_per_prompt, 1))
    prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

    # get unconditional embeddings for classifier free guidance
    if do_classifier_free_guidance and negative_prompt_embeds is None:
        uncond_tokens: List[str]
        if negative_prompt is None:
            uncond_tokens = [""] * batch_size
        elif prompt is not None and type(prompt) is not type(negative_prompt):
            raise TypeError(
                f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                f" {type(prompt)}."
            )
        elif isinstance(negative_prompt, str):
            uncond_tokens = [negative_prompt]
        elif batch_size != len(negative_prompt):
            raise ValueError(
                f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                " the batch size of `prompt`."
            )
        else:
            uncond_tokens = negative_prompt

        max_length = prompt_embeds.shape[1]
        uncond_input = tokenizer(
            uncond_tokens,
            padding="max_length",
            max_length=max_length,
            truncation=True,
            return_tensors="np",
        )

        negative_prompt_attention_mask = ms.tensor(uncond_input.attention_mask)
        negative_prompt_embeds = text_encoder(
            ms.tensor(uncond_input.input_ids),
            attention_mask=negative_prompt_attention_mask,
        )
        negative_prompt_embeds = negative_prompt_embeds[0]
        negative_prompt_attention_mask = negative_prompt_attention_mask.tile((num_images_per_prompt, 1))

    if do_classifier_free_guidance:
        # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
        seq_len = negative_prompt_embeds.shape[1]

        negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype)

        negative_prompt_embeds = negative_prompt_embeds.tile((1, num_images_per_prompt, 1))
        negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

    return prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask